aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/cpufreq_ondemand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/cpufreq_ondemand.c')
-rw-r--r--drivers/cpufreq/cpufreq_ondemand.c731
1 files changed, 229 insertions, 502 deletions
diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c
index 396322f2a83f..7731f7c7e79a 100644
--- a/drivers/cpufreq/cpufreq_ondemand.c
+++ b/drivers/cpufreq/cpufreq_ondemand.c
@@ -10,24 +10,23 @@
10 * published by the Free Software Foundation. 10 * published by the Free Software Foundation.
11 */ 11 */
12 12
13#include <linux/kernel.h> 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14#include <linux/module.h> 14
15#include <linux/init.h>
16#include <linux/cpufreq.h> 15#include <linux/cpufreq.h>
17#include <linux/cpu.h> 16#include <linux/init.h>
18#include <linux/jiffies.h> 17#include <linux/kernel.h>
19#include <linux/kernel_stat.h> 18#include <linux/kernel_stat.h>
19#include <linux/kobject.h>
20#include <linux/module.h>
20#include <linux/mutex.h> 21#include <linux/mutex.h>
21#include <linux/hrtimer.h> 22#include <linux/percpu-defs.h>
23#include <linux/sysfs.h>
22#include <linux/tick.h> 24#include <linux/tick.h>
23#include <linux/ktime.h> 25#include <linux/types.h>
24#include <linux/sched.h>
25 26
26/* 27#include "cpufreq_governor.h"
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30 28
29/* On-demand governor macors */
31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) 30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32#define DEF_FREQUENCY_UP_THRESHOLD (80) 31#define DEF_FREQUENCY_UP_THRESHOLD (80)
33#define DEF_SAMPLING_DOWN_FACTOR (1) 32#define DEF_SAMPLING_DOWN_FACTOR (1)
@@ -38,80 +37,14 @@
38#define MIN_FREQUENCY_UP_THRESHOLD (11) 37#define MIN_FREQUENCY_UP_THRESHOLD (11)
39#define MAX_FREQUENCY_UP_THRESHOLD (100) 38#define MAX_FREQUENCY_UP_THRESHOLD (100)
40 39
41/* 40static struct dbs_data od_dbs_data;
42 * The polling frequency of this governor depends on the capability of 41static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
51#define MIN_SAMPLING_RATE_RATIO (2)
52
53static unsigned int min_sampling_rate;
54
55#define LATENCY_MULTIPLIER (1000)
56#define MIN_LATENCY_MULTIPLIER (100)
57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
58
59static void do_dbs_timer(struct work_struct *work);
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62 42
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 43#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static 44static struct cpufreq_governor cpufreq_gov_ondemand;
65#endif 45#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
72 46
73/* Sampling types */ 47static struct od_dbs_tuners od_tuners = {
74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
96};
97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
101/*
102 * dbs_mutex protects dbs_enable in governor start/stop.
103 */
104static DEFINE_MUTEX(dbs_mutex);
105
106static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int sampling_down_factor;
112 unsigned int powersave_bias;
113 unsigned int io_is_busy;
114} dbs_tuners_ins = {
115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, 49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, 50 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
@@ -119,48 +52,35 @@ static struct dbs_tuners {
119 .powersave_bias = 0, 52 .powersave_bias = 0,
120}; 53};
121 54
122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 55static void ondemand_powersave_bias_init_cpu(int cpu)
123{
124 u64 idle_time;
125 u64 cur_wall_time;
126 u64 busy_time;
127
128 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
129
130 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
136
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = jiffies_to_usecs(cur_wall_time);
140
141 return jiffies_to_usecs(idle_time);
142}
143
144static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145{ 56{
146 u64 idle_time = get_cpu_idle_time_us(cpu, NULL); 57 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
152 58
153 return idle_time; 59 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
60 dbs_info->freq_lo = 0;
154} 61}
155 62
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall) 63/*
64 * Not all CPUs want IO time to be accounted as busy; this depends on how
65 * efficient idling at a higher frequency/voltage is.
66 * Pavel Machek says this is not so for various generations of AMD and old
67 * Intel systems.
68 * Mike Chan (androidlcom) calis this is also not true for ARM.
69 * Because of this, whitelist specific known (series) of CPUs by default, and
70 * leave all others up to the user.
