aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/cpufreq_ondemand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/cpufreq_ondemand.c')
-rw-r--r--drivers/cpufreq/cpufreq_ondemand.c266
1 files changed, 96 insertions, 170 deletions
diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c
index 693e540481b4..52cf1f021825 100644
--- a/drivers/cpufreq/cpufreq_ondemand.c
+++ b/drivers/cpufreq/cpufreq_ondemand.c
@@ -12,22 +12,11 @@
12 12
13#include <linux/kernel.h> 13#include <linux/kernel.h>
14#include <linux/module.h> 14#include <linux/module.h>
15#include <linux/smp.h>
16#include <linux/init.h> 15#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/cpufreq.h> 16#include <linux/cpufreq.h>
20#include <linux/sysctl.h>
21#include <linux/types.h>
22#include <linux/fs.h>
23#include <linux/sysfs.h>
24#include <linux/cpu.h> 17#include <linux/cpu.h>
25#include <linux/sched.h>
26#include <linux/kmod.h>
27#include <linux/workqueue.h>
28#include <linux/jiffies.h> 18#include <linux/jiffies.h>
29#include <linux/kernel_stat.h> 19#include <linux/kernel_stat.h>
30#include <linux/percpu.h>
31#include <linux/mutex.h> 20#include <linux/mutex.h>
32 21
33/* 22/*
@@ -56,16 +45,15 @@ static unsigned int def_sampling_rate;
56#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 45#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57#define MAX_SAMPLING_RATE (500 * def_sampling_rate) 46#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) 47#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59#define DEF_SAMPLING_DOWN_FACTOR (1)
60#define MAX_SAMPLING_DOWN_FACTOR (10)
61#define TRANSITION_LATENCY_LIMIT (10 * 1000) 48#define TRANSITION_LATENCY_LIMIT (10 * 1000)
62 49
63static void do_dbs_timer(void *data); 50static void do_dbs_timer(void *data);
64 51
65struct cpu_dbs_info_s { 52struct cpu_dbs_info_s {
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
66 struct cpufreq_policy *cur_policy; 55 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up; 56 struct work_struct work;
68 unsigned int prev_cpu_idle_down;
69 unsigned int enable; 57 unsigned int enable;
70}; 58};
71static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 59static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
@@ -80,31 +68,32 @@ static unsigned int dbs_enable; /* number of CPUs using this policy */
80 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock 68 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
81 * is recursive for the same process. -Venki 69 * is recursive for the same process. -Venki
82 */ 70 */
83static DEFINE_MUTEX (dbs_mutex); 71static DEFINE_MUTEX(dbs_mutex);
84static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
85 72
86static struct workqueue_struct *dbs_workq; 73static struct workqueue_struct *kondemand_wq;
87 74
88struct dbs_tuners { 75struct dbs_tuners {
89 unsigned int sampling_rate; 76 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold; 77 unsigned int up_threshold;
92 unsigned int ignore_nice; 78 unsigned int ignore_nice;
93}; 79};
94 80
95static struct dbs_tuners dbs_tuners_ins = { 81static struct dbs_tuners dbs_tuners_ins = {
96 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 82 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
97 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
98 .ignore_nice = 0, 83 .ignore_nice = 0,
99}; 84};
100 85
101static inline unsigned int get_cpu_idle_time(unsigned int cpu) 86static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
102{ 87{
103 return kstat_cpu(cpu).cpustat.idle + 88 cputime64_t retval;
104 kstat_cpu(cpu).cpustat.iowait + 89
105 ( dbs_tuners_ins.ignore_nice ? 90 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
106 kstat_cpu(cpu).cpustat.nice : 91 kstat_cpu(cpu).cpustat.iowait);
107 0); 92
93 if (dbs_tuners_ins.ignore_nice)
94 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
95
96 return retval;
108} 97}
109 98
110/************************** sysfs interface ************************/ 99/************************** sysfs interface ************************/
@@ -133,35 +122,15 @@ static ssize_t show_##file_name \
133 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 122 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
134} 123}
135show_one(sampling_rate, sampling_rate); 124show_one(sampling_rate, sampling_rate);
136show_one(sampling_down_factor, sampling_down_factor);
137show_one(up_threshold, up_threshold); 125show_one(up_threshold, up_threshold);
138show_one(ignore_nice_load, ignore_nice); 126show_one(ignore_nice_load, ignore_nice);
139 127
140static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
141 const char *buf, size_t count)
142{
143 unsigned int input;
144 int ret;
145 ret = sscanf (buf, "%u", &input);
146 if (ret != 1 )
147 return -EINVAL;
148
149 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
150 return -EINVAL;
151
152 mutex_lock(&dbs_mutex);
