diff options
Diffstat (limited to 'drivers/cpufreq/powernow-k8.c')
-rw-r--r-- | drivers/cpufreq/powernow-k8.c | 1607 |
1 files changed, 1607 insertions, 0 deletions
diff --git a/drivers/cpufreq/powernow-k8.c b/drivers/cpufreq/powernow-k8.c new file mode 100644 index 000000000000..83479b6fb9a1 --- /dev/null +++ b/drivers/cpufreq/powernow-k8.c | |||
@@ -0,0 +1,1607 @@ | |||
1 | /* | ||
2 | * (c) 2003-2010 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | * | ||
7 | * Support : mark.langsdorf@amd.com | ||
8 | * | ||
9 | * Based on the powernow-k7.c module written by Dave Jones. | ||
10 | * (C) 2003 Dave Jones on behalf of SuSE Labs | ||
11 | * (C) 2004 Dominik Brodowski <linux@brodo.de> | ||
12 | * (C) 2004 Pavel Machek <pavel@ucw.cz> | ||
13 | * Licensed under the terms of the GNU GPL License version 2. | ||
14 | * Based upon datasheets & sample CPUs kindly provided by AMD. | ||
15 | * | ||
16 | * Valuable input gratefully received from Dave Jones, Pavel Machek, | ||
17 | * Dominik Brodowski, Jacob Shin, and others. | ||
18 | * Originally developed by Paul Devriendt. | ||
19 | * Processor information obtained from Chapter 9 (Power and Thermal Management) | ||
20 | * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD | ||
21 | * Opteron Processors" available for download from www.amd.com | ||
22 | * | ||
23 | * Tables for specific CPUs can be inferred from | ||
24 | * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf | ||
25 | */ | ||
26 | |||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/cpufreq.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/string.h> | ||
34 | #include <linux/cpumask.h> | ||
35 | #include <linux/sched.h> /* for current / set_cpus_allowed() */ | ||
36 | #include <linux/io.h> | ||
37 | #include <linux/delay.h> | ||
38 | |||
39 | #include <asm/msr.h> | ||
40 | |||
41 | #include <linux/acpi.h> | ||
42 | #include <linux/mutex.h> | ||
43 | #include <acpi/processor.h> | ||
44 | |||
45 | #define PFX "powernow-k8: " | ||
46 | #define VERSION "version 2.20.00" | ||
47 | #include "powernow-k8.h" | ||
48 | #include "mperf.h" | ||
49 | |||
50 | /* serialize freq changes */ | ||
51 | static DEFINE_MUTEX(fidvid_mutex); | ||
52 | |||
53 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); | ||
54 | |||
55 | static int cpu_family = CPU_OPTERON; | ||
56 | |||
57 | /* core performance boost */ | ||
58 | static bool cpb_capable, cpb_enabled; | ||
59 | static struct msr __percpu *msrs; | ||
60 | |||
61 | static struct cpufreq_driver cpufreq_amd64_driver; | ||
62 | |||
63 | #ifndef CONFIG_SMP | ||
64 | static inline const struct cpumask *cpu_core_mask(int cpu) | ||
65 | { | ||
66 | return cpumask_of(0); | ||
67 | } | ||
68 | #endif | ||
69 | |||
70 | /* Return a frequency in MHz, given an input fid */ | ||
71 | static u32 find_freq_from_fid(u32 fid) | ||
72 | { | ||
73 | return 800 + (fid * 100); | ||
74 | } | ||
75 | |||
76 | /* Return a frequency in KHz, given an input fid */ | ||
77 | static u32 find_khz_freq_from_fid(u32 fid) | ||
78 | { | ||
79 | return 1000 * find_freq_from_fid(fid); | ||
80 | } | ||
81 | |||
82 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, | ||
83 | u32 pstate) | ||
84 | { | ||
85 | return data[pstate].frequency; | ||
86 | } | ||
87 | |||
88 | /* Return the vco fid for an input fid | ||
89 | * | ||
90 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | ||
91 | * only from corresponding high fids. This returns "high" fid corresponding to | ||
92 | * "low" one. | ||
93 | */ | ||
94 | static u32 convert_fid_to_vco_fid(u32 fid) | ||
95 | { | ||
96 | if (fid < HI_FID_TABLE_BOTTOM) | ||
97 | return 8 + (2 * fid); | ||
98 | else | ||
99 | return fid; | ||
100 | } | ||
101 | |||
102 | /* | ||
103 | * Return 1 if the pending bit is set. Unless we just instructed the processor | ||
104 | * to transition to a new state, seeing this bit set is really bad news. | ||
105 | */ | ||
106 | static int pending_bit_stuck(void) | ||
107 | { | ||
108 | u32 lo, hi; | ||
109 | |||
110 | if (cpu_family == CPU_HW_PSTATE) | ||
111 | return 0; | ||
112 | |||
113 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
114 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * Update the global current fid / vid values from the status msr. | ||
119 | * Returns 1 on error. | ||
120 | */ | ||
121 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | ||
122 | { | ||
123 | u32 lo, hi; | ||
124 | u32 i = 0; | ||
125 | |||
126 | if (cpu_family == CPU_HW_PSTATE) { | ||
127 | rdmsr(MSR_PSTATE_STATUS, lo, hi); | ||
128 | i = lo & HW_PSTATE_MASK; | ||
129 | data->currpstate = i; | ||
130 | |||
131 | /* | ||
132 | * a workaround for family 11h erratum 311 might cause | ||
133 | * an "out-of-range Pstate if the core is in Pstate-0 | ||
134 | */ | ||
135 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) | ||
136 | data->currpstate = HW_PSTATE_0; | ||
137 | |||
138 | return 0; | ||
139 | } | ||
140 | do { | ||
141 | if (i++ > 10000) { | ||
142 | pr_debug("detected change pending stuck\n"); | ||
143 | return 1; | ||
144 | } | ||
145 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
146 | } while (lo & MSR_S_LO_CHANGE_PENDING); | ||
147 | |||
148 | data->currvid = hi & MSR_S_HI_CURRENT_VID; | ||
149 | data->currfid = lo & MSR_S_LO_CURRENT_FID; | ||
150 | |||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | /* the isochronous relief time */ | ||
155 | static void count_off_irt(struct powernow_k8_data *data) | ||
156 | { | ||
157 | udelay((1 << data->irt) * 10); | ||
158 | return; | ||
159 | } | ||
160 | |||
161 | /* the voltage stabilization time */ | ||
162 | static void count_off_vst(struct powernow_k8_data *data) | ||
163 | { | ||
164 | udelay(data->vstable * VST_UNITS_20US); | ||
165 | return; | ||
166 | } | ||
167 | |||
168 | /* need to init the control msr to a safe value (for each cpu) */ | ||
169 | static void fidvid_msr_init(void) | ||
170 | { | ||
171 | u32 lo, hi; | ||
172 | u8 fid, vid; | ||
173 | |||
174 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
175 | vid = hi & MSR_S_HI_CURRENT_VID; | ||
176 | fid = lo & MSR_S_LO_CURRENT_FID; | ||
177 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); | ||
178 | hi = MSR_C_HI_STP_GNT_BENIGN; | ||
179 | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); | ||
180 | wrmsr(MSR_FIDVID_CTL, lo, hi); | ||
181 | } | ||
182 | |||
183 | /* write the new fid value along with the other control fields to the msr */ | ||
184 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) | ||
185 | { | ||
186 | u32 lo; | ||
187 | u32 savevid = data->currvid; | ||
188 | u32 i = 0; | ||
189 | |||
190 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { | ||
191 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); | ||
192 | return 1; | ||
193 | } | ||
194 | |||
195 | lo = fid; | ||
196 | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); | ||
197 | lo |= MSR_C_LO_INIT_FID_VID; | ||
198 | |||