71 */
72static int should_io_be_busy(void)
157{ 73{
158 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall); 74#if defined(CONFIG_X86)
159 75 /*
160 if (iowait_time == -1ULL) 76 * For Intel, Core 2 (model 15) andl later have an efficient idle.
161 return 0; 77 */
162 78 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
163 return iowait_time; 79 boot_cpu_data.x86 == 6 &&
80 boot_cpu_data.x86_model >= 15)
81 return 1;
82#endif
83 return 0;
164} 84}
165 85
166/* 86/*
@@ -169,14 +89,13 @@ static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wal
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 89 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */ 90 */
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 91static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 unsigned int freq_next, 92 unsigned int freq_next, unsigned int relation)
173 unsigned int relation)
174{ 93{
175 unsigned int freq_req, freq_reduc, freq_avg; 94 unsigned int freq_req, freq_reduc, freq_avg;
176 unsigned int freq_hi, freq_lo; 95 unsigned int freq_hi, freq_lo;
177 unsigned int index = 0; 96 unsigned int index = 0;
178 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 97 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 98 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 policy->cpu); 99 policy->cpu);
181 100
182 if (!dbs_info->freq_table) { 101 if (!dbs_info->freq_table) {
@@ -188,7 +107,7 @@ static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 107 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 relation, &index); 108 relation, &index);
190 freq_req = dbs_info->freq_table[index].frequency; 109 freq_req = dbs_info->freq_table[index].frequency;
191 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; 110 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
192 freq_avg = freq_req - freq_reduc; 111 freq_avg = freq_req - freq_reduc;
193 112
194 /* Find freq bounds for freq_avg in freq_table */ 113 /* Find freq bounds for freq_avg in freq_table */
@@ -207,7 +126,7 @@ static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
207 dbs_info->freq_lo_jiffies = 0; 126 dbs_info->freq_lo_jiffies = 0;
208 return freq_lo; 127 return freq_lo;
209 } 128 }
210 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 129 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
211 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 130 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 jiffies_hi += ((freq_hi - freq_lo) / 2); 131 jiffies_hi += ((freq_hi - freq_lo) / 2);
213 jiffies_hi /= (freq_hi - freq_lo); 132 jiffies_hi /= (freq_hi - freq_lo);
@@ -218,13 +137,6 @@ static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
218 return freq_hi; 137 return freq_hi;
219} 138}
220 139
221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
223 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 dbs_info->freq_lo = 0;
226}
227
228static void ondemand_powersave_bias_init(void) 140static void ondemand_powersave_bias_init(void)
229{ 141{
230 int i; 142 int i;
@@ -233,83 +145,173 @@ static void ondemand_powersave_bias_init(void)
233 } 145 }
234} 146}
235 147
236/************************** sysfs interface ************************/ 148static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
149{
150 if (od_tuners.powersave_bias)
151 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
152 else if (p->cur == p->max)
153 return;
237 154
238static ssize_t show_sampling_rate_min(struct kobject *kobj, 155 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
239 struct attribute *attr, char *buf) 156 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
157}
158
159/*
160 * Every sampling_rate, we check, if current idle time is less than 20%
161 * (default), then we try to increase frequency Every sampling_rate, we look for
162 * a the lowest frequency which can sustain the load while keeping idle time
163 * over 30%. If such a frequency exist, we try to decrease to this frequency.
164 *
165 * Any frequency increase takes it to the maximum frequency. Frequency reduction
166 * happens at minimum steps of 5% (default) of current frequency
167 */
168static void od_check_cpu(int cpu, unsigned int load_freq)
240{ 169{
241 return sprintf(buf, "%u\n", min_sampling_rate); 170 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
171 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
172
173 dbs_info->freq_lo = 0;
174
175 /* Check for frequency increase */
176 if (load_freq > od_tuners.up_threshold * policy->cur) {
177 /* If switching to max speed, apply sampling_down_factor */
178 if (policy->cur < policy->max)
179 dbs_info->rate_mult =
180 od_tuners.sampling_down_factor;
181 dbs_freq_increase(policy, policy->max);
182 return;
183 }
184
185 /* Check for frequency decrease */
186 /* if we cannot reduce the frequency anymore, break out early */
187 if (policy->cur == policy->min)
188 return;
189
190 /*
191 * The optimal frequency is the frequency that is the lowest that can
192 * support the current CPU usage without triggering the up policy. To be
193 * safe, we focus 10 points under the threshold.