153 dbs_tuners_ins.sampling_down_factor = input;
154 mutex_unlock(&dbs_mutex);
155
156 return count;
157}
158
159static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 128static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
160 const char *buf, size_t count) 129 const char *buf, size_t count)
161{ 130{
162 unsigned int input; 131 unsigned int input;
163 int ret; 132 int ret;
164 ret = sscanf (buf, "%u", &input); 133 ret = sscanf(buf, "%u", &input);
165 134
166 mutex_lock(&dbs_mutex); 135 mutex_lock(&dbs_mutex);
167 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { 136 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
@@ -180,7 +149,7 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused,
180{ 149{
181 unsigned int input; 150 unsigned int input;
182 int ret; 151 int ret;
183 ret = sscanf (buf, "%u", &input); 152 ret = sscanf(buf, "%u", &input);
184 153
185 mutex_lock(&dbs_mutex); 154 mutex_lock(&dbs_mutex);
186 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 155 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
@@ -203,7 +172,7 @@ static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
203 172
204 unsigned int j; 173 unsigned int j;
205 174
206 ret = sscanf (buf, "%u", &input); 175 ret = sscanf(buf, "%u", &input);
207 if ( ret != 1 ) 176 if ( ret != 1 )
208 return -EINVAL; 177 return -EINVAL;
209 178
@@ -217,12 +186,12 @@ static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
217 } 186 }
218 dbs_tuners_ins.ignore_nice = input; 187 dbs_tuners_ins.ignore_nice = input;
219 188
220 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ 189 /* we need to re-evaluate prev_cpu_idle */
221 for_each_online_cpu(j) { 190 for_each_online_cpu(j) {
222 struct cpu_dbs_info_s *j_dbs_info; 191 struct cpu_dbs_info_s *dbs_info;
223 j_dbs_info = &per_cpu(cpu_dbs_info, j); 192 dbs_info = &per_cpu(cpu_dbs_info, j);
224 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); 193 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
225 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; 194 dbs_info->prev_cpu_wall = get_jiffies_64();
226 } 195 }
227 mutex_unlock(&dbs_mutex); 196 mutex_unlock(&dbs_mutex);
228 197
@@ -234,7 +203,6 @@ static struct freq_attr _name = \
234__ATTR(_name, 0644, show_##_name, store_##_name) 203__ATTR(_name, 0644, show_##_name, store_##_name)
235 204
236define_one_rw(sampling_rate); 205define_one_rw(sampling_rate);
237define_one_rw(sampling_down_factor);
238define_one_rw(up_threshold); 206define_one_rw(up_threshold);
239define_one_rw(ignore_nice_load); 207define_one_rw(ignore_nice_load);
240 208
@@ -242,7 +210,6 @@ static struct attribute * dbs_attributes[] = {
242 &sampling_rate_max.attr, 210 &sampling_rate_max.attr,
243 &sampling_rate_min.attr, 211 &sampling_rate_min.attr,
244 &sampling_rate.attr, 212 &sampling_rate.attr,
245 &sampling_down_factor.attr,
246 &up_threshold.attr, 213 &up_threshold.attr,
247 &ignore_nice_load.attr, 214 &ignore_nice_load.attr,
248 NULL 215 NULL
@@ -255,26 +222,29 @@ static struct attribute_group dbs_attr_group = {
255 222
256/************************** sysfs end ************************/ 223/************************** sysfs end ************************/
257 224
258static void dbs_check_cpu(int cpu) 225static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
259{ 226{
260 unsigned int idle_ticks, up_idle_ticks, total_ticks; 227 unsigned int idle_ticks, total_ticks;
261 unsigned int freq_next; 228 unsigned int load;
262 unsigned int freq_down_sampling_rate; 229 cputime64_t cur_jiffies;
263 static int down_skip[NR_CPUS];
264 struct cpu_dbs_info_s *this_dbs_info;
265 230
266 struct cpufreq_policy *policy; 231 struct cpufreq_policy *policy;
267 unsigned int j; 232 unsigned int j;
268 233
269 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
270 if (!this_dbs_info->enable) 234 if (!this_dbs_info->enable)
271 return; 235 return;
272 236
273 policy = this_dbs_info->cur_policy; 237 policy = this_dbs_info->cur_policy;
238 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
239 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
240 this_dbs_info->prev_cpu_wall);
241 this_dbs_info->prev_cpu_wall = cur_jiffies;
242 if (!total_ticks)
243 return;
274 /* 244 /*
275 * Every sampling_rate, we check, if current idle time is less 245 * Every sampling_rate, we check, if current idle time is less
276 * than 20% (default), then we try to increase frequency 246 * than 20% (default), then we try to increase frequency
277 * Every sampling_rate*sampling_down_factor, we look for a the lowest 247 * Every sampling_rate, we look for a the lowest
278 * frequency which can sustain the load while keeping idle time over 248 * frequency which can sustain the load while keeping idle time over
279 * 30%. If such a frequency exist, we try to decrease to this frequency. 249 * 30%. If such a frequency exist, we try to decrease to this frequency.