199 | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", | ||
200 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
201 | |||
202 | do { | ||
203 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
204 | if (i++ > 100) { | ||
205 | printk(KERN_ERR PFX | ||
206 | "Hardware error - pending bit very stuck - " | ||
207 | "no further pstate changes possible\n"); | ||
208 | return 1; | ||
209 | } | ||
210 | } while (query_current_values_with_pending_wait(data)); | ||
211 | |||
212 | count_off_irt(data); | ||
213 | |||
214 | if (savevid != data->currvid) { | ||
215 | printk(KERN_ERR PFX | ||
216 | "vid change on fid trans, old 0x%x, new 0x%x\n", | ||
217 | savevid, data->currvid); | ||
218 | return 1; | ||
219 | } | ||
220 | |||
221 | if (fid != data->currfid) { | ||
222 | printk(KERN_ERR PFX | ||
223 | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, | ||
224 | data->currfid); | ||
225 | return 1; | ||
226 | } | ||
227 | |||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | /* Write a new vid to the hardware */ | ||
232 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) | ||
233 | { | ||
234 | u32 lo; | ||
235 | u32 savefid = data->currfid; | ||
236 | int i = 0; | ||
237 | |||
238 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { | ||
239 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); | ||
240 | return 1; | ||
241 | } | ||
242 | |||
243 | lo = data->currfid; | ||
244 | lo |= (vid << MSR_C_LO_VID_SHIFT); | ||
245 | lo |= MSR_C_LO_INIT_FID_VID; | ||
246 | |||
247 | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", | ||
248 | vid, lo, STOP_GRANT_5NS); | ||
249 | |||
250 | do { | ||
251 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); | ||
252 | if (i++ > 100) { | ||
253 | printk(KERN_ERR PFX "internal error - pending bit " | ||
254 | "very stuck - no further pstate " | ||
255 | "changes possible\n"); | ||
256 | return 1; | ||
257 | } | ||
258 | } while (query_current_values_with_pending_wait(data)); | ||
259 | |||
260 | if (savefid != data->currfid) { | ||
261 | printk(KERN_ERR PFX "fid changed on vid trans, old " | ||
262 | "0x%x new 0x%x\n", | ||
263 | savefid, data->currfid); | ||
264 | return 1; | ||
265 | } | ||
266 | |||
267 | if (vid != data->currvid) { | ||
268 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " | ||
269 | "curr 0x%x\n", | ||
270 | vid, data->currvid); | ||
271 | return 1; | ||
272 | } | ||
273 | |||
274 | return 0; | ||
275 | } | ||
276 | |||
277 | /* | ||
278 | * Reduce the vid by the max of step or reqvid. | ||
279 | * Decreasing vid codes represent increasing voltages: | ||
280 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. | ||
281 | */ | ||
282 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, | ||
283 | u32 reqvid, u32 step) | ||
284 | { | ||
285 | if ((data->currvid - reqvid) > step) | ||
286 | reqvid = data->currvid - step; | ||
287 | |||
288 | if (write_new_vid(data, reqvid)) | ||
289 | return 1; | ||
290 | |||
291 | count_off_vst(data); | ||
292 | |||
293 | return 0; | ||
294 | } | ||
295 | |||
296 | /* Change hardware pstate by single MSR write */ | ||
297 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) | ||
298 | { | ||
299 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); | ||
300 | data->currpstate = pstate; | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ | ||
305 | static int transition_fid_vid(struct powernow_k8_data *data, | ||
306 | u32 reqfid, u32 reqvid) | ||
307 | { | ||
308 | if (core_voltage_pre_transition(data, reqvid, reqfid)) | ||
309 | return 1; | ||
310 | |||
311 | if (core_frequency_transition(data, reqfid)) | ||
312 | return 1; | ||
313 | |||
314 | if (core_voltage_post_transition(data, reqvid)) | ||
315 | return 1; | ||
316 | |||
317 | if (query_current_values_with_pending_wait(data)) | ||
318 | return 1; | ||
319 | |||
320 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { | ||
321 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " | ||
322 | "curr 0x%x 0x%x\n", | ||
323 | smp_processor_id(), | ||
324 | reqfid, reqvid, data->currfid, data->currvid); | ||
325 | return 1; | ||
326 | } | ||
327 | |||
328 | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", | ||
329 | smp_processor_id(), data->currfid, data->currvid); | ||
330 | |||
331 | return 0; | ||
332 | } | ||
333 | |||
334 | /* Phase 1 - core voltage transition ... setup voltage */ | ||
335 | static int core_voltage_pre_transition(struct powernow_k8_data *data, | ||
336 | u32 reqvid, u32 reqfid) | ||
337 | { | ||
338 | u32 rvosteps = data->rvo; | ||
339 | u32 savefid = data->currfid; | ||
340 | u32 maxvid, lo, rvomult = 1; | ||
341 | |||
342 | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " | ||
343 | "reqvid 0x%x, rvo 0x%x\n", | ||
344 | smp_processor_id(), | ||
345 | data->currfid, data->currvid, reqvid, data->rvo); | ||
346 | |||
347 | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) | ||
348 | rvomult = 2; | ||
349 | rvosteps *= rvomult; | ||
350 | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); | ||
351 | maxvid = 0x1f & (maxvid >> 16); | ||
352 | pr_debug("ph1 maxvid=0x%x\n", maxvid); | ||
353 | if (reqvid < maxvid) /* lower numbers are higher voltages */ | ||
354 | reqvid = maxvid; | ||
355 | |||
356 | while (data->currvid > reqvid) { | ||
357 | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", | ||
358 | data->currvid, reqvid); | ||
359 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) | ||
360 | return 1; | ||
361 | } | ||
362 | |||
363 | while ((rvosteps > 0) && | ||
364 | ((rvomult * data->rvo + data->currvid) > reqvid)) { | ||
365 | if (data->currvid == maxvid) { | ||
366 | rvosteps = 0; | ||
367 | } else { | ||
368 | pr_debug("ph1: changing vid for rvo, req 0x%x\n", | ||
369 | data->currvid - 1); | ||
370 | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) | ||
371 | return 1; | ||
372 | rvosteps--; | ||
373 | } | ||
374 | } | ||
375 | |||
376 | if (query_current_values_with_pending_wait(data)) | ||
377 | return 1; | ||
378 | |||
379 | if (savefid != data->currfid) { | ||
380 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", | ||
381 | data->currfid); | ||
382 | return 1; | ||
383 | } | ||
384 | |||
385 | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", | ||
386 | data->currfid, data->currvid); | ||
387 | |||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | /* Phase 2 - core frequency transition */ | ||
392 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) | ||
393 | { | ||
394 | u32 vcoreqfid, vcocurrfid, vcofiddiff; | ||
395 | u32 fid_interval, savevid = data->currvid; | ||
396 | |||
397 | if (data->currfid == reqfid) { | ||
398 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", | ||
399 | data->currfid); | ||
400 | return 0; | ||
401 | } | ||
402 | |||
403 | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " | ||
404 | "reqfid 0x%x\n", | ||
405 | smp_processor_id(), | ||
406 | data->currfid, data->currvid, reqfid); | ||