194 */
195 if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
196 policy->cur) {
197 unsigned int freq_next;
198 freq_next = load_freq / (od_tuners.up_threshold -
199 od_tuners.down_differential);
200
201 /* No longer fully busy, reset rate_mult */
202 dbs_info->rate_mult = 1;
203
204 if (freq_next < policy->min)
205 freq_next = policy->min;
206
207 if (!od_tuners.powersave_bias) {
208 __cpufreq_driver_target(policy, freq_next,
209 CPUFREQ_RELATION_L);
210 } else {
211 int freq = powersave_bias_target(policy, freq_next,
212 CPUFREQ_RELATION_L);
213 __cpufreq_driver_target(policy, freq,
214 CPUFREQ_RELATION_L);
215 }
216 }
242} 217}
243 218
244define_one_global_ro(sampling_rate_min); 219static void od_dbs_timer(struct work_struct *work)
220{
221 struct od_cpu_dbs_info_s *dbs_info =
222 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223 unsigned int cpu = dbs_info->cdbs.cpu;
224 int delay, sample_type = dbs_info->sample_type;
225
226 mutex_lock(&dbs_info->cdbs.timer_mutex);
227
228 /* Common NORMAL_SAMPLE setup */
229 dbs_info->sample_type = OD_NORMAL_SAMPLE;
230 if (sample_type == OD_SUB_SAMPLE) {
231 delay = dbs_info->freq_lo_jiffies;
232 __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
233 dbs_info->freq_lo, CPUFREQ_RELATION_H);
234 } else {
235 dbs_check_cpu(&od_dbs_data, cpu);
236 if (dbs_info->freq_lo) {
237 /* Setup timer for SUB_SAMPLE */
238 dbs_info->sample_type = OD_SUB_SAMPLE;
239 delay = dbs_info->freq_hi_jiffies;
240 } else {
241 delay = delay_for_sampling_rate(od_tuners.sampling_rate
242 * dbs_info->rate_mult);
243 }
244 }
245
246 schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
247 mutex_unlock(&dbs_info->cdbs.timer_mutex);
248}
249
250/************************** sysfs interface ************************/
245 251
246/* cpufreq_ondemand Governor Tunables */ 252static ssize_t show_sampling_rate_min(struct kobject *kobj,
247#define show_one(file_name, object) \ 253 struct attribute *attr, char *buf)
248static ssize_t show_##file_name \ 254{
249(struct kobject *kobj, struct attribute *attr, char *buf) \ 255 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
250{ \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
252} 256}
253show_one(sampling_rate, sampling_rate);
254show_one(io_is_busy, io_is_busy);
255show_one(up_threshold, up_threshold);
256show_one(sampling_down_factor, sampling_down_factor);
257show_one(ignore_nice_load, ignore_nice);
258show_one(powersave_bias, powersave_bias);
259 257
260/** 258/**
261 * update_sampling_rate - update sampling rate effective immediately if needed. 259 * update_sampling_rate - update sampling rate effective immediately if needed.
262 * @new_rate: new sampling rate 260 * @new_rate: new sampling rate
263 * 261 *
264 * If new rate is smaller than the old, simply updaing 262 * If new rate is smaller than the old, simply updaing
265 * dbs_tuners_int.sampling_rate might not be appropriate. For example, 263 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
266 * if the original sampling_rate was 1 second and the requested new sampling 264 * original sampling_rate was 1 second and the requested new sampling rate is 10
267 * rate is 10 ms because the user needs immediate reaction from ondemand 265 * ms because the user needs immediate reaction from ondemand governor, but not
268 * governor, but not sure if higher frequency will be required or not, 266 * sure if higher frequency will be required or not, then, the governor may
269 * then, the governor may change the sampling rate too late; up to 1 second 267 * change the sampling rate too late; up to 1 second later. Thus, if we are
270 * later. Thus, if we are reducing the sampling rate, we need to make the 268 * reducing the sampling rate, we need to make the new value effective
271 * new value effective immediately. 269 * immediately.