280 * 250 *
@@ -283,36 +253,26 @@ static void dbs_check_cpu(int cpu)
283 * 5% (default) of current frequency 253 * 5% (default) of current frequency
284 */ 254 */
285 255
286 /* Check for frequency increase */ 256 /* Get Idle Time */
287 idle_ticks = UINT_MAX; 257 idle_ticks = UINT_MAX;
288 for_each_cpu_mask(j, policy->cpus) { 258 for_each_cpu_mask(j, policy->cpus) {
289 unsigned int tmp_idle_ticks, total_idle_ticks; 259 cputime64_t total_idle_ticks;
260 unsigned int tmp_idle_ticks;
290 struct cpu_dbs_info_s *j_dbs_info; 261 struct cpu_dbs_info_s *j_dbs_info;
291 262
292 j_dbs_info = &per_cpu(cpu_dbs_info, j); 263 j_dbs_info = &per_cpu(cpu_dbs_info, j);
293 total_idle_ticks = get_cpu_idle_time(j); 264 total_idle_ticks = get_cpu_idle_time(j);
294 tmp_idle_ticks = total_idle_ticks - 265 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
295 j_dbs_info->prev_cpu_idle_up; 266 j_dbs_info->prev_cpu_idle);
296 j_dbs_info->prev_cpu_idle_up = total_idle_ticks; 267 j_dbs_info->prev_cpu_idle = total_idle_ticks;
297 268
298 if (tmp_idle_ticks < idle_ticks) 269 if (tmp_idle_ticks < idle_ticks)
299 idle_ticks = tmp_idle_ticks; 270 idle_ticks = tmp_idle_ticks;
300 } 271 }
272 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
301 273
302 /* Scale idle ticks by 100 and compare with up and down ticks */ 274 /* Check for frequency increase */
303 idle_ticks *= 100; 275 if (load > dbs_tuners_ins.up_threshold) {
304 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
305 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
306
307 if (idle_ticks < up_idle_ticks) {
308 down_skip[cpu] = 0;
309 for_each_cpu_mask(j, policy->cpus) {
310 struct cpu_dbs_info_s *j_dbs_info;
311
312 j_dbs_info = &per_cpu(cpu_dbs_info, j);
313 j_dbs_info->prev_cpu_idle_down =
314 j_dbs_info->prev_cpu_idle_up;
315 }
316 /* if we are already at full speed then break out early */ 276 /* if we are already at full speed then break out early */
317 if (policy->cur == policy->max) 277 if (policy->cur == policy->max)
318 return; 278 return;
@@ -323,83 +283,54 @@ static void dbs_check_cpu(int cpu)
323 } 283 }
324 284
325 /* Check for frequency decrease */ 285 /* Check for frequency decrease */
326 down_skip[cpu]++;
327 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
328 return;
329
330 idle_ticks = UINT_MAX;
331 for_each_cpu_mask(j, policy->cpus) {
332 unsigned int tmp_idle_ticks, total_idle_ticks;
333 struct cpu_dbs_info_s *j_dbs_info;
334
335 j_dbs_info = &per_cpu(cpu_dbs_info, j);
336 /* Check for frequency decrease */
337 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
338 tmp_idle_ticks = total_idle_ticks -
339 j_dbs_info->prev_cpu_idle_down;
340 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
341
342 if (tmp_idle_ticks < idle_ticks)
343 idle_ticks = tmp_idle_ticks;
344 }
345
346 down_skip[cpu] = 0;
347 /* if we cannot reduce the frequency anymore, break out early */ 286 /* if we cannot reduce the frequency anymore, break out early */
348 if (policy->cur == policy->min) 287 if (policy->cur == policy->min)
349 return; 288 return;
350 289
351 /* Compute how many ticks there are between two measurements */
352 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
353 dbs_tuners_ins.sampling_down_factor;
354 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
355
356 /* 290 /*
357 * The optimal frequency is the frequency that is the lowest that 291 * The optimal frequency is the frequency that is the lowest that
358 * can support the current CPU usage without triggering the up 292 * can support the current CPU usage without triggering the up
359 * policy. To be safe, we focus 10 points under the threshold. 293 * policy. To be safe, we focus 10 points under the threshold.