407 | |||
408 | vcoreqfid = convert_fid_to_vco_fid(reqfid); | ||
409 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
410 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
411 | : vcoreqfid - vcocurrfid; | ||
412 | |||
413 | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) | ||
414 | vcofiddiff = 0; | ||
415 | |||
416 | while (vcofiddiff > 2) { | ||
417 | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); | ||
418 | |||
419 | if (reqfid > data->currfid) { | ||
420 | if (data->currfid > LO_FID_TABLE_TOP) { | ||
421 | if (write_new_fid(data, | ||
422 | data->currfid + fid_interval)) | ||
423 | return 1; | ||
424 | } else { | ||
425 | if (write_new_fid | ||
426 | (data, | ||
427 | 2 + convert_fid_to_vco_fid(data->currfid))) | ||
428 | return 1; | ||
429 | } | ||
430 | } else { | ||
431 | if (write_new_fid(data, data->currfid - fid_interval)) | ||
432 | return 1; | ||
433 | } | ||
434 | |||
435 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
436 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
437 | : vcoreqfid - vcocurrfid; | ||
438 | } | ||
439 | |||
440 | if (write_new_fid(data, reqfid)) | ||
441 | return 1; | ||
442 | |||
443 | if (query_current_values_with_pending_wait(data)) | ||
444 | return 1; | ||
445 | |||
446 | if (data->currfid != reqfid) { | ||
447 | printk(KERN_ERR PFX | ||
448 | "ph2: mismatch, failed fid transition, " | ||
449 | "curr 0x%x, req 0x%x\n", | ||
450 | data->currfid, reqfid); | ||
451 | return 1; | ||
452 | } | ||
453 | |||
454 | if (savevid != data->currvid) { | ||
455 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", | ||
456 | savevid, data->currvid); | ||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", | ||
461 | data->currfid, data->currvid); | ||
462 | |||
463 | return 0; | ||
464 | } | ||
465 | |||
466 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ | ||
467 | static int core_voltage_post_transition(struct powernow_k8_data *data, | ||
468 | u32 reqvid) | ||
469 | { | ||
470 | u32 savefid = data->currfid; | ||
471 | u32 savereqvid = reqvid; | ||
472 | |||
473 | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", | ||
474 | smp_processor_id(), | ||
475 | data->currfid, data->currvid); | ||
476 | |||
477 | if (reqvid != data->currvid) { | ||
478 | if (write_new_vid(data, reqvid)) | ||
479 | return 1; | ||
480 | |||
481 | if (savefid != data->currfid) { | ||
482 | printk(KERN_ERR PFX | ||
483 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", | ||
484 | savefid, data->currfid); | ||
485 | return 1; | ||
486 | } | ||
487 | |||
488 | if (data->currvid != reqvid) { | ||
489 | printk(KERN_ERR PFX | ||
490 | "ph3: failed vid transition\n, " | ||
491 | "req 0x%x, curr 0x%x", | ||
492 | reqvid, data->currvid); | ||
493 | return 1; | ||
494 | } | ||
495 | } | ||
496 | |||
497 | if (query_current_values_with_pending_wait(data)) | ||
498 | return 1; | ||
499 | |||
500 | if (savereqvid != data->currvid) { | ||
501 | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); | ||
502 | return 1; | ||
503 | } | ||
504 | |||
505 | if (savefid != data->currfid) { | ||
506 | pr_debug("ph3 failed, currfid changed 0x%x\n", | ||
507 | data->currfid); | ||
508 | return 1; | ||
509 | } | ||
510 | |||
511 | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", | ||
512 | data->currfid, data->currvid); | ||
513 | |||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | static void check_supported_cpu(void *_rc) | ||
518 | { | ||
519 | u32 eax, ebx, ecx, edx; | ||
520 | int *rc = _rc; | ||
521 | |||
522 | *rc = -ENODEV; | ||
523 | |||
524 | if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD) | ||
525 | return; | ||
526 | |||
527 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
528 | if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) && | ||
529 | ((eax & CPUID_XFAM) < CPUID_XFAM_10H)) | ||
530 | return; | ||
531 | |||
532 | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { | ||
533 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || | ||
534 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { | ||
535 | printk(KERN_INFO PFX | ||
536 | "Processor cpuid %x not supported\n", eax); | ||
537 | return; | ||
538 | } | ||
539 | |||
540 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); | ||
541 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { | ||
542 | printk(KERN_INFO PFX | ||
543 | "No frequency change capabilities detected\n"); | ||
544 | return; | ||
545 | } | ||
546 | |||
547 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
548 | if ((edx & P_STATE_TRANSITION_CAPABLE) | ||
549 | != P_STATE_TRANSITION_CAPABLE) { | ||
550 | printk(KERN_INFO PFX | ||
551 | "Power state transitions not supported\n"); | ||
552 | return; | ||
553 | } | ||
554 | } else { /* must be a HW Pstate capable processor */ | ||
555 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
556 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) | ||
557 | cpu_family = CPU_HW_PSTATE; | ||
558 | else | ||
559 | return; | ||
560 | } | ||
561 | |||
562 | *rc = 0; | ||
563 | } | ||
564 | |||
565 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, | ||
566 | u8 maxvid) | ||
567 | { | ||
568 | unsigned int j; | ||
569 | u8 lastfid = 0xff; | ||
570 | |||
571 | for (j = 0; j < data->numps; j++) { | ||
572 | if (pst[j].vid > LEAST_VID) { | ||
573 | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", | ||
574 | j, pst[j].vid); | ||
575 | return -EINVAL; | ||
576 | } | ||
577 | if (pst[j].vid < data->rvo) { | ||
578 | /* vid + rvo >= 0 */ | ||
579 | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" | ||
580 | " %d\n", j); | ||
581 | return -ENODEV; | ||
582 | } | ||
583 | if (pst[j].vid < maxvid + data->rvo) { | ||
584 | /* vid + rvo >= maxvid */ | ||
585 | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" | ||
586 | " %d\n", j); | ||
587 | return -ENODEV; | ||
588 | } | ||
589 | if (pst[j].fid > MAX_FID) { | ||
590 | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" | ||
591 | " %d\n", j); | ||
592 | return -ENODEV; | ||
593 | } | ||
594 | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { | ||
595 | /* Only first fid is allowed to be in "low" range */ | ||
596 | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " | ||
597 | "0x%x\n", j, pst[j].fid); | ||
598 | return -EINVAL; | ||
599 | } | ||
600 | if (pst[j].fid < lastfid) | ||
601 | lastfid = pst[j].fid; | ||
602 | } | ||
603 | if (lastfid & 1) { | ||
604 | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); | ||
605 | return -EINVAL; | ||
606 | } | ||
607 | if (lastfid > LO_FID_TABLE_TOP) | ||
608 | printk(KERN_INFO FW_BUG PFX | ||
609 | "first fid not from lo freq table\n"); | ||
610 | |||
611 | return 0; | ||
612 | } | ||
613 | |||
614 | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, | ||
615 | unsigned int entry) | ||
616 | { | ||
617 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; | ||
618 | } | ||
619 | |||