272 */ 270 */
273static void update_sampling_rate(unsigned int new_rate) 271static void update_sampling_rate(unsigned int new_rate)
274{ 272{
275 int cpu; 273 int cpu;
276 274
277 dbs_tuners_ins.sampling_rate = new_rate 275 od_tuners.sampling_rate = new_rate = max(new_rate,
278 = max(new_rate, min_sampling_rate); 276 od_dbs_data.min_sampling_rate);
279 277
280 for_each_online_cpu(cpu) { 278 for_each_online_cpu(cpu) {
281 struct cpufreq_policy *policy; 279 struct cpufreq_policy *policy;
282 struct cpu_dbs_info_s *dbs_info; 280 struct od_cpu_dbs_info_s *dbs_info;
283 unsigned long next_sampling, appointed_at; 281 unsigned long next_sampling, appointed_at;
284 282
285 policy = cpufreq_cpu_get(cpu); 283 policy = cpufreq_cpu_get(cpu);
286 if (!policy) 284 if (!policy)
287 continue; 285 continue;
286 if (policy->governor != &cpufreq_gov_ondemand) {
287 cpufreq_cpu_put(policy);
288 continue;
289 }
288 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); 290 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
289 cpufreq_cpu_put(policy); 291 cpufreq_cpu_put(policy);
290 292
291 mutex_lock(&dbs_info->timer_mutex); 293 mutex_lock(&dbs_info->cdbs.timer_mutex);
292 294
293 if (!delayed_work_pending(&dbs_info->work)) { 295 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
294 mutex_unlock(&dbs_info->timer_mutex); 296 mutex_unlock(&dbs_info->cdbs.timer_mutex);
295 continue; 297 continue;
296 } 298 }
297 299
298 next_sampling = jiffies + usecs_to_jiffies(new_rate); 300 next_sampling = jiffies + usecs_to_jiffies(new_rate);
299 appointed_at = dbs_info->work.timer.expires; 301 appointed_at = dbs_info->cdbs.work.timer.expires;
300
301 302
302 if (time_before(next_sampling, appointed_at)) { 303 if (time_before(next_sampling, appointed_at)) {
303 304
304 mutex_unlock(&dbs_info->timer_mutex); 305 mutex_unlock(&dbs_info->cdbs.timer_mutex);
305 cancel_delayed_work_sync(&dbs_info->work); 306 cancel_delayed_work_sync(&dbs_info->cdbs.work);
306 mutex_lock(&dbs_info->timer_mutex); 307 mutex_lock(&dbs_info->cdbs.timer_mutex);
307 308
308 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, 309 schedule_delayed_work_on(dbs_info->cdbs.cpu,
309 usecs_to_jiffies(new_rate)); 310 &dbs_info->cdbs.work,
311 usecs_to_jiffies(new_rate));
310 312
311 } 313 }
312 mutex_unlock(&dbs_info->timer_mutex); 314 mutex_unlock(&dbs_info->cdbs.timer_mutex);
313 } 315 }
314} 316}
315 317
@@ -334,7 +336,7 @@ static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
334 ret = sscanf(buf, "%u", &input); 336 ret = sscanf(buf, "%u", &input);
335 if (ret != 1) 337 if (ret != 1)
336 return -EINVAL; 338 return -EINVAL;
337 dbs_tuners_ins.io_is_busy = !!input; 339 od_tuners.io_is_busy = !!input;
338 return count; 340 return count;
339} 341}
340 342
@@ -349,7 +351,7 @@ static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
349 input < MIN_FREQUENCY_UP_THRESHOLD) { 351 input < MIN_FREQUENCY_UP_THRESHOLD) {
350 return -EINVAL; 352 return -EINVAL;
351 } 353 }
352 dbs_tuners_ins.up_threshold = input; 354 od_tuners.up_threshold = input;
353 return count; 355 return count;
354} 356}
355 357
@@ -362,12 +364,12 @@ static ssize_t store_sampling_down_factor(struct kobject *a,
362 364
363 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 365 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
364 return -EINVAL; 366 return -EINVAL;
365 dbs_tuners_ins.sampling_down_factor = input; 367 od_tuners.sampling_down_factor = input;
366 368
367 /* Reset down sampling multiplier in case it was active */ 369 /* Reset down sampling multiplier in case it was active */
368 for_each_online_cpu(j) { 370 for_each_online_cpu(j) {
369 struct cpu_dbs_info_s *dbs_info; 371 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
370 dbs_info = &per_cpu(od_cpu_dbs_info, j); 372 j);
371 dbs_info->rate_mult = 1; 373 dbs_info->rate_mult = 1;
372 } 374 }
373 return count; 375 return count;
@@ -388,19 +390,20 @@ static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