360 */ 294 */
361 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks; 295 if (load < (dbs_tuners_ins.up_threshold - 10)) {
362 freq_next = (freq_next * policy->cur) / 296 unsigned int freq_next;
297 freq_next = (policy->cur * load) /
363 (dbs_tuners_ins.up_threshold - 10); 298 (dbs_tuners_ins.up_threshold - 10);
364 299
365 if (freq_next < policy->min)
366 freq_next = policy->min;
367
368 if (freq_next <= ((policy->cur * 95) / 100))
369 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L); 300 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
301 }
370} 302}
371 303
372static void do_dbs_timer(void *data) 304static void do_dbs_timer(void *data)
373{ 305{
374 int i; 306 unsigned int cpu = smp_processor_id();
307 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
308
309 if (!dbs_info->enable)
310 return;
311
375 lock_cpu_hotplug(); 312 lock_cpu_hotplug();
376 mutex_lock(&dbs_mutex); 313 dbs_check_cpu(dbs_info);
377 for_each_online_cpu(i)
378 dbs_check_cpu(i);
379 queue_delayed_work(dbs_workq, &dbs_work,
380 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
381 mutex_unlock(&dbs_mutex);
382 unlock_cpu_hotplug(); 314 unlock_cpu_hotplug();
315 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
316 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
383} 317}
384 318
385static inline void dbs_timer_init(void) 319static inline void dbs_timer_init(unsigned int cpu)
386{ 320{
387 INIT_WORK(&dbs_work, do_dbs_timer, NULL); 321 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
388 if (!dbs_workq) 322
389 dbs_workq = create_singlethread_workqueue("ondemand"); 323 INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
390 if (!dbs_workq) { 324 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
391 printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n"); 325 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
392 return;
393 }
394 queue_delayed_work(dbs_workq, &dbs_work,
395 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
396 return; 326 return;
397} 327}
398 328
399static inline void dbs_timer_exit(void) 329static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
400{ 330{
401 if (dbs_workq) 331 dbs_info->enable = 0;
402 cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work); 332 cancel_delayed_work(&dbs_info->work);
333 flush_workqueue(kondemand_wq);
403} 334}
404 335
405static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 336static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
@@ -413,8 +344,7 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
413 344
414 switch (event) { 345 switch (event) {
415 case CPUFREQ_GOV_START: 346 case CPUFREQ_GOV_START:
416 if ((!cpu_online(cpu)) || 347 if ((!cpu_online(cpu)) || (!policy->cur))
417 (!policy->cur))
418 return -EINVAL; 348 return -EINVAL;
419 349
420 if (policy->cpuinfo.transition_latency > 350 if (policy->cpuinfo.transition_latency >
@@ -427,18 +357,26 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
427 break; 357 break;
428 358
429 mutex_lock(&dbs_mutex); 359 mutex_lock(&dbs_mutex);
360 dbs_enable++;
361 if (dbs_enable == 1) {
362 kondemand_wq = create_workqueue("kondemand");
363 if (!kondemand_wq) {
364 printk(KERN_ERR "Creation of kondemand failed\n");
365 dbs_enable--;
366 mutex_unlock(&dbs_mutex);
367 return -ENOSPC;
368 }
369 }
430 for_each_cpu_mask(j, policy->cpus) { 370 for_each_cpu_mask(j, policy->cpus) {
431 struct cpu_dbs_info_s *j_dbs_info; 371 struct cpu_dbs_info_s *j_dbs_info;
432 j_dbs_info = &per_cpu(cpu_dbs_info, j); 372 j_dbs_info = &per_cpu(cpu_dbs_info, j);
433 j_dbs_info->cur_policy = policy; 373 j_dbs_info->cur_policy = policy;
434 374
435 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); 375 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
436 j_dbs_info->prev_cpu_idle_down 376 j_dbs_info->prev_cpu_wall = get_jiffies_64();
437 = j_dbs_info->prev_cpu_idle_up;
438 } 377 }