620 | static void print_basics(struct powernow_k8_data *data) | ||
621 | { | ||
622 | int j; | ||
623 | for (j = 0; j < data->numps; j++) { | ||
624 | if (data->powernow_table[j].frequency != | ||
625 | CPUFREQ_ENTRY_INVALID) { | ||
626 | if (cpu_family == CPU_HW_PSTATE) { | ||
627 | printk(KERN_INFO PFX | ||
628 | " %d : pstate %d (%d MHz)\n", j, | ||
629 | data->powernow_table[j].index, | ||
630 | data->powernow_table[j].frequency/1000); | ||
631 | } else { | ||
632 | printk(KERN_INFO PFX | ||
633 | "fid 0x%x (%d MHz), vid 0x%x\n", | ||
634 | data->powernow_table[j].index & 0xff, | ||
635 | data->powernow_table[j].frequency/1000, | ||
636 | data->powernow_table[j].index >> 8); | ||
637 | } | ||
638 | } | ||
639 | } | ||
640 | if (data->batps) | ||
641 | printk(KERN_INFO PFX "Only %d pstates on battery\n", | ||
642 | data->batps); | ||
643 | } | ||
644 | |||
645 | static u32 freq_from_fid_did(u32 fid, u32 did) | ||
646 | { | ||
647 | u32 mhz = 0; | ||
648 | |||
649 | if (boot_cpu_data.x86 == 0x10) | ||
650 | mhz = (100 * (fid + 0x10)) >> did; | ||
651 | else if (boot_cpu_data.x86 == 0x11) | ||
652 | mhz = (100 * (fid + 8)) >> did; | ||
653 | else | ||
654 | BUG(); | ||
655 | |||
656 | return mhz * 1000; | ||
657 | } | ||
658 | |||
659 | static int fill_powernow_table(struct powernow_k8_data *data, | ||
660 | struct pst_s *pst, u8 maxvid) | ||
661 | { | ||
662 | struct cpufreq_frequency_table *powernow_table; | ||
663 | unsigned int j; | ||
664 | |||
665 | if (data->batps) { | ||
666 | /* use ACPI support to get full speed on mains power */ | ||
667 | printk(KERN_WARNING PFX | ||
668 | "Only %d pstates usable (use ACPI driver for full " | ||
669 | "range\n", data->batps); | ||
670 | data->numps = data->batps; | ||
671 | } | ||
672 | |||
673 | for (j = 1; j < data->numps; j++) { | ||
674 | if (pst[j-1].fid >= pst[j].fid) { | ||
675 | printk(KERN_ERR PFX "PST out of sequence\n"); | ||
676 | return -EINVAL; | ||
677 | } | ||
678 | } | ||
679 | |||
680 | if (data->numps < 2) { | ||
681 | printk(KERN_ERR PFX "no p states to transition\n"); | ||
682 | return -ENODEV; | ||
683 | } | ||
684 | |||
685 | if (check_pst_table(data, pst, maxvid)) | ||
686 | return -EINVAL; | ||
687 | |||
688 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
689 | * (data->numps + 1)), GFP_KERNEL); | ||
690 | if (!powernow_table) { | ||
691 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); | ||
692 | return -ENOMEM; | ||
693 | } | ||
694 | |||
695 | for (j = 0; j < data->numps; j++) { | ||
696 | int freq; | ||
697 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ | ||
698 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ | ||
699 | freq = find_khz_freq_from_fid(pst[j].fid); | ||
700 | powernow_table[j].frequency = freq; | ||
701 | } | ||
702 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; | ||
703 | powernow_table[data->numps].index = 0; | ||
704 | |||
705 | if (query_current_values_with_pending_wait(data)) { | ||
706 | kfree(powernow_table); | ||
707 | return -EIO; | ||
708 | } | ||
709 | |||
710 | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); | ||
711 | data->powernow_table = powernow_table; | ||
712 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | ||
713 | print_basics(data); | ||
714 | |||
715 | for (j = 0; j < data->numps; j++) | ||
716 | if ((pst[j].fid == data->currfid) && | ||
717 | (pst[j].vid == data->currvid)) | ||
718 | return 0; | ||
719 | |||
720 | pr_debug("currfid/vid do not match PST, ignoring\n"); | ||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | /* Find and validate the PSB/PST table in BIOS. */ | ||
725 | static int find_psb_table(struct powernow_k8_data *data) | ||
726 | { | ||
727 | struct psb_s *psb; | ||
728 | unsigned int i; | ||
729 | u32 mvs; | ||
730 | u8 maxvid; | ||
731 | u32 cpst = 0; | ||
732 | u32 thiscpuid; | ||
733 | |||
734 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { | ||
735 | /* Scan BIOS looking for the signature. */ | ||
736 | /* It can not be at ffff0 - it is too big. */ | ||
737 | |||
738 | psb = phys_to_virt(i); | ||
739 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) | ||
740 | continue; | ||
741 | |||
742 | pr_debug("found PSB header at 0x%p\n", psb); | ||
743 | |||
744 | pr_debug("table vers: 0x%x\n", psb->tableversion); | ||
745 | if (psb->tableversion != PSB_VERSION_1_4) { | ||
746 | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); | ||
747 | return -ENODEV; | ||
748 | } | ||
749 | |||
750 | pr_debug("flags: 0x%x\n", psb->flags1); | ||
751 | if (psb->flags1) { | ||
752 | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); | ||
753 | return -ENODEV; | ||
754 | } | ||
755 | |||
756 | data->vstable = psb->vstable; | ||
757 | pr_debug("voltage stabilization time: %d(*20us)\n", | ||
758 | data->vstable); | ||
759 | |||
760 | pr_debug("flags2: 0x%x\n", psb->flags2); | ||
761 | data->rvo = psb->flags2 & 3; | ||
762 | data->irt = ((psb->flags2) >> 2) & 3; | ||
763 | mvs = ((psb->flags2) >> 4) & 3; | ||
764 | data->vidmvs = 1 << mvs; | ||
765 | data->batps = ((psb->flags2) >> 6) & 3; | ||
766 | |||
767 | pr_debug("ramp voltage offset: %d\n", data->rvo); | ||
768 | pr_debug("isochronous relief time: %d\n", data->irt); | ||
769 | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); | ||
770 | |||
771 | pr_debug("numpst: 0x%x\n", psb->num_tables); | ||
772 | cpst = psb->num_tables; | ||
773 | if ((psb->cpuid == 0x00000fc0) || | ||
774 | (psb->cpuid == 0x00000fe0)) { | ||
775 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
776 | if ((thiscpuid == 0x00000fc0) || | ||
777 | (thiscpuid == 0x00000fe0)) | ||
778 | cpst = 1; | ||
779 | } | ||
780 | if (cpst != 1) { | ||
781 | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); | ||
782 | return -ENODEV; | ||
783 | } | ||
784 | |||
785 | data->plllock = psb->plllocktime; | ||
786 | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); | ||
787 | pr_debug("maxfid: 0x%x\n", psb->maxfid); | ||
788 | pr_debug("maxvid: 0x%x\n", psb->maxvid); | ||
789 | maxvid = psb->maxvid; | ||
790 | |||
791 | data->numps = psb->numps; | ||
792 | pr_debug("numpstates: 0x%x\n", data->numps); | ||
793 | return fill_powernow_table(data, | ||
794 | (struct pst_s *)(psb+1), maxvid); | ||
795 | } | ||
796 | /* | ||
797 | * If you see this message, complain to BIOS manufacturer. If | ||
798 | * he tells you "we do not support Linux" or some similar | ||
799 | * nonsense, remember that Windows 2000 uses the same legacy | ||
800 | * mechanism that the old Linux PSB driver uses. Tell them it | ||
801 | * is broken with Windows 2000. | ||
802 | * | ||
803 | * The reference to the AMD documentation is chapter 9 in the | ||
804 | * BIOS and Kernel Developer's Guide, which is available on | ||
805 | * www.amd.com | ||
806 | */ | ||
807 | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); | ||
808 | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" | ||
809 | " and Cool'N'Quiet support is enabled in BIOS setup\n"); | ||