388 if (input > 1) 390 if (input > 1)
389 input = 1; 391 input = 1;
390 392
391 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ 393 if (input == od_tuners.ignore_nice) { /* nothing to do */
392 return count; 394 return count;
393 } 395 }
394 dbs_tuners_ins.ignore_nice = input; 396 od_tuners.ignore_nice = input;
395 397
396 /* we need to re-evaluate prev_cpu_idle */ 398 /* we need to re-evaluate prev_cpu_idle */
397 for_each_online_cpu(j) { 399 for_each_online_cpu(j) {
398 struct cpu_dbs_info_s *dbs_info; 400 struct od_cpu_dbs_info_s *dbs_info;
399 dbs_info = &per_cpu(od_cpu_dbs_info, j); 401 dbs_info = &per_cpu(od_cpu_dbs_info, j);
400 dbs_info->prev_cpu_idle = get_cpu_idle_time(j, 402 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
401 &dbs_info->prev_cpu_wall); 403 &dbs_info->cdbs.prev_cpu_wall);
402 if (dbs_tuners_ins.ignore_nice) 404 if (od_tuners.ignore_nice)
403 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 405 dbs_info->cdbs.prev_cpu_nice =
406 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
404 407
405 } 408 }
406 return count; 409 return count;
@@ -419,17 +422,25 @@ static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
419 if (input > 1000) 422 if (input > 1000)
420 input = 1000; 423 input = 1000;
421 424
422 dbs_tuners_ins.powersave_bias = input; 425 od_tuners.powersave_bias = input;
423 ondemand_powersave_bias_init(); 426 ondemand_powersave_bias_init();
424 return count; 427 return count;
425} 428}
426 429
430show_one(od, sampling_rate, sampling_rate);
431show_one(od, io_is_busy, io_is_busy);
432show_one(od, up_threshold, up_threshold);
433show_one(od, sampling_down_factor, sampling_down_factor);
434show_one(od, ignore_nice_load, ignore_nice);
435show_one(od, powersave_bias, powersave_bias);
436
427define_one_global_rw(sampling_rate); 437define_one_global_rw(sampling_rate);
428define_one_global_rw(io_is_busy); 438define_one_global_rw(io_is_busy);
429define_one_global_rw(up_threshold); 439define_one_global_rw(up_threshold);
430define_one_global_rw(sampling_down_factor); 440define_one_global_rw(sampling_down_factor);
431define_one_global_rw(ignore_nice_load); 441define_one_global_rw(ignore_nice_load);
432define_one_global_rw(powersave_bias); 442define_one_global_rw(powersave_bias);
443define_one_global_ro(sampling_rate_min);
433 444
434static struct attribute *dbs_attributes[] = { 445static struct attribute *dbs_attributes[] = {
435 &sampling_rate_min.attr, 446 &sampling_rate_min.attr,
@@ -442,354 +453,71 @@ static struct attribute *dbs_attributes[] = {
442 NULL 453 NULL
443}; 454};
444 455
445static struct attribute_group dbs_attr_group = { 456static struct attribute_group od_attr_group = {
446 .attrs = dbs_attributes, 457 .attrs = dbs_attributes,
447 .name = "ondemand", 458 .name = "ondemand",
448}; 459};
449 460
450/************************** sysfs end ************************/ 461/************************** sysfs end ************************/
451 462
452static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) 463define_get_cpu_dbs_routines(od_cpu_dbs_info);
453{
454 if (dbs_tuners_ins.powersave_bias)
455 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
456 else if (p->cur == p->max)
457 return;
458
459 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
460 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
461}
462
463static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
464{
465 unsigned int max_load_freq;
466
467 struct cpufreq_policy *policy;
468 unsigned int j;
469
470 this_dbs_info->freq_lo = 0;
471 policy = this_dbs_info->cur_policy;
472
473 /*
474 * Every sampling_rate, we check, if current idle time is less
475 * than 20% (default), then we try to increase frequency
476 * Every sampling_rate, we look for a the lowest
477 * frequency which can sustain the load while keeping idle time over
478 * 30%. If such a frequency exist, we try to decrease to this frequency.