439 this_dbs_info->enable = 1; 378 this_dbs_info->enable = 1;
440 sysfs_create_group(&policy->kobj, &dbs_attr_group); 379 sysfs_create_group(&policy->kobj, &dbs_attr_group);
441 dbs_enable++;
442 /* 380 /*
443 * Start the timerschedule work, when this governor 381 * Start the timerschedule work, when this governor
444 * is used for first time 382 * is used for first time
@@ -457,50 +395,44 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
457 def_sampling_rate = MIN_STAT_SAMPLING_RATE; 395 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
458 396
459 dbs_tuners_ins.sampling_rate = def_sampling_rate; 397 dbs_tuners_ins.sampling_rate = def_sampling_rate;
460 dbs_timer_init();
461 } 398 }
399 dbs_timer_init(policy->cpu);
462 400
463 mutex_unlock(&dbs_mutex); 401 mutex_unlock(&dbs_mutex);
464 break; 402 break;
465 403
466 case CPUFREQ_GOV_STOP: 404 case CPUFREQ_GOV_STOP:
467 mutex_lock(&dbs_mutex); 405 mutex_lock(&dbs_mutex);
468 this_dbs_info->enable = 0; 406 dbs_timer_exit(this_dbs_info);
469 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 407 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
470 dbs_enable--; 408 dbs_enable--;
471 /*
472 * Stop the timerschedule work, when this governor
473 * is used for first time
474 */
475 if (dbs_enable == 0) 409 if (dbs_enable == 0)
476 dbs_timer_exit(); 410 destroy_workqueue(kondemand_wq);
477 411
478 mutex_unlock(&dbs_mutex); 412 mutex_unlock(&dbs_mutex);
479 413
480 break; 414 break;
481 415
482 case CPUFREQ_GOV_LIMITS: 416 case CPUFREQ_GOV_LIMITS:
483 lock_cpu_hotplug();
484 mutex_lock(&dbs_mutex); 417 mutex_lock(&dbs_mutex);
485 if (policy->max < this_dbs_info->cur_policy->cur) 418 if (policy->max < this_dbs_info->cur_policy->cur)
486 __cpufreq_driver_target( 419 __cpufreq_driver_target(this_dbs_info->cur_policy,
487 this_dbs_info->cur_policy, 420 policy->max,
488 policy->max, CPUFREQ_RELATION_H); 421 CPUFREQ_RELATION_H);
489 else if (policy->min > this_dbs_info->cur_policy->cur) 422 else if (policy->min > this_dbs_info->cur_policy->cur)
490 __cpufreq_driver_target( 423 __cpufreq_driver_target(this_dbs_info->cur_policy,
491 this_dbs_info->cur_policy, 424 policy->min,
492 policy->min, CPUFREQ_RELATION_L); 425 CPUFREQ_RELATION_L);
493 mutex_unlock(&dbs_mutex); 426 mutex_unlock(&dbs_mutex);
494 unlock_cpu_hotplug();
495 break; 427 break;
496 } 428 }
497 return 0; 429 return 0;
498} 430}
499 431
500static struct cpufreq_governor cpufreq_gov_dbs = { 432static struct cpufreq_governor cpufreq_gov_dbs = {
501 .name = "ondemand", 433 .name = "ondemand",
502 .governor = cpufreq_governor_dbs, 434 .governor = cpufreq_governor_dbs,
503 .owner = THIS_MODULE, 435 .owner = THIS_MODULE,
504}; 436};
505 437
506static int __init cpufreq_gov_dbs_init(void) 438static int __init cpufreq_gov_dbs_init(void)
@@ -510,21 +442,15 @@ static int __init cpufreq_gov_dbs_init(void)
510 442
511static void __exit cpufreq_gov_dbs_exit(void) 443static void __exit cpufreq_gov_dbs_exit(void)
512{ 444{
513 /* Make sure that the scheduled work is indeed not running.
514 Assumes the timer has been cancelled first. */
515 if (dbs_workq) {
516 flush_workqueue(dbs_workq);
517 destroy_workqueue(dbs_workq);
518 }
519
520 cpufreq_unregister_governor(&cpufreq_gov_dbs); 445 cpufreq_unregister_governor(&cpufreq_gov_dbs);
521} 446}
522 447
523 448
524MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 449MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
525MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for " 450MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
526 "Low Latency Frequency Transition capable processors"); 451MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
527MODULE_LICENSE ("GPL"); 452 "Low Latency Frequency Transition capable processors");
453MODULE_LICENSE("GPL");
528 454
529module_init(cpufreq_gov_dbs_init); 455module_init(cpufreq_gov_dbs_init);
530module_exit(cpufreq_gov_dbs_exit); 456module_exit(cpufreq_gov_dbs_exit);