aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/imx6q-cpufreq.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/imx6q-cpufreq.c')
-rw-r--r--drivers/cpufreq/imx6q-cpufreq.c336
1 files changed, 336 insertions, 0 deletions
diff --git a/drivers/cpufreq/imx6q-cpufreq.c b/drivers/cpufreq/imx6q-cpufreq.c
new file mode 100644
index 000000000000..d6b6ef350cb6
--- /dev/null
+++ b/drivers/cpufreq/imx6q-cpufreq.c
@@ -0,0 +1,336 @@
1/*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/clk.h>
10#include <linux/cpufreq.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/opp.h>
16#include <linux/platform_device.h>
17#include <linux/regulator/consumer.h>
18
19#define PU_SOC_VOLTAGE_NORMAL 1250000
20#define PU_SOC_VOLTAGE_HIGH 1275000
21#define FREQ_1P2_GHZ 1200000000
22
23static struct regulator *arm_reg;
24static struct regulator *pu_reg;
25static struct regulator *soc_reg;
26
27static struct clk *arm_clk;
28static struct clk *pll1_sys_clk;
29static struct clk *pll1_sw_clk;
30static struct clk *step_clk;
31static struct clk *pll2_pfd2_396m_clk;
32
33static struct device *cpu_dev;
34static struct cpufreq_frequency_table *freq_table;
35static unsigned int transition_latency;
36
37static int imx6q_verify_speed(struct cpufreq_policy *policy)
38{
39 return cpufreq_frequency_table_verify(policy, freq_table);
40}
41
42static unsigned int imx6q_get_speed(unsigned int cpu)
43{
44 return clk_get_rate(arm_clk) / 1000;
45}
46
47static int imx6q_set_target(struct cpufreq_policy *policy,
48 unsigned int target_freq, unsigned int relation)
49{
50 struct cpufreq_freqs freqs;
51 struct opp *opp;
52 unsigned long freq_hz, volt, volt_old;
53 unsigned int index, cpu;
54 int ret;
55
56 ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 relation, &index);
58 if (ret) {
59 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 target_freq, ret);
61 return ret;
62 }
63
64 freqs.new = freq_table[index].frequency;
65 freq_hz = freqs.new * 1000;
66 freqs.old = clk_get_rate(arm_clk) / 1000;
67
68 if (freqs.old == freqs.new)
69 return 0;
70
71 for_each_online_cpu(cpu) {
72 freqs.cpu = cpu;
73 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
74 }
75
76 rcu_read_lock();
77 opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
78 if (IS_ERR(opp)) {
79 rcu_read_unlock();
80 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
81 return PTR_ERR(opp);
82 }
83
84 volt = opp_get_voltage(opp);
85 rcu_read_unlock();
86 volt_old = regulator_get_voltage(arm_reg);
87
88 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
89 freqs.old / 1000, volt_old / 1000,
90 freqs.new / 1000, volt / 1000);
91
92 /* scaling up? scale voltage before frequency */
93 if (freqs.new > freqs.old) {
94 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
95 if (ret) {
96 dev_err(cpu_dev,
97 "failed to scale vddarm up: %d\n", ret);
98 return ret;
99 }
100
101 /*
102 * Need to increase vddpu and vddsoc for safety
103 * if we are about to run at 1.2 GHz.
104 */
105 if (freqs.new == FREQ_1P2_GHZ / 1000) {
106 regulator_set_voltage_tol(pu_reg,
107 PU_SOC_VOLTAGE_HIGH, 0);
108 regulator_set_voltage_tol(soc_reg,
109 PU_SOC_VOLTAGE_HIGH, 0);
110 }
111 }
112
113 /*
114 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 * reprogram PLL for frequency scaling. The procedure of reprogramming
116 * PLL1 is as below.
117 *
118 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
119 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
120 * - Disable pll2_pfd2_396m_clk
121 */
122 clk_prepare_enable(pll2_pfd2_396m_clk);
123 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
124 clk_set_parent(pll1_sw_clk, step_clk);
125 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
126 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
127 /*
128 * If we are leaving 396 MHz set-point, we need to enable
129 * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
130 * their use count correct.
131 */
132 if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
133 clk_prepare_enable(pll1_sys_clk);
134 clk_disable_unprepare(pll2_pfd2_396m_clk);
135 }
136 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
137 clk_disable_unprepare(pll2_pfd2_396m_clk);
138 } else {
139 /*
140 * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
141 * to provide the frequency.