479 *
480 * Any frequency increase takes it to the maximum frequency.
481 * Frequency reduction happens at minimum steps of
482 * 5% (default) of current frequency
483 */
484
485 /* Get Absolute Load - in terms of freq */
486 max_load_freq = 0;
487
488 for_each_cpu(j, policy->cpus) {
489 struct cpu_dbs_info_s *j_dbs_info;
490 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
491 unsigned int idle_time, wall_time, iowait_time;
492 unsigned int load, load_freq;
493 int freq_avg;
494
495 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
496
497 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
498 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
499
500 wall_time = (unsigned int)
501 (cur_wall_time - j_dbs_info->prev_cpu_wall);
502 j_dbs_info->prev_cpu_wall = cur_wall_time;
503
504 idle_time = (unsigned int)
505 (cur_idle_time - j_dbs_info->prev_cpu_idle);
506 j_dbs_info->prev_cpu_idle = cur_idle_time;
507
508 iowait_time = (unsigned int)
509 (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
510 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
511
512 if (dbs_tuners_ins.ignore_nice) {
513 u64 cur_nice;
514 unsigned long cur_nice_jiffies;
515
516 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
517 j_dbs_info->prev_cpu_nice;
518 /*
519 * Assumption: nice time between sampling periods will
520 * be less than 2^32 jiffies for 32 bit sys
521 */
522 cur_nice_jiffies = (unsigned long)
523 cputime64_to_jiffies64(cur_nice);
524
525 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
526 idle_time += jiffies_to_usecs(cur_nice_jiffies);
527 }
528
529 /*
530 * For the purpose of ondemand, waiting for disk IO is an
531 * indication that you're performance critical, and not that
532 * the system is actually idle. So subtract the iowait time
533 * from the cpu idle time.
534 */
535
536 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
537 idle_time -= iowait_time;
538
539 if (unlikely(!wall_time || wall_time < idle_time))
540 continue;
541
542 load = 100 * (wall_time - idle_time) / wall_time;
543
544 freq_avg = __cpufreq_driver_getavg(policy, j);
545 if (freq_avg <= 0)
546 freq_avg = policy->cur;
547
548 load_freq = load * freq_avg;
549 if (load_freq > max_load_freq)
550 max_load_freq = load_freq;
551 }
552 464
553 /* Check for frequency increase */ 465static struct od_ops od_ops = {
554 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { 466 .io_busy = should_io_be_busy,
555 /* If switching to max speed, apply sampling_down_factor */ 467 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
556 if (policy->cur < policy->max) 468 .powersave_bias_target = powersave_bias_target,
557 this_dbs_info->rate_mult = 469 .freq_increase = dbs_freq_increase,
558 dbs_tuners_ins.sampling_down_factor; 470};
559 dbs_freq_increase(policy, policy->max);
560 return;
561 }
562
563 /* Check for frequency decrease */
564 /* if we cannot reduce the frequency anymore, break out early */
565 if (policy->cur == policy->min)
566 return;
567
568 /*
569 * The optimal frequency is the frequency that is the lowest that
570 * can support the current CPU usage without triggering the up
571 * policy. To be safe, we focus 10 points under the threshold.