810 | return -ENODEV; | ||
811 | } | ||
812 | |||
813 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, | ||
814 | unsigned int index) | ||
815 | { | ||
816 | u64 control; | ||
817 | |||
818 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) | ||
819 | return; | ||
820 | |||
821 | control = data->acpi_data.states[index].control; | ||
822 | data->irt = (control >> IRT_SHIFT) & IRT_MASK; | ||
823 | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; | ||
824 | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; | ||
825 | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; | ||
826 | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); | ||
827 | data->vstable = (control >> VST_SHIFT) & VST_MASK; | ||
828 | } | ||
829 | |||
830 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | ||
831 | { | ||
832 | struct cpufreq_frequency_table *powernow_table; | ||
833 | int ret_val = -ENODEV; | ||
834 | u64 control, status; | ||
835 | |||
836 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { | ||
837 | pr_debug("register performance failed: bad ACPI data\n"); | ||
838 | return -EIO; | ||
839 | } | ||
840 | |||
841 | /* verify the data contained in the ACPI structures */ | ||
842 | if (data->acpi_data.state_count <= 1) { | ||
843 | pr_debug("No ACPI P-States\n"); | ||
844 | goto err_out; | ||
845 | } | ||
846 | |||
847 | control = data->acpi_data.control_register.space_id; | ||
848 | status = data->acpi_data.status_register.space_id; | ||
849 | |||
850 | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || | ||
851 | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | ||
852 | pr_debug("Invalid control/status registers (%llx - %llx)\n", | ||
853 | control, status); | ||
854 | goto err_out; | ||
855 | } | ||
856 | |||
857 | /* fill in data->powernow_table */ | ||
858 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
859 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); | ||
860 | if (!powernow_table) { | ||
861 | pr_debug("powernow_table memory alloc failure\n"); | ||
862 | goto err_out; | ||
863 | } | ||
864 | |||
865 | /* fill in data */ | ||
866 | data->numps = data->acpi_data.state_count; | ||
867 | powernow_k8_acpi_pst_values(data, 0); | ||
868 | |||
869 | if (cpu_family == CPU_HW_PSTATE) | ||
870 | ret_val = fill_powernow_table_pstate(data, powernow_table); | ||
871 | else | ||
872 | ret_val = fill_powernow_table_fidvid(data, powernow_table); | ||
873 | if (ret_val) | ||
874 | goto err_out_mem; | ||
875 | |||
876 | powernow_table[data->acpi_data.state_count].frequency = | ||
877 | CPUFREQ_TABLE_END; | ||
878 | powernow_table[data->acpi_data.state_count].index = 0; | ||
879 | data->powernow_table = powernow_table; | ||
880 | |||
881 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | ||
882 | print_basics(data); | ||
883 | |||
884 | /* notify BIOS that we exist */ | ||
885 | acpi_processor_notify_smm(THIS_MODULE); | ||
886 | |||
887 | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { | ||
888 | printk(KERN_ERR PFX | ||
889 | "unable to alloc powernow_k8_data cpumask\n"); | ||
890 | ret_val = -ENOMEM; | ||
891 | goto err_out_mem; | ||
892 | } | ||
893 | |||
894 | return 0; | ||
895 | |||
896 | err_out_mem: | ||
897 | kfree(powernow_table); | ||
898 | |||
899 | err_out: | ||
900 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); | ||
901 | |||
902 | /* data->acpi_data.state_count informs us at ->exit() | ||
903 | * whether ACPI was used */ | ||
904 | data->acpi_data.state_count = 0; | ||
905 | |||
906 | return ret_val; | ||
907 | } | ||
908 | |||
909 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, | ||
910 | struct cpufreq_frequency_table *powernow_table) | ||
911 | { | ||
912 | int i; | ||
913 | u32 hi = 0, lo = 0; | ||
914 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); | ||
915 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; | ||
916 | |||
917 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
918 | u32 index; | ||
919 | |||
920 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; | ||
921 | if (index > data->max_hw_pstate) { | ||
922 | printk(KERN_ERR PFX "invalid pstate %d - " | ||
923 | "bad value %d.\n", i, index); | ||
924 | printk(KERN_ERR PFX "Please report to BIOS " | ||
925 | "manufacturer\n"); | ||
926 | invalidate_entry(powernow_table, i); | ||
927 | continue; | ||
928 | } | ||
929 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); | ||
930 | if (!(hi & HW_PSTATE_VALID_MASK)) { | ||
931 | pr_debug("invalid pstate %d, ignoring\n", index); | ||
932 | invalidate_entry(powernow_table, i); | ||
933 | continue; | ||
934 | } | ||
935 | |||
936 | powernow_table[i].index = index; | ||
937 | |||
938 | /* Frequency may be rounded for these */ | ||
939 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) | ||
940 | || boot_cpu_data.x86 == 0x11) { | ||
941 | powernow_table[i].frequency = | ||
942 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); | ||
943 | } else | ||
944 | powernow_table[i].frequency = | ||
945 | data->acpi_data.states[i].core_frequency * 1000; | ||
946 | } | ||
947 | return 0; | ||
948 | } | ||
949 | |||
950 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, | ||
951 | struct cpufreq_frequency_table *powernow_table) | ||
952 | { | ||
953 | int i; | ||
954 | |||
955 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
956 | u32 fid; | ||
957 | u32 vid; | ||
958 | u32 freq, index; | ||
959 | u64 status, control; | ||
960 | |||
961 | if (data->exttype) { | ||
962 | status = data->acpi_data.states[i].status; | ||
963 | fid = status & EXT_FID_MASK; | ||
964 | vid = (status >> VID_SHIFT) & EXT_VID_MASK; | ||
965 | } else { | ||
966 | control = data->acpi_data.states[i].control; | ||
967 | fid = control & FID_MASK; | ||
968 | vid = (control >> VID_SHIFT) & VID_MASK; | ||
969 | } | ||
970 | |||
971 | pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); | ||
972 | |||
973 | index = fid | (vid<<8); | ||
974 | powernow_table[i].index = index; | ||
975 | |||
976 | freq = find_khz_freq_from_fid(fid); | ||
977 | powernow_table[i].frequency = freq; | ||
978 | |||
979 | /* verify frequency is OK */ | ||
980 | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { | ||
981 | pr_debug("invalid freq %u kHz, ignoring\n", freq); | ||
982 | invalidate_entry(powernow_table, i); | ||
983 | continue; | ||
984 | } | ||
985 | |||
986 | /* verify voltage is OK - | ||
987 | * BIOSs are using "off" to indicate invalid */ | ||
988 | if (vid == VID_OFF) { | ||
989 | pr_debug("invalid vid %u, ignoring\n", vid); | ||
990 | invalidate_entry(powernow_table, i); | ||
991 | continue; | ||
992 | } | ||
993 | |||
994 | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { | ||
995 | printk(KERN_INFO PFX "invalid freq entries " | ||
996 | "%u kHz vs. %u kHz\n", freq, | ||
997 | (unsigned int) | ||
998 | (data->acpi_data.states[i].core_frequency | ||
999 | * 1000)); | ||
1000 | invalidate_entry(powernow_table, i); | ||
1001 | continue; | ||
1002 | } | ||
1003 | } | ||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) | ||
1008 | { | ||
1009 | if (data->acpi_data.state_count) | ||
1010 | acpi_processor_unregister_performance(&data->acpi_data, | ||
1011 | data->cpu); | ||
1012 | free_cpumask_var(data->acpi_data.shared_cpu_map); | ||
1013 | } | ||
1014 | |||
1015 | static int get_transition_latency(struct powernow_k8_data *data) | ||
1016 | { | ||
1017 | int max_latency = 0; | ||
1018 | int i; | ||
1019 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
1020 | int cur_latency = data->acpi_data.states[i].transition_latency | ||
1021 | + data->acpi_data.states[i].bus_master_latency; | ||
1022 | if (cur_latency > max_latency) | ||
1023 | max_latency = cur_latency; | ||
1024 | } | ||
1025 | if (max_latency == 0) { | ||
1026 | /* | ||
1027 | * Fam 11h and later may return 0 as transition latency. This | ||
1028 | * is intended and means "very fast". While cpufreq core and | ||
1029 | * governors currently can handle that gracefully, better set it | ||
1030 | * to 1 to avoid problems in the future. | ||
1031 | */ | ||
1032 | if (boot_cpu_data.x86 < 0x11) | ||
1033 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " | ||
1034 | "latency\n"); | ||
1035 | max_latency = 1; | ||
1036 | } | ||
1037 | /* value in usecs, needs to be in nanoseconds */ | ||
1038 | return 1000 * max_latency; | ||
1039 | } | ||
1040 | |||
1041 | /* Take a frequency, and issue the fid/vid transition command */ | ||
1042 | static int transition_frequency_fidvid(struct powernow_k8_data *data, | ||
1043 | unsigned int index) | ||
1044 | { | ||
1045 | u32 fid = 0; | ||
1046 | u32 vid = 0; | ||
1047 | int res, i; | ||
1048 | struct cpufreq_freqs freqs; | ||
1049 | |||
1050 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
1051 | |||
1052 | /* fid/vid correctness check for k8 */ | ||
1053 | /* fid are the lower 8 bits of the index we stored into | ||
1054 | * the cpufreq frequency table in find_psb_table, vid | ||
1055 | * are the upper 8 bits. | ||
1056 | */ | ||
1057 | fid = data->powernow_table[index].index & 0xFF; | ||
1058 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; | ||
1059 | |||
1060 | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); | ||
1061 | |||
1062 | if (query_current_values_with_pending_wait(data)) | ||
1063 | return 1; | ||
1064 | |||
1065 | if ((data->currvid == vid) && (data->currfid == fid)) { | ||
1066 | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", | ||
1067 | fid, vid); | ||
1068 | return 0; | ||
1069 | } | ||
1070 | |||
1071 | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", | ||
1072 | smp_processor_id(), fid, vid); | ||
1073 | freqs.old = find_khz_freq_from_fid(data->currfid); | ||
1074 | freqs.new = find_khz_freq_from_fid(fid); | ||
1075 | |||
1076 | for_each_cpu(i, data->available_cores) { | ||
1077 | freqs.cpu = i; | ||
1078 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
1079 | } | ||
1080 | |||
1081 | res = transition_fid_vid(data, fid, vid); | ||
1082 | freqs.new = find_khz_freq_from_fid(data->currfid); | ||
1083 | |||
1084 | for_each_cpu(i, data->available_cores) { | ||
1085 | freqs.cpu = i; | ||
1086 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
1087 | } | ||
1088 | return res; | ||
1089 | } | ||
1090 | |||
1091 | /* Take a frequency, and issue the hardware pstate transition command */ | ||
1092 | static int transition_frequency_pstate(struct powernow_k8_data *data, | ||
1093 | unsigned int index) | ||
1094 | { | ||
1095 | u32 pstate = 0; | ||
1096 | int res, i; | ||
1097 | struct cpufreq_freqs freqs; | ||
1098 | |||
1099 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
1100 | |||
1101 | /* get MSR index for hardware pstate transition */ | ||
1102 | pstate = index & HW_PSTATE_MASK; | ||
1103 | if (pstate > data->max_hw_pstate) | ||
1104 | return 0; | ||
1105 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, | ||
1106 | data->currpstate); | ||
1107 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1108 | |||
1109 | for_each_cpu(i, data->available_cores) { | ||
1110 | freqs.cpu = i; | ||
1111 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
1112 | } | ||
1113 | |||
1114 | res = transition_pstate(data, pstate); | ||
1115 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1116 | |||
1117 | for_each_cpu(i, data->available_cores) { | ||
1118 | freqs.cpu = i; | ||
1119 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
1120 | } | ||
1121 | return res; | ||
1122 | } | ||
1123 | |||
1124 | /* Driver entry point to switch to the target frequency */ | ||
1125 | static int powernowk8_target(struct cpufreq_policy *pol, | ||
1126 | unsigned targfreq, unsigned relation) | ||
1127 | { | ||
1128 | cpumask_var_t oldmask; | ||
1129 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1130 | u32 checkfid; | ||
1131 | u32 checkvid; | ||
1132 | unsigned int newstate; | ||
1133 | int ret = -EIO; | ||
1134 | |||
1135 | if (!data) | ||
1136 | return -EINVAL; | ||
1137 | |||
1138 | checkfid = data->currfid; | ||
1139 | checkvid = data->currvid; | ||
1140 | |||
1141 | /* only run on specific CPU from here on. */ | ||
1142 | /* This is poor form: use a workqueue or smp_call_function_single */ | ||
1143 | if (!alloc_cpumask_var(&oldmask, GFP_KERNEL)) | ||
1144 | return -ENOMEM; | ||
1145 | |||
1146 | cpumask_copy(oldmask, tsk_cpus_allowed(current)); | ||
1147 | set_cpus_allowed_ptr(current, cpumask_of(pol->cpu)); | ||
1148 | |||
1149 | if (smp_processor_id() != pol->cpu) { | ||
1150 | printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); | ||
1151 | goto err_out; | ||
1152 | } | ||
1153 | |||
1154 | if (pending_bit_stuck()) { | ||
1155 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); | ||
1156 | goto err_out; | ||
1157 | } | ||
1158 | |||
1159 | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", | ||
1160 | pol->cpu, targfreq, pol->min, pol->max, relation); | ||
1161 | |||
1162 | if (query_current_values_with_pending_wait(data)) | ||
1163 | goto err_out; | ||
1164 | |||
1165 | if (cpu_family != CPU_HW_PSTATE) { | ||
1166 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", | ||
1167 | data->currfid, data->currvid); | ||
1168 | |||
1169 | if ((checkvid != data->currvid) || | ||
1170 | (checkfid != data->currfid)) { | ||
1171 | printk(KERN_INFO PFX | ||
1172 | "error - out of sync, fix 0x%x 0x%x, " | ||
1173 | "vid 0x%x 0x%x\n", | ||
1174 | checkfid, data->currfid, | ||
1175 | checkvid, data->currvid); | ||
1176 | } | ||
1177 | } | ||
1178 | |||
1179 | if (cpufreq_frequency_table_target(pol, data->powernow_table, | ||
1180 | targfreq, relation, &newstate)) | ||
1181 | goto err_out; | ||
1182 | |||
1183 | mutex_lock(&fidvid_mutex); | ||
1184 | |||
1185 | powernow_k8_acpi_pst_values(data, newstate); | ||
1186 | |||
1187 | if (cpu_family == CPU_HW_PSTATE) | ||
1188 | ret = transition_frequency_pstate(data, newstate); | ||