142 */
143 clk_disable_unprepare(pll1_sys_clk);
144 }
145
146 /* Ensure the arm clock divider is what we expect */
147 ret = clk_set_rate(arm_clk, freqs.new * 1000);
148 if (ret) {
149 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
150 regulator_set_voltage_tol(arm_reg, volt_old, 0);
151 return ret;
152 }
153
154 /* scaling down? scale voltage after frequency */
155 if (freqs.new < freqs.old) {
156 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
157 if (ret)
158 dev_warn(cpu_dev,
159 "failed to scale vddarm down: %d\n", ret);
160
161 if (freqs.old == FREQ_1P2_GHZ / 1000) {
162 regulator_set_voltage_tol(pu_reg,
163 PU_SOC_VOLTAGE_NORMAL, 0);
164 regulator_set_voltage_tol(soc_reg,
165 PU_SOC_VOLTAGE_NORMAL, 0);
166 }
167 }
168
169 for_each_online_cpu(cpu) {
170 freqs.cpu = cpu;
171 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
172 }
173
174 return 0;
175}
176
177static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
178{
179 int ret;
180
181 ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
182 if (ret) {
183 dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
184 return ret;
185 }
186
187 policy->cpuinfo.transition_latency = transition_latency;
188 policy->cur = clk_get_rate(arm_clk) / 1000;
189 cpumask_setall(policy->cpus);
190 cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
191
192 return 0;
193}
194
195static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
196{
197 cpufreq_frequency_table_put_attr(policy->cpu);
198 return 0;
199}
200
201static struct freq_attr *imx6q_cpufreq_attr[] = {
202 &cpufreq_freq_attr_scaling_available_freqs,
203 NULL,
204};
205
206static struct cpufreq_driver imx6q_cpufreq_driver = {
207 .verify = imx6q_verify_speed,
208 .target = imx6q_set_target,
209 .get = imx6q_get_speed,
210 .init = imx6q_cpufreq_init,
211 .exit = imx6q_cpufreq_exit,
212 .name = "imx6q-cpufreq",
213 .attr = imx6q_cpufreq_attr,
214};
215
216static int imx6q_cpufreq_probe(struct platform_device *pdev)
217{
218 struct device_node *np;
219 struct opp *opp;
220 unsigned long min_volt, max_volt;
221 int num, ret;
222
223 cpu_dev = &pdev->dev;
224
225 np = of_find_node_by_path("/cpus/cpu@0");
226 if (!np) {
227 dev_err(cpu_dev, "failed to find cpu0 node\n");
228 return -ENOENT;
229 }
230
231 cpu_dev->of_node = np;
232
233 arm_clk = devm_clk_get(cpu_dev, "arm");
234 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
235 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
236 step_clk = devm_clk_get(cpu_dev, "step");
237 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
238 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
239 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
240 dev_err(cpu_dev, "failed to get clocks\n");
241 ret = -ENOENT;
242 goto put_node;
243 }
244
245 arm_reg = devm_regulator_get(cpu_dev, "arm");
246 pu_reg = devm_regulator_get(cpu_dev, "pu");
247 soc_reg = devm_regulator_get(cpu_dev, "soc");
248 if (!arm_reg || !pu_reg || !soc_reg) {
249 dev_err(cpu_dev, "failed to get regulators\n");
250 ret = -ENOENT;
251 goto put_node;
252 }
253
254 /* We expect an OPP table supplied by platform */
255 num = opp_get_opp_count(cpu_dev);
256 if (num < 0) {
257 ret = num;
258 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
259 goto put_node;
260 }
261
262 ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
263 if (ret) {
264 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
265 goto put_node;
266 }
267
268 if (of_property_read_u32(np, "clock-latency", &transition_latency))
269 transition_latency = CPUFREQ_ETERNAL;
270
271 /*
272 * OPP is maintained in order of increasing frequency, and
273 * freq_table initialised from OPP is therefore sorted in the
274 * same order.
275 */
276 rcu_read_lock();
277 opp = opp_find_freq_exact(cpu_dev,
278 freq_table[0].frequency * 1000, true);
279 min_volt = opp_get_voltage(opp);
280 opp = opp_find_freq_exact(cpu_dev,
281 freq_table[--num].frequency * 1000, true);
282 max_volt = opp_get_voltage(opp);
283 rcu_read_unlock();
284 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
285 if (ret > 0)
286 transition_latency += ret * 1000;
287
288 /* Count vddpu and vddsoc latency in for 1.2 GHz support */
289 if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
290 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
291 PU_SOC_VOLTAGE_HIGH);
292 if (ret > 0)
293 transition_latency += ret * 1000;
294 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
295 PU_SOC_VOLTAGE_HIGH);
296 if (ret > 0)
297 transition_latency += ret * 1000;
298 }
299
300 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
301 if (ret) {
302 dev_err(cpu_dev, "failed register driver: %d\n", ret);
303 goto free_freq_table;
304 }
305
306 of_node_put(np);
307 return 0;
308
309free_freq_table:
310 opp_free_cpufreq_table(cpu_dev, &freq_table);
311put_node:
312 of_node_put(np);
313 return ret;
314}
315
316static int imx6q_cpufreq_remove(struct platform_device *pdev)
317{
318 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
319 opp_free_cpufreq_table(cpu_dev, &freq_table);
320
321 return 0;
322}
323
324static struct platform_driver imx6q_cpufreq_platdrv = {
325 .driver = {
326 .name = "imx6q-cpufreq",
327 .owner = THIS_MODULE,
328 },
329 .probe = imx6q_cpufreq_probe,
330 .remove = imx6q_cpufreq_remove,
331};
332module_platform_driver(imx6q_cpufreq_platdrv);
333
334MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
335MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
336MODULE_LICENSE("GPL");