572 */
573 if (max_load_freq <
574 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
575 policy->cur) {
576 unsigned int freq_next;
577 freq_next = max_load_freq /
578 (dbs_tuners_ins.up_threshold -
579 dbs_tuners_ins.down_differential);
580
581 /* No longer fully busy, reset rate_mult */
582 this_dbs_info->rate_mult = 1;
583
584 if (freq_next < policy->min)
585 freq_next = policy->min;
586
587 if (!dbs_tuners_ins.powersave_bias) {
588 __cpufreq_driver_target(policy, freq_next,
589 CPUFREQ_RELATION_L);
590 } else {
591 int freq = powersave_bias_target(policy, freq_next,
592 CPUFREQ_RELATION_L);
593 __cpufreq_driver_target(policy, freq,
594 CPUFREQ_RELATION_L);
595 }
596 }
597}
598
599static void do_dbs_timer(struct work_struct *work)
600{
601 struct cpu_dbs_info_s *dbs_info =
602 container_of(work, struct cpu_dbs_info_s, work.work);
603 unsigned int cpu = dbs_info->cpu;
604 int sample_type = dbs_info->sample_type;
605
606 int delay;
607
608 mutex_lock(&dbs_info->timer_mutex);
609
610 /* Common NORMAL_SAMPLE setup */
611 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
612 if (!dbs_tuners_ins.powersave_bias ||
613 sample_type == DBS_NORMAL_SAMPLE) {
614 dbs_check_cpu(dbs_info);
615 if (dbs_info->freq_lo) {
616 /* Setup timer for SUB_SAMPLE */
617 dbs_info->sample_type = DBS_SUB_SAMPLE;
618 delay = dbs_info->freq_hi_jiffies;
619 } else {
620 /* We want all CPUs to do sampling nearly on
621 * same jiffy
622 */
623 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
624 * dbs_info->rate_mult);
625
626 if (num_online_cpus() > 1)
627 delay -= jiffies % delay;
628 }
629 } else {
630 __cpufreq_driver_target(dbs_info->cur_policy,
631 dbs_info->freq_lo, CPUFREQ_RELATION_H);
632 delay = dbs_info->freq_lo_jiffies;
633 }
634 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
635 mutex_unlock(&dbs_info->timer_mutex);
636}
637
638static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
639{
640 /* We want all CPUs to do sampling nearly on same jiffy */
641 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
642
643 if (num_online_cpus() > 1)
644 delay -= jiffies % delay;
645 471
646 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 472static struct dbs_data od_dbs_data = {
647 INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer); 473 .governor = GOV_ONDEMAND,
648 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay); 474 .attr_group = &od_attr_group,
649} 475 .tuners = &od_tuners,
476 .get_cpu_cdbs = get_cpu_cdbs,
477 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
478 .gov_dbs_timer = od_dbs_timer,
479 .gov_check_cpu = od_check_cpu,
480 .gov_ops = &od_ops,
481};
650 482
651static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) 483static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
484 unsigned int event)
652{ 485{
653 cancel_delayed_work_sync(&dbs_info->work); 486 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
654} 487}
655 488
656/* 489#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
657 * Not all CPUs want IO time to be accounted as busy; this dependson how 490static
658 * efficient idling at a higher frequency/voltage is.
659 * Pavel Machek says this is not so for various generations of AMD and old
660 * Intel systems.
661 * Mike Chan (androidlcom) calis this is also not true for ARM.
662 * Because of this, whitelist specific known (series) of CPUs by default, and
663 * leave all others up to the user.
664 */
665static int should_io_be_busy(void)
666{
667#if defined(CONFIG_X86)
668 /*
669 * For Intel, Core 2 (model 15) andl later have an efficient idle.
670 */
671 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
672 boot_cpu_data.x86 == 6 &&
673 boot_cpu_data.x86_model >= 15)
674 return 1;
675#endif 491#endif
676 return 0; 492struct cpufreq_governor cpufreq_gov_ondemand = {
677} 493 .name = "ondemand",
678 494 .governor = od_cpufreq_governor_dbs,
679static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 495 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
680 unsigned int event) 496 .owner = THIS_MODULE,
681{ 497};
682 unsigned int cpu = policy->cpu;
683 struct cpu_dbs_info_s *this_dbs_info;
684 unsigned int j;
685 int rc;
686
687 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
688
689 switch (event) {
690 case CPUFREQ_GOV_START:
691 if ((!cpu_online(cpu)) || (!policy->cur))
692 return -EINVAL;
693
694 mutex_lock(&dbs_mutex);
695
696 dbs_enable++;
697 for_each_cpu(j, policy->cpus) {
698 struct cpu_dbs_info_s *j_dbs_info;