1189 | else | ||
1190 | ret = transition_frequency_fidvid(data, newstate); | ||
1191 | if (ret) { | ||
1192 | printk(KERN_ERR PFX "transition frequency failed\n"); | ||
1193 | ret = 1; | ||
1194 | mutex_unlock(&fidvid_mutex); | ||
1195 | goto err_out; | ||
1196 | } | ||
1197 | mutex_unlock(&fidvid_mutex); | ||
1198 | |||
1199 | if (cpu_family == CPU_HW_PSTATE) | ||
1200 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1201 | newstate); | ||
1202 | else | ||
1203 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1204 | ret = 0; | ||
1205 | |||
1206 | err_out: | ||
1207 | set_cpus_allowed_ptr(current, oldmask); | ||
1208 | free_cpumask_var(oldmask); | ||
1209 | return ret; | ||
1210 | } | ||
1211 | |||
1212 | /* Driver entry point to verify the policy and range of frequencies */ | ||
1213 | static int powernowk8_verify(struct cpufreq_policy *pol) | ||
1214 | { | ||
1215 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1216 | |||
1217 | if (!data) | ||
1218 | return -EINVAL; | ||
1219 | |||
1220 | return cpufreq_frequency_table_verify(pol, data->powernow_table); | ||
1221 | } | ||
1222 | |||
1223 | struct init_on_cpu { | ||
1224 | struct powernow_k8_data *data; | ||
1225 | int rc; | ||
1226 | }; | ||
1227 | |||
1228 | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) | ||
1229 | { | ||
1230 | struct init_on_cpu *init_on_cpu = _init_on_cpu; | ||
1231 | |||
1232 | if (pending_bit_stuck()) { | ||
1233 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); | ||
1234 | init_on_cpu->rc = -ENODEV; | ||
1235 | return; | ||
1236 | } | ||
1237 | |||
1238 | if (query_current_values_with_pending_wait(init_on_cpu->data)) { | ||
1239 | init_on_cpu->rc = -ENODEV; | ||
1240 | return; | ||
1241 | } | ||
1242 | |||
1243 | if (cpu_family == CPU_OPTERON) | ||
1244 | fidvid_msr_init(); | ||
1245 | |||
1246 | init_on_cpu->rc = 0; | ||
1247 | } | ||
1248 | |||
1249 | /* per CPU init entry point to the driver */ | ||
1250 | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | ||
1251 | { | ||
1252 | static const char ACPI_PSS_BIOS_BUG_MSG[] = | ||
1253 | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" | ||
1254 | FW_BUG PFX "Try again with latest BIOS.\n"; | ||
1255 | struct powernow_k8_data *data; | ||
1256 | struct init_on_cpu init_on_cpu; | ||
1257 | int rc; | ||
1258 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); | ||
1259 | |||
1260 | if (!cpu_online(pol->cpu)) | ||
1261 | return -ENODEV; | ||
1262 | |||
1263 | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); | ||
1264 | if (rc) | ||
1265 | return -ENODEV; | ||
1266 | |||
1267 | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); | ||
1268 | if (!data) { | ||
1269 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); | ||
1270 | return -ENOMEM; | ||
1271 | } | ||
1272 | |||
1273 | data->cpu = pol->cpu; | ||
1274 | data->currpstate = HW_PSTATE_INVALID; | ||
1275 | |||
1276 | if (powernow_k8_cpu_init_acpi(data)) { | ||
1277 | /* | ||
1278 | * Use the PSB BIOS structure. This is only available on | ||
1279 | * an UP version, and is deprecated by AMD. | ||
1280 | */ | ||
1281 | if (num_online_cpus() != 1) { | ||
1282 | printk_once(ACPI_PSS_BIOS_BUG_MSG); | ||
1283 | goto err_out; | ||
1284 | } | ||
1285 | if (pol->cpu != 0) { | ||
1286 | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " | ||
1287 | "CPU other than CPU0. Complain to your BIOS " | ||
1288 | "vendor.\n"); | ||
1289 | goto err_out; | ||
1290 | } | ||
1291 | rc = find_psb_table(data); | ||
1292 | if (rc) | ||
1293 | goto err_out; | ||
1294 | |||
1295 | /* Take a crude guess here. | ||
1296 | * That guess was in microseconds, so multiply with 1000 */ | ||
1297 | pol->cpuinfo.transition_latency = ( | ||
1298 | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + | ||
1299 | ((1 << data->irt) * 30)) * 1000; | ||
1300 | } else /* ACPI _PSS objects available */ | ||
1301 | pol->cpuinfo.transition_latency = get_transition_latency(data); | ||
1302 | |||
1303 | /* only run on specific CPU from here on */ | ||
1304 | init_on_cpu.data = data; | ||
1305 | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, | ||
1306 | &init_on_cpu, 1); | ||
1307 | rc = init_on_cpu.rc; | ||
1308 | if (rc != 0) | ||
1309 | goto err_out_exit_acpi; | ||
1310 | |||
1311 | if (cpu_family == CPU_HW_PSTATE) | ||
1312 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); | ||
1313 | else | ||
1314 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); | ||
1315 | data->available_cores = pol->cpus; | ||
1316 | |||
1317 | if (cpu_family == CPU_HW_PSTATE) | ||
1318 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1319 | data->currpstate); | ||
1320 | else | ||
1321 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1322 | pr_debug("policy current frequency %d kHz\n", pol->cur); | ||
1323 | |||
1324 | /* min/max the cpu is capable of */ | ||
1325 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { | ||
1326 | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); | ||
1327 | powernow_k8_cpu_exit_acpi(data); | ||
1328 | kfree(data->powernow_table); | ||
1329 | kfree(data); | ||
1330 | return -EINVAL; | ||
1331 | } | ||
1332 | |||
1333 | /* Check for APERF/MPERF support in hardware */ | ||
1334 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | ||
1335 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; | ||
1336 | |||
1337 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); | ||
1338 | |||
1339 | if (cpu_family == CPU_HW_PSTATE) | ||
1340 | pr_debug("cpu_init done, current pstate 0x%x\n", | ||
1341 | data->currpstate); | ||
1342 | else | ||
1343 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", | ||
1344 | data->currfid, data->currvid); | ||
1345 | |||
1346 | per_cpu(powernow_data, pol->cpu) = data; | ||
1347 | |||
1348 | return 0; | ||
1349 | |||
1350 | err_out_exit_acpi: | ||
1351 | powernow_k8_cpu_exit_acpi(data); | ||
1352 | |||
1353 | err_out: | ||
1354 | kfree(data); | ||
1355 | return -ENODEV; | ||
1356 | } | ||
1357 | |||
1358 | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) | ||
1359 | { | ||
1360 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1361 | |||
1362 | if (!data) | ||
1363 | return -EINVAL; | ||
1364 | |||
1365 | powernow_k8_cpu_exit_acpi(data); | ||
1366 | |||
1367 | cpufreq_frequency_table_put_attr(pol->cpu); | ||
1368 | |||
1369 | kfree(data->powernow_table); | ||
1370 | kfree(data); | ||
1371 | per_cpu(powernow_data, pol->cpu) = NULL; | ||
1372 | |||
1373 | return 0; | ||
1374 | } | ||
1375 | |||
1376 | static void query_values_on_cpu(void *_err) | ||
1377 | { | ||
1378 | int *err = _err; | ||
1379 | struct powernow_k8_data *data = __this_cpu_read(powernow_data); | ||
1380 | |||
1381 | *err = query_current_values_with_pending_wait(data); | ||
1382 | } | ||
1383 | |||
1384 | static unsigned int powernowk8_get(unsigned int cpu) | ||
1385 | { | ||
1386 | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); | ||
1387 | unsigned int khz = 0; | ||
1388 | int err; | ||
1389 | |||
1390 | if (!data) | ||
1391 | return 0; | ||
1392 | |||
1393 | smp_call_function_single(cpu, query_values_on_cpu, &err, true); | ||
1394 | if (err) | ||
1395 | goto out; | ||
1396 | |||
1397 | if (cpu_family == CPU_HW_PSTATE) | ||
1398 | khz = find_khz_freq_from_pstate(data->powernow_table, | ||
1399 | data->currpstate); | ||
1400 | else | ||
1401 | khz = find_khz_freq_from_fid(data->currfid); | ||
1402 | |||
1403 | |||
1404 | out: | ||
1405 | return khz; | ||
1406 | } | ||
1407 | |||
1408 | static void _cpb_toggle_msrs(bool t) | ||
1409 | { | ||
1410 | int cpu; | ||
1411 | |||
1412 | get_online_cpus(); | ||
1413 | |||
1414 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1415 | |||
1416 | for_each_cpu(cpu, cpu_online_mask) { | ||
1417 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1418 | if (t) | ||
1419 | reg->l &= ~BIT(25); | ||
1420 | else | ||
1421 | reg->l |= BIT(25); | ||
1422 | } | ||
1423 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1424 | |||
1425 | put_online_cpus(); | ||
1426 | } | ||
1427 | |||
1428 | /* | ||
1429 | * Switch on/off core performance boosting. | ||
1430 | * | ||
1431 | * 0=disable | ||
1432 | * 1=enable. | ||
1433 | */ | ||
1434 | static void cpb_toggle(bool t) | ||
1435 | { | ||
1436 | if (!cpb_capable) | ||
1437 | return; | ||
1438 | |||
1439 | if (t && !cpb_enabled) { | ||
1440 | cpb_enabled = true; | ||
1441 | _cpb_toggle_msrs(t); | ||
1442 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); | ||
1443 | } else if (!t && cpb_enabled) { | ||
1444 | cpb_enabled = false; | ||
1445 | _cpb_toggle_msrs(t); | ||
1446 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); | ||
1447 | } | ||
1448 | } | ||
1449 | |||
1450 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | ||
1451 | size_t count) | ||
1452 | { | ||
1453 | int ret = -EINVAL; | ||
1454 | unsigned long val = 0; | ||
1455 | |||
1456 | ret = strict_strtoul(buf, 10, &val); | ||
1457 | if (!ret && (val == 0 || val == 1) && cpb_capable) | ||
1458 | cpb_toggle(val); | ||
1459 | else | ||
1460 | return -EINVAL; | ||
1461 | |||
1462 | return count; | ||
1463 | } | ||
1464 | |||
1465 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | ||
1466 | { | ||
1467 | return sprintf(buf, "%u\n", cpb_enabled); | ||
1468 | } | ||
1469 | |||
1470 | #define define_one_rw(_name) \ | ||
1471 | static struct freq_attr _name = \ | ||
1472 | __ATTR(_name, 0644, show_##_name, store_##_name) | ||
1473 | |||
1474 | define_one_rw(cpb); | ||
1475 | |||
1476 | static struct freq_attr *powernow_k8_attr[] = { | ||
1477 | &cpufreq_freq_attr_scaling_available_freqs, | ||
1478 | &cpb, | ||
1479 | NULL, | ||
1480 | }; | ||
1481 | |||
1482 | static struct cpufreq_driver cpufreq_amd64_driver = { | ||
1483 | .verify = powernowk8_verify, | ||
1484 | .target = powernowk8_target, | ||
1485 | .bios_limit = acpi_processor_get_bios_limit, | ||
1486 | .init = powernowk8_cpu_init, | ||
1487 | .exit = __devexit_p(powernowk8_cpu_exit), | ||
1488 | .get = powernowk8_get, | ||
1489 | .name = "powernow-k8", | ||
1490 | .owner = THIS_MODULE, | ||
1491 | .attr = powernow_k8_attr, | ||
1492 | }; | ||
1493 | |||
1494 | /* | ||
1495 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu | ||
1496 | * cannot block the remaining ones from boosting. On the CPU_UP path we | ||
1497 | * simply keep the boost-disable flag in sync with the current global | ||
1498 | * state. | ||
1499 | */ | ||
1500 | static int cpb_notify(struct notifier_block *nb, unsigned long action, | ||
1501 | void *hcpu) | ||
1502 | { | ||
1503 | unsigned cpu = (long)hcpu; | ||
1504 | u32 lo, hi; | ||
1505 | |||
1506 | switch (action) { | ||
1507 | case CPU_UP_PREPARE: | ||
1508 | case CPU_UP_PREPARE_FROZEN: | ||
1509 | |||
1510 | if (!cpb_enabled) { | ||
1511 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1512 | lo |= BIT(25); | ||
1513 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1514 | } | ||
1515 | break; | ||
1516 | |||
1517 | case CPU_DOWN_PREPARE: | ||
1518 | case CPU_DOWN_PREPARE_FROZEN: | ||
1519 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1520 | lo &= ~BIT(25); | ||
1521 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1522 | break; | ||
1523 | |||
1524 | default: | ||
1525 | break; | ||
1526 | } | ||
1527 | |||
1528 | return NOTIFY_OK; | ||
1529 | } | ||
1530 | |||
1531 | static struct notifier_block cpb_nb = { | ||
1532 | .notifier_call = cpb_notify, | ||
1533 | }; | ||
1534 | |||
1535 | /* driver entry point for init */ | ||
1536 | static int __cpuinit powernowk8_init(void) | ||
1537 | { | ||
1538 | unsigned int i, supported_cpus = 0, cpu; | ||
1539 | int rv; | ||
1540 | |||
1541 | for_each_online_cpu(i) { | ||
1542 | int rc; | ||
1543 | smp_call_function_single(i, check_supported_cpu, &rc, 1); | ||
1544 | if (rc == 0) | ||
1545 | supported_cpus++; | ||
1546 | } | ||
1547 | |||
1548 | if (supported_cpus != num_online_cpus()) | ||
1549 | return -ENODEV; | ||
1550 | |||
1551 | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", | ||
1552 | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); | ||
1553 | |||
1554 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1555 | |||
1556 | cpb_capable = true; | ||
1557 | |||
1558 | msrs = msrs_alloc(); | ||
1559 | if (!msrs) { | ||
1560 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); | ||
1561 | return -ENOMEM; | ||
1562 | } | ||
1563 | |||
1564 | register_cpu_notifier(&cpb_nb); | ||
1565 | |||
1566 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1567 | |||
1568 | for_each_cpu(cpu, cpu_online_mask) { | ||
1569 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1570 | cpb_enabled |= !(!!(reg->l & BIT(25))); | ||
1571 | } | ||
1572 | |||
1573 | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", | ||
1574 | (cpb_enabled ? "on" : "off")); | ||
1575 | } | ||
1576 | |||
1577 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); | ||
1578 | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { | ||
1579 | unregister_cpu_notifier(&cpb_nb); | ||
1580 | msrs_free(msrs); | ||
1581 | msrs = NULL; | ||
1582 | } | ||
1583 | return rv; | ||
1584 | } | ||
1585 | |||
1586 | /* driver entry point for term */ | ||
1587 | static void __exit powernowk8_exit(void) | ||
1588 | { | ||
1589 | pr_debug("exit\n"); | ||
1590 | |||
1591 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1592 | msrs_free(msrs); | ||
1593 | msrs = NULL; | ||
1594 | |||
1595 | unregister_cpu_notifier(&cpb_nb); | ||
1596 | } | ||
1597 | |||
1598 | cpufreq_unregister_driver(&cpufreq_amd64_driver); | ||
1599 | } | ||
1600 | |||
1601 | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " | ||
1602 | "Mark Langsdorf <mark.langsdorf@amd.com>"); | ||
1603 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); | ||
1604 | MODULE_LICENSE("GPL"); | ||
1605 | |||
1606 | late_initcall(powernowk8_init); | ||
1607 | module_exit(powernowk8_exit); | ||