699 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
700 j_dbs_info->cur_policy = policy;
701
702 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
703 &j_dbs_info->prev_cpu_wall);
704 if (dbs_tuners_ins.ignore_nice)
705 j_dbs_info->prev_cpu_nice =
706 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
707 }
708 this_dbs_info->cpu = cpu;
709 this_dbs_info->rate_mult = 1;
710 ondemand_powersave_bias_init_cpu(cpu);
711 /*
712 * Start the timerschedule work, when this governor
713 * is used for first time
714 */
715 if (dbs_enable == 1) {
716 unsigned int latency;
717
718 rc = sysfs_create_group(cpufreq_global_kobject,
719 &dbs_attr_group);
720 if (rc) {
721 mutex_unlock(&dbs_mutex);
722 return rc;
723 }
724
725 /* policy latency is in nS. Convert it to uS first */
726 latency = policy->cpuinfo.transition_latency / 1000;
727 if (latency == 0)
728 latency = 1;
729 /* Bring kernel and HW constraints together */
730 min_sampling_rate = max(min_sampling_rate,
731 MIN_LATENCY_MULTIPLIER * latency);
732 dbs_tuners_ins.sampling_rate =
733 max(min_sampling_rate,
734 latency * LATENCY_MULTIPLIER);
735 dbs_tuners_ins.io_is_busy = should_io_be_busy();
736 }
737 mutex_unlock(&dbs_mutex);
738
739 mutex_init(&this_dbs_info->timer_mutex);
740 dbs_timer_init(this_dbs_info);
741 break;
742
743 case CPUFREQ_GOV_STOP:
744 dbs_timer_exit(this_dbs_info);
745
746 mutex_lock(&dbs_mutex);
747 mutex_destroy(&this_dbs_info->timer_mutex);
748 dbs_enable--;
749 mutex_unlock(&dbs_mutex);
750 if (!dbs_enable)
751 sysfs_remove_group(cpufreq_global_kobject,
752 &dbs_attr_group);
753
754 break;
755
756 case CPUFREQ_GOV_LIMITS:
757 mutex_lock(&this_dbs_info->timer_mutex);
758 if (policy->max < this_dbs_info->cur_policy->cur)
759 __cpufreq_driver_target(this_dbs_info->cur_policy,
760 policy->max, CPUFREQ_RELATION_H);
761 else if (policy->min > this_dbs_info->cur_policy->cur)
762 __cpufreq_driver_target(this_dbs_info->cur_policy,
763 policy->min, CPUFREQ_RELATION_L);
764 dbs_check_cpu(this_dbs_info);
765 mutex_unlock(&this_dbs_info->timer_mutex);
766 break;
767 }
768 return 0;
769}
770 498
771static int __init cpufreq_gov_dbs_init(void) 499static int __init cpufreq_gov_dbs_init(void)
772{ 500{
773 u64 idle_time; 501 u64 idle_time;
774 int cpu = get_cpu(); 502 int cpu = get_cpu();
775 503
504 mutex_init(&od_dbs_data.mutex);
776 idle_time = get_cpu_idle_time_us(cpu, NULL); 505 idle_time = get_cpu_idle_time_us(cpu, NULL);
777 put_cpu(); 506 put_cpu();
778 if (idle_time != -1ULL) { 507 if (idle_time != -1ULL) {
779 /* Idle micro accounting is supported. Use finer thresholds */ 508 /* Idle micro accounting is supported. Use finer thresholds */
780 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 509 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
781 dbs_tuners_ins.down_differential = 510 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
782 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
783 /* 511 /*
784 * In nohz/micro accounting case we set the minimum frequency 512 * In nohz/micro accounting case we set the minimum frequency
785 * not depending on HZ, but fixed (very low). The deferred 513 * not depending on HZ, but fixed (very low). The deferred
786 * timer might skip some samples if idle/sleeping as needed. 514 * timer might skip some samples if idle/sleeping as needed.
787 */ 515 */
788 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 516 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
789 } else { 517 } else {
790 /* For correct statistics, we need 10 ticks for each measure */ 518 /* For correct statistics, we need 10 ticks for each measure */
791 min_sampling_rate = 519 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
792 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); 520 jiffies_to_usecs(10);
793 } 521 }
794 522
795 return cpufreq_register_governor(&cpufreq_gov_ondemand); 523 return cpufreq_register_governor(&cpufreq_gov_ondemand);
@@ -800,7 +528,6 @@ static void __exit cpufreq_gov_dbs_exit(void)
800 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 528 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
801} 529}
802 530
803
804MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 531MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
805MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 532MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
806MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 533MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "