aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char')
-rw-r--r--drivers/char/rio/rioboot.c1515
1 files changed, 704 insertions, 811 deletions
diff --git a/drivers/char/rio/rioboot.c b/drivers/char/rio/rioboot.c
index 92df43552f15..9a96fc644e52 100644
--- a/drivers/char/rio/rioboot.c
+++ b/drivers/char/rio/rioboot.c
@@ -80,149 +80,141 @@ static char *_rioboot_c_sccs_ = "@(#)rioboot.c 1.3";
80#include "cmdblk.h" 80#include "cmdblk.h"
81#include "route.h" 81#include "route.h"
82 82
83static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ); 83static int RIOBootComplete(struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP);
84 84
85static uchar 85static uchar RIOAtVec2Ctrl[] = {
86RIOAtVec2Ctrl[] = 86 /* 0 */ INTERRUPT_DISABLE,
87{ 87 /* 1 */ INTERRUPT_DISABLE,
88 /* 0 */ INTERRUPT_DISABLE, 88 /* 2 */ INTERRUPT_DISABLE,
89 /* 1 */ INTERRUPT_DISABLE, 89 /* 3 */ INTERRUPT_DISABLE,
90 /* 2 */ INTERRUPT_DISABLE, 90 /* 4 */ INTERRUPT_DISABLE,
91 /* 3 */ INTERRUPT_DISABLE, 91 /* 5 */ INTERRUPT_DISABLE,
92 /* 4 */ INTERRUPT_DISABLE, 92 /* 6 */ INTERRUPT_DISABLE,
93 /* 5 */ INTERRUPT_DISABLE, 93 /* 7 */ INTERRUPT_DISABLE,
94 /* 6 */ INTERRUPT_DISABLE, 94 /* 8 */ INTERRUPT_DISABLE,
95 /* 7 */ INTERRUPT_DISABLE, 95 /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
96 /* 8 */ INTERRUPT_DISABLE,
97 /* 9 */ IRQ_9|INTERRUPT_ENABLE,
98 /* 10 */ INTERRUPT_DISABLE, 96 /* 10 */ INTERRUPT_DISABLE,
99 /* 11 */ IRQ_11|INTERRUPT_ENABLE, 97 /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
100 /* 12 */ IRQ_12|INTERRUPT_ENABLE, 98 /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
101 /* 13 */ INTERRUPT_DISABLE, 99 /* 13 */ INTERRUPT_DISABLE,
102 /* 14 */ INTERRUPT_DISABLE, 100 /* 14 */ INTERRUPT_DISABLE,
103 /* 15 */ IRQ_15|INTERRUPT_ENABLE 101 /* 15 */ IRQ_15 | INTERRUPT_ENABLE
104}; 102};
105 103
106/* 104/*
107** Load in the RTA boot code. 105** Load in the RTA boot code.
108*/ 106*/
109int 107int RIOBootCodeRTA(p, rbp)
110RIOBootCodeRTA(p, rbp) 108struct rio_info *p;
111struct rio_info * p; 109struct DownLoad *rbp;
112struct DownLoad * rbp;
113{ 110{
114 int offset; 111 int offset;
115 112
116 func_enter (); 113 func_enter();
117 114
118 /* Linux doesn't allow you to disable interrupts during a 115 /* Linux doesn't allow you to disable interrupts during a
119 "copyin". (Crash when a pagefault occurs). */ 116 "copyin". (Crash when a pagefault occurs). */
120 /* disable(oldspl); */ 117 /* disable(oldspl); */
121 118
122 rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP); 119 rio_dprintk(RIO_DEBUG_BOOT, "Data at user address 0x%x\n", (int) rbp->DataP);
123 120
124 /* 121 /*
125 ** Check that we have set asside enough memory for this 122 ** Check that we have set asside enough memory for this
126 */ 123 */
127 if ( rbp->Count > SIXTY_FOUR_K ) { 124 if (rbp->Count > SIXTY_FOUR_K) {
128 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); 125 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
129 p->RIOError.Error = HOST_FILE_TOO_LARGE; 126 p->RIOError.Error = HOST_FILE_TOO_LARGE;
130 /* restore(oldspl); */ 127 /* restore(oldspl); */
131 func_exit (); 128 func_exit();
132 return -ENOMEM; 129 return -ENOMEM;
133 } 130 }
134 131
135 if ( p->RIOBooting ) { 132 if (p->RIOBooting) {
136 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); 133 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
137 p->RIOError.Error = BOOT_IN_PROGRESS; 134 p->RIOError.Error = BOOT_IN_PROGRESS;
138 /* restore(oldspl); */ 135 /* restore(oldspl); */
139 func_exit (); 136 func_exit();
140 return -EBUSY; 137 return -EBUSY;
141 } 138 }
142 139
143 /* 140 /*
144 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, 141 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
145 ** so calculate how far we have to move the data up the buffer 142 ** so calculate how far we have to move the data up the buffer
146 ** to achieve this. 143 ** to achieve this.
147 */ 144 */
148 offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % 145 offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
149 RTA_BOOT_DATA_SIZE;
150 146
151 /* 147 /*
152 ** Be clean, and clear the 'unused' portion of the boot buffer, 148 ** Be clean, and clear the 'unused' portion of the boot buffer,
153 ** because it will (eventually) be part of the Rta run time environment 149 ** because it will (eventually) be part of the Rta run time environment
154 ** and so should be zeroed. 150 ** and so should be zeroed.
155 */ 151 */
156 bzero( (caddr_t)p->RIOBootPackets, offset ); 152 bzero((caddr_t) p->RIOBootPackets, offset);
157 153
158 /* 154 /*
159 ** Copy the data from user space. 155 ** Copy the data from user space.
160 */ 156 */
161 157
162 if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset, 158 if (copyin((int) rbp->DataP, ((caddr_t) (p->RIOBootPackets)) + offset, rbp->Count) == COPYFAIL) {
163 rbp->Count) ==COPYFAIL ) { 159 rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
164 rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n");
165 p->RIOError.Error = COPYIN_FAILED; 160 p->RIOError.Error = COPYIN_FAILED;
166 /* restore(oldspl); */ 161 /* restore(oldspl); */
167 func_exit (); 162 func_exit();
168 return -EFAULT; 163 return -EFAULT;
169 } 164 }
170 165
171 /* 166 /*
172 ** Make sure that our copy of the size includes that offset we discussed 167 ** Make sure that our copy of the size includes that offset we discussed
173 ** earlier. 168 ** earlier.
174 */ 169 */
175 p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE; 170 p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
176 p->RIOBootCount = rbp->Count; 171 p->RIOBootCount = rbp->Count;
177 172
178 /* restore(oldspl); */ 173 /* restore(oldspl); */
179 func_exit(); 174 func_exit();
180 return 0; 175 return 0;
181} 176}
182 177
183void rio_start_card_running (struct Host * HostP) 178void rio_start_card_running(struct Host *HostP)
184{ 179{
185 func_enter (); 180 func_enter();
186 181
187 switch ( HostP->Type ) { 182 switch (HostP->Type) {
188 case RIO_AT: 183 case RIO_AT:
189 rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n"); 184 rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
190 WBYTE(HostP->Control, 185 WBYTE(HostP->Control, BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF]);
191 BOOT_FROM_RAM | EXTERNAL_BUS_ON
192 | HostP->Mode
193 | RIOAtVec2Ctrl[HostP->Ivec & 0xF] );
194 break; 186 break;
195 187
196#ifdef FUTURE_RELEASE 188#ifdef FUTURE_RELEASE
197 case RIO_MCA: 189 case RIO_MCA:
198 /* 190 /*
199 ** MCA handles IRQ vectors differently, so we don't write 191 ** MCA handles IRQ vectors differently, so we don't write
200 ** them to this register. 192 ** them to this register.
201 */ 193 */
202 rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n"); 194 rio_dprintk(RIO_DEBUG_BOOT, "Start MCA card running\n");
203 WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode); 195 WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode);
204 break; 196 break;
205 197
206 case RIO_EISA: 198 case RIO_EISA:
207 /* 199 /*
208 ** EISA is totally different and expects OUTBZs to turn it on. 200 ** EISA is totally different and expects OUTBZs to turn it on.
209 */ 201 */
210 rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n"); 202 rio_dprintk(RIO_DEBUG_BOOT, "Start EISA card running\n");
211 OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM ); 203 OUTBZ(HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM);
212 break; 204 break;
213#endif 205#endif
214 206
215 case RIO_PCI: 207 case RIO_PCI:
216 /* 208 /*
217 ** PCI is much the same as MCA. Everything is once again memory 209 ** PCI is much the same as MCA. Everything is once again memory
218 ** mapped, so we are writing to memory registers instead of io 210 ** mapped, so we are writing to memory registers instead of io
219 ** ports. 211 ** ports.
220 */ 212 */
221 rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n"); 213 rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
222 WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode); 214 WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode);
223 break; 215 break;
224 default: 216 default:
225 rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); 217 rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
226 break; 218 break;
227 } 219 }
228/* 220/*
@@ -239,9 +231,8 @@ void rio_start_card_running (struct Host * HostP)
239** Put your rubber pants on before messing with this code - even the magic 231** Put your rubber pants on before messing with this code - even the magic
240** numbers have trouble understanding what they are doing here. 232** numbers have trouble understanding what they are doing here.
241*/ 233*/
242int 234int RIOBootCodeHOST(p, rbp)
243RIOBootCodeHOST(p, rbp) 235struct rio_info *p;
244struct rio_info * p;
245register struct DownLoad *rbp; 236register struct DownLoad *rbp;
246{ 237{
247 register struct Host *HostP; 238 register struct Host *HostP;
@@ -254,355 +245,346 @@ register struct DownLoad *rbp;
254 BYTE *DestP; 245 BYTE *DestP;
255 int wait_count; 246 int wait_count;
256 ushort OldParmMap; 247 ushort OldParmMap;
257 ushort offset; /* It is very important that this is a ushort */ 248 ushort offset; /* It is very important that this is a ushort */
258 /* uint byte; */ 249 /* uint byte; */
259 caddr_t DownCode = NULL; 250 caddr_t DownCode = NULL;
260 unsigned long flags; 251 unsigned long flags;
261 252
262 HostP = NULL; /* Assure the compiler we've initialized it */ 253 HostP = NULL; /* Assure the compiler we've initialized it */
263 for ( host=0; host<p->RIONumHosts; host++ ) { 254 for (host = 0; host < p->RIONumHosts; host++) {
264 rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host); 255 rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
265 HostP = &p->RIOHosts[host]; 256 HostP = &p->RIOHosts[host];
266
267 rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
268 HostP->Type, HostP->Mode, HostP->Ivec);
269 257
258 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
270 259
271 if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) { 260
272 rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host); 261 if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
262 rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
273 continue; 263 continue;
274 } 264 }
275 265
276 /* 266 /*
277 ** Grab a 32 bit pointer to the card. 267 ** Grab a 32 bit pointer to the card.
278 */ 268 */
279 Cad = HostP->Caddr; 269 Cad = HostP->Caddr;
280 270
281 /* 271 /*
282 ** We are going to (try) and load in rbp->Count bytes. 272 ** We are going to (try) and load in rbp->Count bytes.
283 ** The last byte will reside at p->RIOConf.HostLoadBase-1; 273 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
284 ** Therefore, we need to start copying at address 274 ** Therefore, we need to start copying at address
285 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) 275 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
286 */ 276 */
287 StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count]; 277 StartP = (caddr_t) & Cad[p->RIOConf.HostLoadBase - rbp->Count];
288 278
289 rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad ); 279 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int) Cad);
290 rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP); 280 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int) StartP);
291 rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); 281 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
292 rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); 282 rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
293 283
294 if ( p->RIOConf.HostLoadBase < rbp->Count ) { 284 if (p->RIOConf.HostLoadBase < rbp->Count) {
295 rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n"); 285 rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
296 p->RIOError.Error = HOST_FILE_TOO_LARGE; 286 p->RIOError.Error = HOST_FILE_TOO_LARGE;
297 func_exit (); 287 func_exit();
298 return -EFBIG; 288 return -EFBIG;
299 } 289 }
300 /* 290 /*
301 ** Ensure that the host really is stopped. 291 ** Ensure that the host really is stopped.
302 ** Disable it's external bus & twang its reset line. 292 ** Disable it's external bus & twang its reset line.
303 */ 293 */
304 RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); 294 RIOHostReset(HostP->Type, (struct DpRam *) HostP->CardP, HostP->Slot);
305 295
306 /* 296 /*
307 ** Copy the data directly from user space to the SRAM. 297 ** Copy the data directly from user space to the SRAM.
308 ** This ain't going to be none too clever if the download 298 ** This ain't going to be none too clever if the download
309 ** code is bigger than this segment. 299 ** code is bigger than this segment.
310 */ 300 */
311 rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n"); 301 rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
312 302
313 /* 303 /*
314 ** PCI hostcard can't cope with 32 bit accesses and so need to copy 304 ** PCI hostcard can't cope with 32 bit accesses and so need to copy
315 ** data to a local buffer, and then dripfeed the card. 305 ** data to a local buffer, and then dripfeed the card.
316 */ 306 */
317 if ( HostP->Type == RIO_PCI ) { 307 if (HostP->Type == RIO_PCI) {
318 /* int offset; */ 308 /* int offset; */
319 309
320 DownCode = sysbrk(rbp->Count); 310 DownCode = sysbrk(rbp->Count);
321 if ( !DownCode ) { 311 if (!DownCode) {
322 rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n"); 312 rio_dprintk(RIO_DEBUG_BOOT, "No system memory available\n");
323 p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; 313 p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
324 func_exit (); 314 func_exit();
325 return -ENOMEM; 315 return -ENOMEM;
326 } 316 }
327 bzero(DownCode, rbp->Count); 317 bzero(DownCode, rbp->Count);
328 318
329 if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) { 319 if (copyin((int) rbp->DataP, DownCode, rbp->Count) == COPYFAIL) {
330 rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n"); 320 rio_dprintk(RIO_DEBUG_BOOT, "Bad copyin of host data\n");
331 sysfree( DownCode, rbp->Count ); 321 sysfree(DownCode, rbp->Count);
332 p->RIOError.Error = COPYIN_FAILED; 322 p->RIOError.Error = COPYIN_FAILED;
333 func_exit (); 323 func_exit();
334 return -EFAULT; 324 return -EFAULT;
335 } 325 }
336 326
337 HostP->Copy( DownCode, StartP, rbp->Count ); 327 HostP->Copy(DownCode, StartP, rbp->Count);
338 328
339 sysfree( DownCode, rbp->Count ); 329 sysfree(DownCode, rbp->Count);
340 } 330 } else if (copyin((int) rbp->DataP, StartP, rbp->Count) == COPYFAIL) {
341 else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) { 331 rio_dprintk(RIO_DEBUG_BOOT, "Bad copyin of host data\n");
342 rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
343 p->RIOError.Error = COPYIN_FAILED; 332 p->RIOError.Error = COPYIN_FAILED;
344 func_exit (); 333 func_exit();
345 return -EFAULT; 334 return -EFAULT;
346 } 335 }
347 336
348 rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n"); 337 rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
349 338
350 /* 339 /*
351 ** S T O P ! 340 ** S T O P !
352 ** 341 **
353 ** Upto this point the code has been fairly rational, and possibly 342 ** Upto this point the code has been fairly rational, and possibly
354 ** even straight forward. What follows is a pile of crud that will 343 ** even straight forward. What follows is a pile of crud that will
355 ** magically turn into six bytes of transputer assembler. Normally 344 ** magically turn into six bytes of transputer assembler. Normally
356 ** you would expect an array or something, but, being me, I have 345 ** you would expect an array or something, but, being me, I have
357 ** chosen [been told] to use a technique whereby the startup code 346 ** chosen [been told] to use a technique whereby the startup code
358 ** will be correct if we change the loadbase for the code. Which 347 ** will be correct if we change the loadbase for the code. Which
359 ** brings us onto another issue - the loadbase is the *end* of the 348 ** brings us onto another issue - the loadbase is the *end* of the
360 ** code, not the start. 349 ** code, not the start.
361 ** 350 **
362 ** If I were you I wouldn't start from here. 351 ** If I were you I wouldn't start from here.
363 */ 352 */
364 353
365 /* 354 /*
366 ** We now need to insert a short boot section into 355 ** We now need to insert a short boot section into
367 ** the memory at the end of Sram2. This is normally (de)composed 356 ** the memory at the end of Sram2. This is normally (de)composed
368 ** of the last eight bytes of the download code. The 357 ** of the last eight bytes of the download code. The
369 ** download has been assembled/compiled to expect to be 358 ** download has been assembled/compiled to expect to be
370 ** loaded from 0x7FFF downwards. We have loaded it 359 ** loaded from 0x7FFF downwards. We have loaded it
371 ** at some other address. The startup code goes into the small 360 ** at some other address. The startup code goes into the small
372 ** ram window at Sram2, in the last 8 bytes, which are really 361 ** ram window at Sram2, in the last 8 bytes, which are really
373 ** at addresses 0x7FF8-0x7FFF. 362 ** at addresses 0x7FF8-0x7FFF.
374 ** 363 **
375 ** If the loadbase is, say, 0x7C00, then we need to branch to 364 ** If the loadbase is, say, 0x7C00, then we need to branch to
376 ** address 0x7BFE to run the host.bin startup code. We assemble 365 ** address 0x7BFE to run the host.bin startup code. We assemble
377 ** this jump manually. 366 ** this jump manually.
378 ** 367 **
379 ** The two byte sequence 60 08 is loaded into memory at address 368 ** The two byte sequence 60 08 is loaded into memory at address
380 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, 369 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
381 ** which adds '0' to the .O register, complements .O, and then shifts 370 ** which adds '0' to the .O register, complements .O, and then shifts
382 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will 371 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
383 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new 372 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
384 ** location. Now, the branch starts from the value of .PC (or .IP or 373 ** location. Now, the branch starts from the value of .PC (or .IP or
385 ** whatever the bloody register is called on this chip), and the .PC 374 ** whatever the bloody register is called on this chip), and the .PC
386 ** will be pointing to the location AFTER the branch, in this case 375 ** will be pointing to the location AFTER the branch, in this case
387 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. 376 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
388 ** 377 **
389 ** A long branch is coded at 0x7FF8. This consists of loading a four 378 ** A long branch is coded at 0x7FF8. This consists of loading a four
390 ** byte offset into .O using nfix (as above) and pfix operators. The 379 ** byte offset into .O using nfix (as above) and pfix operators. The
391 ** pfix operates in exactly the same way as the nfix operator, but 380 ** pfix operates in exactly the same way as the nfix operator, but
392 ** without the complement operation. The offset, of course, must be 381 ** without the complement operation. The offset, of course, must be
393 ** relative to the address of the byte AFTER the branch instruction, 382 ** relative to the address of the byte AFTER the branch instruction,
394 ** which will be (urm) 0x7FFC, so, our final destination of the branch 383 ** which will be (urm) 0x7FFC, so, our final destination of the branch
395 ** (loadbase-2), has to be reached from here. Imagine that the loadbase 384 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
396 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which 385 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
397 ** is the first byte of the initial two byte short local branch of the 386 ** is the first byte of the initial two byte short local branch of the
398 ** download code). 387 ** download code).
399 ** 388 **
400 ** To code a jump from 0x7FFC (which is where the branch will start 389 ** To code a jump from 0x7FFC (which is where the branch will start
401 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= 390 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
402 ** 0x7BFE. 391 ** 0x7BFE.
403 ** This will be coded as four bytes: 392 ** This will be coded as four bytes:
404 ** 60 2C 20 02 393 ** 60 2C 20 02
405 ** being nfix .O+0 394 ** being nfix .O+0
406 ** pfix .O+C 395 ** pfix .O+C
407 ** pfix .O+0 396 ** pfix .O+0
408 ** jump .O+2 397 ** jump .O+2
409 ** 398 **
410 ** The nfix operator is used, so that the startup code will be 399 ** The nfix operator is used, so that the startup code will be
411 ** compatible with the whole Tp family. (lies, damn lies, it'll never 400 ** compatible with the whole Tp family. (lies, damn lies, it'll never
412 ** work in a month of Sundays). 401 ** work in a month of Sundays).
413 ** 402 **
414 ** The nfix nyble is the 1s complement of the nyble value you 403 ** The nfix nyble is the 1s complement of the nyble value you
415 ** want to load - in this case we wanted 'F' so we nfix loaded '0'. 404 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
416 */ 405 */
417 406
418 407
419 /* 408 /*
420 ** Dest points to the top 8 bytes of Sram2. The Tp jumps 409 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
421 ** to 0x7FFE at reset time, and starts executing. This is 410 ** to 0x7FFE at reset time, and starts executing. This is
422 ** a short branch to 0x7FF8, where a long branch is coded. 411 ** a short branch to 0x7FF8, where a long branch is coded.
423 */ 412 */
424 413
425 DestP = (BYTE *)&Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ 414 DestP = (BYTE *) & Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
426 415
427#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ 416#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
428#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ 417#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
429#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ 418#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
430 419
431 /* 420 /*
432 ** 0x7FFC is the address of the location following the last byte of 421 ** 0x7FFC is the address of the location following the last byte of
433 ** the four byte jump instruction. 422 ** the four byte jump instruction.
434 ** READ THE ABOVE COMMENTS 423 ** READ THE ABOVE COMMENTS
435 ** 424 **
436 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. 425 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
437 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, 426 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
438 ** cos I don't understand 2's complement). 427 ** cos I don't understand 2's complement).
439 */ 428 */
440 offset = (p->RIOConf.HostLoadBase-2)-0x7FFC; 429 offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
441 WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) ); 430 WBYTE(DestP[0], NFIX(((ushort) (~offset) >> (ushort) 12) & 0xF));
442 WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) ); 431 WBYTE(DestP[1], PFIX((offset >> 8) & 0xF));
443 WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) ); 432 WBYTE(DestP[2], PFIX((offset >> 4) & 0xF));
444 WBYTE( DestP[3] , JUMP( offset & 0xF) ); 433 WBYTE(DestP[3], JUMP(offset & 0xF));
445 434
446 WBYTE( DestP[6] , NFIX(0) ); 435 WBYTE(DestP[6], NFIX(0));
447 WBYTE( DestP[7] , JUMP(8) ); 436 WBYTE(DestP[7], JUMP(8));
448 437
449 rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); 438 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
450 rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset); 439 rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
451 440
452 /* 441 /*
453 ** Flag what is going on 442 ** Flag what is going on
454 */ 443 */
455 HostP->Flags &= ~RUN_STATE; 444 HostP->Flags &= ~RUN_STATE;
456 HostP->Flags |= RC_STARTUP; 445 HostP->Flags |= RC_STARTUP;
457 446
458 /* 447 /*
459 ** Grab a copy of the current ParmMap pointer, so we 448 ** Grab a copy of the current ParmMap pointer, so we
460 ** can tell when it has changed. 449 ** can tell when it has changed.
461 */ 450 */
462 OldParmMap = RWORD(HostP->__ParmMapR); 451 OldParmMap = RWORD(HostP->__ParmMapR);
463 452
464 rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap); 453 rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
465 454
466 /* 455 /*
467 ** And start it running (I hope). 456 ** And start it running (I hope).
468 ** As there is nothing dodgy or obscure about the 457 ** As there is nothing dodgy or obscure about the
469 ** above code, this is guaranteed to work every time. 458 ** above code, this is guaranteed to work every time.
470 */ 459 */
471 rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", 460 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
472 HostP->Type, HostP->Mode, HostP->Ivec);
473 461
474 rio_start_card_running(HostP); 462 rio_start_card_running(HostP);
475 463
476 rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n"); 464 rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
477 465
478 /* 466 /*
479 ** Now, wait for upto five seconds for the Tp to setup the parmmap 467 ** Now, wait for upto five seconds for the Tp to setup the parmmap
480 ** pointer: 468 ** pointer:
481 */ 469 */
482 for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&& 470 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (RWORD(HostP->__ParmMapR) == OldParmMap); wait_count++) {
483 (RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) { 471 rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, RWORD(HostP->__ParmMapR));
484 rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR));
485 delay(HostP, HUNDRED_MS); 472 delay(HostP, HUNDRED_MS);
486 473
487 } 474 }
488 475
489 /* 476 /*
490 ** If the parmmap pointer is unchanged, then the host code 477 ** If the parmmap pointer is unchanged, then the host code
491 ** has crashed & burned in a really spectacular way 478 ** has crashed & burned in a really spectacular way
492 */ 479 */
493 if ( RWORD(HostP->__ParmMapR) == OldParmMap ) { 480 if (RWORD(HostP->__ParmMapR) == OldParmMap) {
494 rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR)); 481 rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR));
495 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); 482 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
496 483 HostP->Flags &= ~RUN_STATE;
497#define HOST_DISABLE \ 484 HostP->Flags |= RC_STUFFED;
498 HostP->Flags &= ~RUN_STATE; \ 485 RIOHostReset(HostP->Type, (struct DpRam *) HostP->CardP, HostP->Slot);
499 HostP->Flags |= RC_STUFFED; \ 486 continue}
500 RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\ 487
501 continue 488 rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
502
503 HOST_DISABLE;
504 }
505
506 rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
507 489
508 /* 490 /*
509 ** Well, the board thought it was OK, and setup its parmmap 491 ** Well, the board thought it was OK, and setup its parmmap
510 ** pointer. For the time being, we will pretend that this 492 ** pointer. For the time being, we will pretend that this
511 ** board is running, and check out what the error flag says. 493 ** board is running, and check out what the error flag says.
512 */ 494 */
513 495
514 /* 496 /*
515 ** Grab a 32 bit pointer to the parmmap structure 497 ** Grab a 32 bit pointer to the parmmap structure
516 */ 498 */
517 ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR)); 499 ParmMapP = (PARM_MAP *) RIO_PTR(Cad, RWORD(HostP->__ParmMapR));
518 rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP); 500 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int) ParmMapP);
519 ParmMapP = (PARM_MAP *)((unsigned long)Cad + 501 ParmMapP = (PARM_MAP *) ((unsigned long) Cad + (unsigned long) ((RWORD((HostP->__ParmMapR))) & 0xFFFF));
520 (unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF)); 502 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int) ParmMapP);
521 rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
522 503
523 /* 504 /*
524 ** The links entry should be 0xFFFF; we set it up 505 ** The links entry should be 0xFFFF; we set it up
525 ** with a mask to say how many PHBs to use, and 506 ** with a mask to say how many PHBs to use, and
526 ** which links to use. 507 ** which links to use.
527 */ 508 */
528 if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) { 509 if ((RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF) {
529 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); 510 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
530 rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links)); 511 rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", RWORD(ParmMapP->links));
531 HOST_DISABLE; 512 HostP->Flags &= ~RUN_STATE;
532 } 513 HostP->Flags |= RC_STUFFED;
533 514 RIOHostReset(HostP->Type, (struct DpRam *) HostP->CardP, HostP->Slot);
534 WWORD(ParmMapP->links , RIO_LINK_ENABLE); 515 continue}
516
517 WWORD(ParmMapP->links, RIO_LINK_ENABLE);
535 518
536 /* 519 /*
537 ** now wait for the card to set all the parmmap->XXX stuff 520 ** now wait for the card to set all the parmmap->XXX stuff
538 ** this is a wait of upto two seconds.... 521 ** this is a wait of upto two seconds....
539 */ 522 */
540 rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime); 523 rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
541 HostP->timeout_id = 0; 524 HostP->timeout_id = 0;
542 for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) && 525 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !RWORD(ParmMapP->init_done); wait_count++) {
543 !RWORD(ParmMapP->init_done); wait_count++ ) { 526 rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
544 rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n");
545 delay(HostP, HUNDRED_MS); 527 delay(HostP, HUNDRED_MS);
546 } 528 }
547 rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n"); 529 rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
548 530
549 if (RWORD(ParmMapP->error) != E_NO_ERROR || 531 if (RWORD(ParmMapP->error) != E_NO_ERROR || !RWORD(ParmMapP->init_done)) {
550 !RWORD(ParmMapP->init_done) ) { 532 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
551 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); 533 rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
552 rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); 534 HostP->Flags &= ~RUN_STATE;
553 HOST_DISABLE; 535 HostP->Flags |= RC_STUFFED;
554 } 536 RIOHostReset(HostP->Type, (struct DpRam *) HostP->CardP, HostP->Slot);
537 continue}
555 538
556 rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n"); 539 rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
557 540
558 /* 541 /*
559 ** It runs! It runs! 542 ** It runs! It runs!
560 */ 543 */
561 rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum); 544 rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
562 545
563 /* 546 /*
564 ** set the time period between interrupts. 547 ** set the time period between interrupts.
565 */ 548 */
566 WWORD(ParmMapP->timer, (short)p->RIOConf.Timer ); 549 WWORD(ParmMapP->timer, (short) p->RIOConf.Timer);
567 550
568 /* 551 /*
569 ** Translate all the 16 bit pointers in the __ParmMapR into 552 ** Translate all the 16 bit pointers in the __ParmMapR into
570 ** 32 bit pointers for the driver. 553 ** 32 bit pointers for the driver.
571 */ 554 */
572 HostP->ParmMapP = ParmMapP; 555 HostP->ParmMapP = ParmMapP;
573 HostP->PhbP = (PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr)); 556 HostP->PhbP = (PHB *) RIO_PTR(Cad, RWORD(ParmMapP->phb_ptr));
574 HostP->RupP = (RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups)); 557 HostP->RupP = (RUP *) RIO_PTR(Cad, RWORD(ParmMapP->rups));
575 HostP->PhbNumP = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr)); 558 HostP->PhbNumP = (ushort *) RIO_PTR(Cad, RWORD(ParmMapP->phb_num_ptr));
576 HostP->LinkStrP = (LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr)); 559 HostP->LinkStrP = (LPB *) RIO_PTR(Cad, RWORD(ParmMapP->link_str_ptr));
577 560
578 /* 561 /*
579 ** point the UnixRups at the real Rups 562 ** point the UnixRups at the real Rups
580 */ 563 */
581 for ( RupN = 0; RupN<MAX_RUP; RupN++ ) { 564 for (RupN = 0; RupN < MAX_RUP; RupN++) {
582 HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN]; 565 HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
583 HostP->UnixRups[RupN].Id = RupN+1; 566 HostP->UnixRups[RupN].Id = RupN + 1;
584 HostP->UnixRups[RupN].BaseSysPort = NO_PORT; 567 HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
585 spin_lock_init(&HostP->UnixRups[RupN].RupLock); 568 spin_lock_init(&HostP->UnixRups[RupN].RupLock);
586 } 569 }
587 570
588 for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) { 571 for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
589 HostP->UnixRups[RupN+MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; 572 HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
590 HostP->UnixRups[RupN+MAX_RUP].Id = 0; 573 HostP->UnixRups[RupN + MAX_RUP].Id = 0;
591 HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT; 574 HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
592 spin_lock_init(&HostP->UnixRups[RupN+MAX_RUP].RupLock); 575 spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
593 } 576 }
594 577
595 /* 578 /*
596 ** point the PortP->Phbs at the real Phbs 579 ** point the PortP->Phbs at the real Phbs
597 */ 580 */
598 for ( PortN=p->RIOFirstPortsMapped; 581 for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
599 PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) { 582 if (p->RIOPortp[PortN]->HostP == HostP) {
600 if ( p->RIOPortp[PortN]->HostP == HostP ) {
601 struct Port *PortP = p->RIOPortp[PortN]; 583 struct Port *PortP = p->RIOPortp[PortN];
602 struct PHB *PhbP; 584 struct PHB *PhbP;
603 /* int oldspl; */ 585 /* int oldspl; */
604 586
605 if ( !PortP->Mapped ) 587 if (!PortP->Mapped)
606 continue; 588 continue;
607 589
608 PhbP = &HostP->PhbP[PortP->HostPort]; 590 PhbP = &HostP->PhbP[PortP->HostPort];
@@ -610,40 +592,40 @@ register struct DownLoad *rbp;
610 592
611 PortP->PhbP = PhbP; 593 PortP->PhbP = PhbP;
612 594
613 PortP->TxAdd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add)); 595 PortP->TxAdd = (WORD *) RIO_PTR(Cad, RWORD(PhbP->tx_add));
614 PortP->TxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start)); 596 PortP->TxStart = (WORD *) RIO_PTR(Cad, RWORD(PhbP->tx_start));
615 PortP->TxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end)); 597 PortP->TxEnd = (WORD *) RIO_PTR(Cad, RWORD(PhbP->tx_end));
616 PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove)); 598 PortP->RxRemove = (WORD *) RIO_PTR(Cad, RWORD(PhbP->rx_remove));
617 PortP->RxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start)); 599 PortP->RxStart = (WORD *) RIO_PTR(Cad, RWORD(PhbP->rx_start));
618 PortP->RxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end)); 600 PortP->RxEnd = (WORD *) RIO_PTR(Cad, RWORD(PhbP->rx_end));
619 601
620 rio_spin_unlock_irqrestore(&PortP->portSem, flags); 602 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
621 /* 603 /*
622 ** point the UnixRup at the base SysPort 604 ** point the UnixRup at the base SysPort
623 */ 605 */
624 if ( !(PortN % PORTS_PER_RTA) ) 606 if (!(PortN % PORTS_PER_RTA))
625 HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; 607 HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
626 } 608 }
627 } 609 }
628 610
629 rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n"); 611 rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
630 /* 612 /*
631 ** last thing - show the world that everything is in place 613 ** last thing - show the world that everything is in place
632 */ 614 */
633 HostP->Flags &= ~RUN_STATE; 615 HostP->Flags &= ~RUN_STATE;
634 HostP->Flags |= RC_RUNNING; 616 HostP->Flags |= RC_RUNNING;
635 } 617 }
636 /* 618 /*
637 ** MPX always uses a poller. This is actually patched into the system 619 ** MPX always uses a poller. This is actually patched into the system
638 ** configuration and called directly from each clock tick. 620 ** configuration and called directly from each clock tick.
639 ** 621 **
640 */ 622 */
641 p->RIOPolling = 1; 623 p->RIOPolling = 1;
642 624
643 p->RIOSystemUp++; 625 p->RIOSystemUp++;
644 626
645 rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); 627 rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
646 func_exit (); 628 func_exit();
647 return 0; 629 return 0;
648} 630}
649 631
@@ -653,23 +635,22 @@ register struct DownLoad *rbp;
653** Boot an RTA. If we have successfully processed this boot, then 635** Boot an RTA. If we have successfully processed this boot, then
654** return 1. If we havent, then return 0. 636** return 1. If we havent, then return 0.
655*/ 637*/
656int 638int RIOBootRup(p, Rup, HostP, PacketP)
657RIOBootRup( p, Rup, HostP, PacketP) 639struct rio_info *p;
658struct rio_info * p;
659uint Rup; 640uint Rup;
660struct Host *HostP; 641struct Host *HostP;
661struct PKT *PacketP; 642struct PKT *PacketP;
662{ 643{
663 struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data; 644 struct PktCmd *PktCmdP = (struct PktCmd *) PacketP->data;
664 struct PktCmd_M *PktReplyP; 645 struct PktCmd_M *PktReplyP;
665 struct CmdBlk *CmdBlkP; 646 struct CmdBlk *CmdBlkP;
666 uint sequence; 647 uint sequence;
667 648
668 /* 649 /*
669 ** If we haven't been told what to boot, we can't boot it. 650 ** If we haven't been told what to boot, we can't boot it.
670 */ 651 */
671 if ( p->RIONumBootPkts == 0 ) { 652 if (p->RIONumBootPkts == 0) {
672 rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n"); 653 rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
673 return 0; 654 return 0;
674 } 655 }
675 656
@@ -677,117 +658,111 @@ struct PKT *PacketP;
677 /* ShowPacket( DBG_BOOT, PacketP ); */ 658 /* ShowPacket( DBG_BOOT, PacketP ); */
678 659
679 /* 660 /*
680 ** Special case of boot completed - if we get one of these then we 661 ** Special case of boot completed - if we get one of these then we
681 ** don't need a command block. For all other cases we do, so handle 662 ** don't need a command block. For all other cases we do, so handle
682 ** this first and then get a command block, then handle every other 663 ** this first and then get a command block, then handle every other
683 ** case, relinquishing the command block if disaster strikes! 664 ** case, relinquishing the command block if disaster strikes!
684 */ 665 */
685 if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) && 666 if ((RBYTE(PacketP->len) & PKT_CMD_BIT) && (RBYTE(PktCmdP->Command) == BOOT_COMPLETED))
686 (RBYTE(PktCmdP->Command)==BOOT_COMPLETED) ) 667 return RIOBootComplete(p, HostP, Rup, PktCmdP);
687 return RIOBootComplete(p, HostP, Rup, PktCmdP );
688 668
689 /* 669 /*
690 ** try to unhook a command block from the command free list. 670 ** try to unhook a command block from the command free list.
691 */ 671 */
692 if ( !(CmdBlkP = RIOGetCmdBlk()) ) { 672 if (!(CmdBlkP = RIOGetCmdBlk())) {
693 rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); 673 rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
694 return 0; 674 return 0;
695 } 675 }
696 676
697 /* 677 /*
698 ** Fill in the default info on the command block 678 ** Fill in the default info on the command block
699 */ 679 */
700 CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0; 680 CmdBlkP->Packet.dest_unit = Rup < (ushort) MAX_RUP ? Rup : 0;
701 CmdBlkP->Packet.dest_port = BOOT_RUP; 681 CmdBlkP->Packet.dest_port = BOOT_RUP;
702 CmdBlkP->Packet.src_unit = 0; 682 CmdBlkP->Packet.src_unit = 0;
703 CmdBlkP->Packet.src_port = BOOT_RUP; 683 CmdBlkP->Packet.src_port = BOOT_RUP;
704 684
705 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; 685 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
706 PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data; 686 PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
707 687
708 /* 688 /*
709 ** process COMMANDS on the boot rup! 689 ** process COMMANDS on the boot rup!
710 */ 690 */
711 if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) { 691 if (RBYTE(PacketP->len) & PKT_CMD_BIT) {
712 /* 692 /*
713 ** We only expect one type of command - a BOOT_REQUEST! 693 ** We only expect one type of command - a BOOT_REQUEST!
714 */ 694 */
715 if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) { 695 if (RBYTE(PktCmdP->Command) != BOOT_REQUEST) {
716 rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n", 696 rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n", PktCmdP->Command, Rup, HostP - p->RIOHosts);
717 PktCmdP->Command,Rup,HostP-p->RIOHosts); 697 ShowPacket(DBG_BOOT, PacketP);
718 ShowPacket( DBG_BOOT, PacketP ); 698 RIOFreeCmdBlk(CmdBlkP);
719 RIOFreeCmdBlk( CmdBlkP );
720 return 1; 699 return 1;
721 } 700 }
722 701
723 /* 702 /*
724 ** Build a Boot Sequence command block 703 ** Build a Boot Sequence command block
725 ** 704 **
726 ** 02.03.1999 ARG - ESIL 0820 fix 705 ** 02.03.1999 ARG - ESIL 0820 fix
727 ** We no longer need to use "Boot Mode", we'll always allow 706 ** We no longer need to use "Boot Mode", we'll always allow
728 ** boot requests - the boot will not complete if the device 707 ** boot requests - the boot will not complete if the device
729 ** appears in the bindings table. 708 ** appears in the bindings table.
730 ** So, this conditional is not required ... 709 ** So, this conditional is not required ...
731 ** 710 **
732 if (p->RIOBootMode == RC_BOOT_NONE) 711 if (p->RIOBootMode == RC_BOOT_NONE)
733 ** 712 **
734 ** If the system is in slave mode, and a boot request is 713 ** If the system is in slave mode, and a boot request is
735 ** received, set command to BOOT_ABORT so that the boot 714 ** received, set command to BOOT_ABORT so that the boot
736 ** will not complete. 715 ** will not complete.
737 ** 716 **
738 PktReplyP->Command = BOOT_ABORT; 717 PktReplyP->Command = BOOT_ABORT;
739 else 718 else
740 ** 719 **
741 ** We'll just (always) set the command field in packet reply 720 ** We'll just (always) set the command field in packet reply
742 ** to allow an attempted boot sequence : 721 ** to allow an attempted boot sequence :
743 */ 722 */
744 PktReplyP->Command = BOOT_SEQUENCE; 723 PktReplyP->Command = BOOT_SEQUENCE;
745 724
746 PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; 725 PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
747 PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; 726 PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
748 PktReplyP->BootSequence.CodeSize = p->RIOBootCount; 727 PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
749 728
750 CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; 729 CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
751 730
752 bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4); 731 bcopy("BOOT", (void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], 4);
753 732
754 rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n", 733 rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
755 HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts,
756 p->RIOConf.RtaLoadBase);
757 734
758 /* 735 /*
759 ** If this host is in slave mode, send the RTA an invalid boot 736 ** If this host is in slave mode, send the RTA an invalid boot
760 ** sequence command block to force it to kill the boot. We wait 737 ** sequence command block to force it to kill the boot. We wait
761 ** for half a second before sending this packet to prevent the RTA 738 ** for half a second before sending this packet to prevent the RTA
762 ** attempting to boot too often. The master host should then grab 739 ** attempting to boot too often. The master host should then grab
763 ** the RTA and make it its own. 740 ** the RTA and make it its own.
764 */ 741 */
765 p->RIOBooting++; 742 p->RIOBooting++;
766 RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); 743 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
767 return 1; 744 return 1;
768 } 745 }
769 746
770 /* 747 /*
771 ** It is a request for boot data. 748 ** It is a request for boot data.
772 */ 749 */
773 sequence = RWORD(PktCmdP->Sequence); 750 sequence = RWORD(PktCmdP->Sequence);
774 751
775 rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup); 752 rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
776 753
777 if ( sequence >= p->RIONumBootPkts ) { 754 if (sequence >= p->RIONumBootPkts) {
778 rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, 755 rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
779 p->RIONumBootPkts); 756 ShowPacket(DBG_BOOT, PacketP);
780 ShowPacket( DBG_BOOT, PacketP );
781 } 757 }
782 758
783 PktReplyP->Sequence = sequence; 759 PktReplyP->Sequence = sequence;
784 760
785 bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ], 761 bcopy(p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], PktReplyP->BootData, RTA_BOOT_DATA_SIZE);
786 PktReplyP->BootData, RTA_BOOT_DATA_SIZE );
787 762
788 CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; 763 CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
789 ShowPacket( DBG_BOOT, &CmdBlkP->Packet ); 764 ShowPacket(DBG_BOOT, &CmdBlkP->Packet);
790 RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); 765 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
791 return 1; 766 return 1;
792} 767}
793 768
@@ -797,422 +772,348 @@ struct PKT *PacketP;
797** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. 772** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
798** RtaUniq is the booted RTA. 773** RtaUniq is the booted RTA.
799*/ 774*/
800static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ) 775static int RIOBootComplete(struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP)
801{ 776{
802 struct Map *MapP = NULL; 777 struct Map *MapP = NULL;
803 struct Map *MapP2 = NULL; 778 struct Map *MapP2 = NULL;
804 int Flag; 779 int Flag;
805 int found; 780 int found;
806 int host, rta; 781 int host, rta;
807 int EmptySlot = -1; 782 int EmptySlot = -1;
808 int entry, entry2; 783 int entry, entry2;
809 char *MyType, *MyName; 784 char *MyType, *MyName;
810 uint MyLink; 785 uint MyLink;
811 ushort RtaType; 786 ushort RtaType;
812 uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) + 787 uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) + (RBYTE(PktCmdP->UniqNum[1]) << 8) + (RBYTE(PktCmdP->UniqNum[2]) << 16) + (RBYTE(PktCmdP->UniqNum[3]) << 24);
813 (RBYTE(PktCmdP->UniqNum[1]) << 8) +
814 (RBYTE(PktCmdP->UniqNum[2]) << 16) +
815 (RBYTE(PktCmdP->UniqNum[3]) << 24);
816 788
817 /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the 789 /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the
818 driver will never think that the RTA has booted... -- REW */ 790 driver will never think that the RTA has booted... -- REW */
819 p->RIOBooting = 0; 791 p->RIOBooting = 0;
820 792
821 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); 793 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
822 794
823 /* 795 /*
824 ** Determine type of unit (16/8 port RTA). 796 ** Determine type of unit (16/8 port RTA).
825 */ 797 */
826 RtaType = GetUnitType(RtaUniq); 798 RtaType = GetUnitType(RtaUniq);
827 if ( Rup >= (ushort)MAX_RUP ) { 799 if (Rup >= (ushort) MAX_RUP) {
828 rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", 800 rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum) + 'A');
829 HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A');
830 } else { 801 } else {
831 rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", 802 rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum) + 'A');
832 HostP->Mapping[Rup].Name, 8 * RtaType,
833 RBYTE(PktCmdP->LinkNum)+'A');
834 } 803 }
835 804
836 rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq); 805 rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
837 806
838 if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) ) 807 if ((RtaUniq == 0x00000000) || (RtaUniq == 0xffffffff)) {
839 { 808 rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
840 rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); 809 return TRUE;
841 return TRUE;
842 } 810 }
843 811
844 /* 812 /*
845 ** If this RTA has just booted an RTA which doesn't belong to this 813 ** If this RTA has just booted an RTA which doesn't belong to this
846 ** system, or the system is in slave mode, do not attempt to create 814 ** system, or the system is in slave mode, do not attempt to create
847 ** a new table entry for it. 815 ** a new table entry for it.
848 */ 816 */
849 if (!RIOBootOk(p, HostP, RtaUniq)) 817 if (!RIOBootOk(p, HostP, RtaUniq)) {
850 { 818 MyLink = RBYTE(PktCmdP->LinkNum);
851 MyLink = RBYTE(PktCmdP->LinkNum); 819 if (Rup < (ushort) MAX_RUP) {
852 if (Rup < (ushort) MAX_RUP) 820 /*
853 { 821 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
854 /* 822 ** to hold off further attempts to boot on this link for 30
855 ** RtaUniq was clone booted (by this RTA). Instruct this RTA 823 ** seconds.
856 ** to hold off further attempts to boot on this link for 30 824 */
857 ** seconds. 825 if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
858 */ 826 rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
859 if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) 827 }
860 { 828 } else {
861 rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 829 /*
862 'A' + MyLink); 830 ** RtaUniq was booted by this host. Set the booting link
831 ** to hold off for 30 seconds to give another unit a
832 ** chance to boot it.
833 */
834 WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
863 } 835 }
864 } 836 rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
865 else 837 return TRUE;
866 {
867 /*
868 ** RtaUniq was booted by this host. Set the booting link
869 ** to hold off for 30 seconds to give another unit a
870 ** chance to boot it.
871 */
872 WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
873 }
874 rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n",
875 RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
876 return TRUE;
877 } 838 }
878 839
879 /* 840 /*
880 ** Check for a SLOT_IN_USE entry for this RTA attached to the 841 ** Check for a SLOT_IN_USE entry for this RTA attached to the
881 ** current host card in the driver table. 842 ** current host card in the driver table.
882 ** 843 **
883 ** If it exists, make a note that we have booted it. Other parts of 844 ** If it exists, make a note that we have booted it. Other parts of
884 ** the driver are interested in this information at a later date, 845 ** the driver are interested in this information at a later date,
885 ** in particular when the booting RTA asks for an ID for this unit, 846 ** in particular when the booting RTA asks for an ID for this unit,
886 ** we must have set the BOOTED flag, and the NEWBOOT flag is used 847 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
887 ** to force an open on any ports that where previously open on this 848 ** to force an open on any ports that where previously open on this
888 ** unit. 849 ** unit.
889 */ 850 */
890 for ( entry=0; entry<MAX_RUP; entry++ ) 851 for (entry = 0; entry < MAX_RUP; entry++) {
891 { 852 uint sysport;
892 uint sysport; 853
893 854 if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
894 if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && 855 HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
895 (HostP->Mapping[entry].RtaUniqueNum==RtaUniq))
896 {
897 HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT;
898#ifdef NEED_TO_FIX 856#ifdef NEED_TO_FIX
899 RIO_SV_BROADCAST(HostP->svFlags[entry]); 857 RIO_SV_BROADCAST(HostP->svFlags[entry]);
900#endif 858#endif
901 if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT ) 859 if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
902 { 860 if (sysport < p->RIOFirstPortsBooted)
903 if ( sysport < p->RIOFirstPortsBooted ) 861 p->RIOFirstPortsBooted = sysport;
904 p->RIOFirstPortsBooted = sysport; 862 if (sysport > p->RIOLastPortsBooted)
905 if ( sysport > p->RIOLastPortsBooted ) 863 p->RIOLastPortsBooted = sysport;
906 p->RIOLastPortsBooted = sysport; 864 /*
907 /* 865 ** For a 16 port RTA, check the second bank of 8 ports
908 ** For a 16 port RTA, check the second bank of 8 ports 866 */
909 */ 867 if (RtaType == TYPE_RTA16) {
910 if (RtaType == TYPE_RTA16) 868 entry2 = HostP->Mapping[entry].ID2 - 1;
911 { 869 HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
912 entry2 = HostP->Mapping[entry].ID2 - 1;
913 HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT;
914#ifdef NEED_TO_FIX 870#ifdef NEED_TO_FIX
915 RIO_SV_BROADCAST(HostP->svFlags[entry2]); 871 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
916#endif 872#endif
917 sysport = HostP->Mapping[entry2].SysPort; 873 sysport = HostP->Mapping[entry2].SysPort;
918 if ( sysport < p->RIOFirstPortsBooted ) 874 if (sysport < p->RIOFirstPortsBooted)
919 p->RIOFirstPortsBooted = sysport; 875 p->RIOFirstPortsBooted = sysport;
920 if ( sysport > p->RIOLastPortsBooted ) 876 if (sysport > p->RIOLastPortsBooted)
921 p->RIOLastPortsBooted = sysport; 877 p->RIOLastPortsBooted = sysport;
922 } 878 }
923 } 879 }
924 if (RtaType == TYPE_RTA16) { 880 if (RtaType == TYPE_RTA16) {
925 rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", 881 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
926 entry+1, entry2+1); 882 } else {
927 } else { 883 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
928 rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1); 884 }
885 return TRUE;
929 } 886 }
930 return TRUE;
931 }
932 } 887 }
933 888
934 rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n"); 889 rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
935 890
936 if ( Rup >= (ushort)MAX_RUP ) 891 if (Rup >= (ushort) MAX_RUP) {
937 { 892 /*
938 /* 893 ** It was a host that did the booting
939 ** It was a host that did the booting 894 */
940 */ 895 MyType = "Host";
941 MyType = "Host"; 896 MyName = HostP->Name;
942 MyName = HostP->Name; 897 } else {
943 } 898 /*
944 else 899 ** It was an RTA that did the booting
945 { 900 */
946 /* 901 MyType = "RTA";
947 ** It was an RTA that did the booting 902 MyName = HostP->Mapping[Rup].Name;
948 */
949 MyType = "RTA";
950 MyName = HostP->Mapping[Rup].Name;
951 } 903 }
952 MyLink = RBYTE(PktCmdP->LinkNum); 904 MyLink = RBYTE(PktCmdP->LinkNum);
953 905
954 /* 906 /*
955 ** There is no SLOT_IN_USE entry for this RTA attached to the current 907 ** There is no SLOT_IN_USE entry for this RTA attached to the current
956 ** host card in the driver table. 908 ** host card in the driver table.
957 ** 909 **
958 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the 910 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
959 ** current host card in the driver table. 911 ** current host card in the driver table.
960 ** 912 **
961 ** If we find one, then we re-use that slot. 913 ** If we find one, then we re-use that slot.
962 */ 914 */
963 for ( entry=0; entry<MAX_RUP; entry++ ) 915 for (entry = 0; entry < MAX_RUP; entry++) {
964 { 916 if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
965 if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && 917 if (RtaType == TYPE_RTA16) {
966 (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) ) 918 entry2 = HostP->Mapping[entry].ID2 - 1;
967 { 919 if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
968 if (RtaType == TYPE_RTA16) 920 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
969 { 921 else
970 entry2 = HostP->Mapping[entry].ID2 - 1; 922 continue;
971 if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && 923 } else
972 (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) ) 924 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
973 rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", 925 if (!p->RIONoMessage)
974 entry, entry2); 926 cprintf("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
975 else 927 return TRUE;
976 continue;
977 } 928 }
978 else
979 rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry);
980 if (! p->RIONoMessage)
981 cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
982 return TRUE;
983 }
984 } 929 }
985 930
986 /* 931 /*
987 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA 932 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
988 ** attached to the current host card in the driver table. 933 ** attached to the current host card in the driver table.
989 ** 934 **
990 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another 935 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
991 ** host for this RTA in the driver table. 936 ** host for this RTA in the driver table.
992 ** 937 **
993 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA 938 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
994 ** entry from the other host and add it to this host (using some of 939 ** entry from the other host and add it to this host (using some of
995 ** the functions from table.c which do this). 940 ** the functions from table.c which do this).
996 ** For a SLOT_TENTATIVE entry on another host, we must cope with the 941 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
997 ** following scenario: 942 ** following scenario:
998 ** 943 **
999 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry 944 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
1000 ** in table) 945 ** in table)
1001 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE 946 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
1002 ** entries) 947 ** entries)
1003 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) 948 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
1004 ** + Unplug RTA and plug back into host A. 949 ** + Unplug RTA and plug back into host A.
1005 ** + Configure RTA on host A. We now have the same RTA configured 950 ** + Configure RTA on host A. We now have the same RTA configured
1006 ** with different ports on two different hosts. 951 ** with different ports on two different hosts.
1007 */ 952 */
1008 rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq ); 953 rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
1009 found = 0; 954 found = 0;
1010 Flag = 0; /* Convince the compiler this variable is initialized */ 955 Flag = 0; /* Convince the compiler this variable is initialized */
1011 for ( host = 0; !found && (host < p->RIONumHosts); host++ ) 956 for (host = 0; !found && (host < p->RIONumHosts); host++) {
1012 { 957 for (rta = 0; rta < MAX_RUP; rta++) {
1013 for ( rta=0; rta<MAX_RUP; rta++ ) 958 if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
1014 { 959 Flag = p->RIOHosts[host].Mapping[rta].Flags;
1015 if ((p->RIOHosts[host].Mapping[rta].Flags & 960 MapP = &p->RIOHosts[host].Mapping[rta];
1016 (SLOT_IN_USE | SLOT_TENTATIVE)) && 961 if (RtaType == TYPE_RTA16) {
1017 (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq)) 962 MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
1018 { 963 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
1019 Flag = p->RIOHosts[host].Mapping[rta].Flags; 964 } else
1020 MapP = &p->RIOHosts[host].Mapping[rta]; 965 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
1021 if (RtaType == TYPE_RTA16) 966 found = 1;
1022 { 967 break;
1023 MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; 968 }
1024 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n",
1025 rta+1, MapP->ID2, p->RIOHosts[host].Name);
1026 }
1027 else
1028 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n",
1029 rta+1, p->RIOHosts[host].Name);
1030 found = 1;
1031 break;
1032 } 969 }
1033 }
1034 } 970 }
1035 971
1036 /* 972 /*
1037 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA 973 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1038 ** attached to the current host card in the driver table. 974 ** attached to the current host card in the driver table.
1039 ** 975 **
1040 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on 976 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
1041 ** another host for this RTA in the driver table... 977 ** another host for this RTA in the driver table...
1042 ** 978 **
1043 ** Check for a SLOT_IN_USE entry for this RTA in the config table. 979 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
1044 */ 980 */
1045 if ( !MapP ) 981 if (!MapP) {
1046 { 982 rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
1047 rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq); 983 for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
1048 for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ ) 984 rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
1049 { 985
1050 rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)", 986 if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
1051 rta, 987 MapP = &p->RIOSavedTable[rta];
1052 p->RIOSavedTable[rta].RtaUniqueNum); 988 Flag = p->RIOSavedTable[rta].Flags;
1053 989 if (RtaType == TYPE_RTA16) {
1054 if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && 990 for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
1055 (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) ) 991 if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
1056 { 992 break;
1057 MapP = &p->RIOSavedTable[rta]; 993 }
1058 Flag = p->RIOSavedTable[rta].Flags; 994 MapP2 = &p->RIOSavedTable[entry2];
1059 if (RtaType == TYPE_RTA16) 995 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
1060 { 996 } else
1061 for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; 997 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
1062 entry2++) 998 break;
1063 { 999 }
1064 if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
1065 break;
1066 }
1067 MapP2 = &p->RIOSavedTable[entry2];
1068 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n",
1069 rta, entry2);
1070 }
1071 else
1072 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
1073 break;
1074 } 1000 }
1075 }
1076 } 1001 }
1077 1002
1078 /* 1003 /*
1079 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA 1004 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1080 ** attached to the current host card in the driver table. 1005 ** attached to the current host card in the driver table.
1081 ** 1006 **
1082 ** We may have found a SLOT_IN_USE entry on another host for this 1007 ** We may have found a SLOT_IN_USE entry on another host for this
1083 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry 1008 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
1084 ** on another host for this RTA in the driver table. 1009 ** on another host for this RTA in the driver table.
1085 ** 1010 **
1086 ** Check the driver table for room to fit this newly discovered RTA. 1011 ** Check the driver table for room to fit this newly discovered RTA.
1087 ** RIOFindFreeID() first looks for free slots and if it does not 1012 ** RIOFindFreeID() first looks for free slots and if it does not
1088 ** find any free slots it will then attempt to oust any 1013 ** find any free slots it will then attempt to oust any
1089 ** tentative entry in the table. 1014 ** tentative entry in the table.
1090 */ 1015 */
1091 EmptySlot = 1; 1016 EmptySlot = 1;
1092 if (RtaType == TYPE_RTA16) 1017 if (RtaType == TYPE_RTA16) {
1093 { 1018 if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
1094 if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) 1019 RIODefaultName(p, HostP, entry);
1095 { 1020 FillSlot(entry, entry2, RtaUniq, HostP);
1096 RIODefaultName(p, HostP, entry); 1021 EmptySlot = 0;
1097 FillSlot(entry, entry2, RtaUniq, HostP); 1022 }
1098 EmptySlot = 0; 1023 } else {
1099 } 1024 if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
1100 } 1025 RIODefaultName(p, HostP, entry);
1101 else 1026 FillSlot(entry, 0, RtaUniq, HostP);
1102 { 1027 EmptySlot = 0;
1103 if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) 1028 }
1104 {
1105 RIODefaultName(p, HostP, entry);
1106 FillSlot(entry, 0, RtaUniq, HostP);
1107 EmptySlot = 0;
1108 }
1109 } 1029 }
1110 1030
1111 /* 1031 /*
1112 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA 1032 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1113 ** attached to the current host card in the driver table. 1033 ** attached to the current host card in the driver table.
1114 ** 1034 **
1115 ** If we found a SLOT_IN_USE entry on another host for this 1035 ** If we found a SLOT_IN_USE entry on another host for this
1116 ** RTA in the config or driver table, and there are enough free 1036 ** RTA in the config or driver table, and there are enough free
1117 ** slots in the driver table, then we need to move it over and 1037 ** slots in the driver table, then we need to move it over and
1118 ** delete it from the other host. 1038 ** delete it from the other host.
1119 ** If we found a SLOT_TENTATIVE entry on another host for this 1039 ** If we found a SLOT_TENTATIVE entry on another host for this
1120 ** RTA in the driver table, just delete the other host entry. 1040 ** RTA in the driver table, just delete the other host entry.
1121 */ 1041 */
1122 if (EmptySlot == 0) 1042 if (EmptySlot == 0) {
1123 { 1043 if (MapP) {
1124 if ( MapP ) 1044 if (Flag & SLOT_IN_USE) {
1125 { 1045 rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
1126 if (Flag & SLOT_IN_USE) 1046 HostP->Mapping[entry].SysPort = MapP->SysPort;
1127 { 1047 CCOPY(MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN);
1128 rio_dprintk (RIO_DEBUG_BOOT, 1048 HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
1129 "This RTA configured on another host - move entry to current host (1)\n");
1130 HostP->Mapping[entry].SysPort = MapP->SysPort;
1131 CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN );
1132 HostP->Mapping[entry].Flags =
1133 SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
1134#ifdef NEED_TO_FIX 1049#ifdef NEED_TO_FIX
1135 RIO_SV_BROADCAST(HostP->svFlags[entry]); 1050 RIO_SV_BROADCAST(HostP->svFlags[entry]);
1136#endif 1051#endif
1137 RIOReMapPorts( p, HostP, &HostP->Mapping[entry] ); 1052 RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
1138 if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted ) 1053 if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
1139 p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; 1054 p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
1140 if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted ) 1055 if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
1141 p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; 1056 p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
1142 rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name); 1057 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
1143 } 1058 } else {
1144 else 1059 rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
1145 { 1060 HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
1146 rio_dprintk (RIO_DEBUG_BOOT,
1147 "This RTA has a tentative entry on another host - delete that entry (1)\n");
1148 HostP->Mapping[entry].Flags =
1149 SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
1150#ifdef NEED_TO_FIX 1061#ifdef NEED_TO_FIX
1151 RIO_SV_BROADCAST(HostP->svFlags[entry]); 1062 RIO_SV_BROADCAST(HostP->svFlags[entry]);
1152#endif 1063#endif
1153 } 1064 }
1154 if (RtaType == TYPE_RTA16) 1065 if (RtaType == TYPE_RTA16) {
1155 { 1066 if (Flag & SLOT_IN_USE) {
1156 if (Flag & SLOT_IN_USE) 1067 HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1157 {
1158 HostP->Mapping[entry2].Flags = SLOT_IN_USE |
1159 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1160#ifdef NEED_TO_FIX 1068#ifdef NEED_TO_FIX
1161 RIO_SV_BROADCAST(HostP->svFlags[entry2]); 1069 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1162#endif 1070#endif
1163 HostP->Mapping[entry2].SysPort = MapP2->SysPort; 1071 HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1164 /* 1072 /*
1165 ** Map second block of ttys for 16 port RTA 1073 ** Map second block of ttys for 16 port RTA
1166 */ 1074 */
1167 RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] ); 1075 RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1168 if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) 1076 if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1169 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; 1077 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1170 if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) 1078 if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1171 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; 1079 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1172 rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", 1080 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1173 (int)HostP->Mapping[entry2].SysPort, 1081 } else
1174 HostP->Mapping[entry].Name); 1082 HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1175 }
1176 else
1177 HostP->Mapping[entry2].Flags = SLOT_TENTATIVE |
1178 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1179#ifdef NEED_TO_FIX 1083#ifdef NEED_TO_FIX
1180 RIO_SV_BROADCAST(HostP->svFlags[entry2]); 1084 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1181#endif 1085#endif
1182 bzero( (caddr_t)MapP2, sizeof(struct Map) ); 1086 bzero((caddr_t) MapP2, sizeof(struct Map));
1183 } 1087 }
1184 bzero( (caddr_t)MapP, sizeof(struct Map) ); 1088 bzero((caddr_t) MapP, sizeof(struct Map));
1185 if (! p->RIONoMessage) 1089 if (!p->RIONoMessage)
1186 cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A'); 1090 cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1187 } 1091 } else if (!p->RIONoMessage)
1188 else if (! p->RIONoMessage) 1092 cprintf("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1189 cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); 1093 RIOSetChange(p);
1190 RIOSetChange(p); 1094 return TRUE;
1191 return TRUE;
1192 } 1095 }
1193 1096
1194 /* 1097 /*
1195 ** There is no room in the driver table to make an entry for the 1098 ** There is no room in the driver table to make an entry for the
1196 ** booted RTA. Keep a note of its Uniq Num in the overflow table, 1099 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1197 ** so we can ignore it's ID requests. 1100 ** so we can ignore it's ID requests.
1198 */ 1101 */
1199 if (! p->RIONoMessage) 1102 if (!p->RIONoMessage)
1200 cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A'); 1103 cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1201 for ( entry=0; entry<HostP->NumExtraBooted; entry++ ) 1104 for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1202 { 1105 if (HostP->ExtraUnits[entry] == RtaUniq) {
1203 if ( HostP->ExtraUnits[entry] == RtaUniq ) 1106 /*
1204 { 1107 ** already got it!
1205 /* 1108 */
1206 ** already got it! 1109 return TRUE;
1207 */ 1110 }
1208 return TRUE;
1209 }
1210 } 1111 }
1211 /* 1112 /*
1212 ** If there is room, add the unit to the list of extras 1113 ** If there is room, add the unit to the list of extras
1213 */ 1114 */
1214 if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS ) 1115 if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1215 HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; 1116 HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1216 return TRUE; 1117 return TRUE;
1217} 1118}
1218 1119
@@ -1226,25 +1127,20 @@ static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, st
1226** We no longer support the RIOBootMode variable. It is all done from the 1127** We no longer support the RIOBootMode variable. It is all done from the
1227** "boot/noboot" field in the rio.cf file. 1128** "boot/noboot" field in the rio.cf file.
1228*/ 1129*/
1229int 1130int RIOBootOk(p, HostP, RtaUniq)
1230RIOBootOk(p, HostP, RtaUniq) 1131struct rio_info *p;
1231struct rio_info * p; 1132struct Host *HostP;
1232struct Host * HostP;
1233ulong RtaUniq; 1133ulong RtaUniq;
1234{ 1134{
1235 int Entry; 1135 int Entry;
1236 uint HostUniq = HostP->UniqueNum; 1136 uint HostUniq = HostP->UniqueNum;
1237 1137
1238 /* 1138 /*
1239 ** Search bindings table for RTA or its parent. 1139 ** Search bindings table for RTA or its parent.
1240 ** If it exists, return 0, else 1. 1140 ** If it exists, return 0, else 1.
1241 */ 1141 */
1242 for (Entry = 0; 1142 for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1243 ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 ); 1143 if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1244 Entry++)
1245 {
1246 if ( (p->RIOBindTab[Entry] == HostUniq) ||
1247 (p->RIOBindTab[Entry] == RtaUniq) )
1248 return 0; 1144 return 0;
1249 } 1145 }
1250 return 1; 1146 return 1;
@@ -1255,16 +1151,15 @@ ulong RtaUniq;
1255** slots tentative, and the second one RTA_SECOND_SLOT as well. 1151** slots tentative, and the second one RTA_SECOND_SLOT as well.
1256*/ 1152*/
1257 1153
1258void 1154void FillSlot(entry, entry2, RtaUniq, HostP)
1259FillSlot(entry, entry2, RtaUniq, HostP)
1260int entry; 1155int entry;
1261int entry2; 1156int entry2;
1262uint RtaUniq; 1157uint RtaUniq;
1263struct Host *HostP; 1158struct Host *HostP;
1264{ 1159{
1265 int link; 1160 int link;
1266 1161
1267 rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq); 1162 rio_dprintk(RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq);
1268 1163
1269 HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); 1164 HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1270 HostP->Mapping[entry].SysPort = NO_PORT; 1165 HostP->Mapping[entry].SysPort = NO_PORT;
@@ -1273,8 +1168,7 @@ struct Host *HostP;
1273 HostP->Mapping[entry].ID = entry + 1; 1168 HostP->Mapping[entry].ID = entry + 1;
1274 HostP->Mapping[entry].ID2 = 0; 1169 HostP->Mapping[entry].ID2 = 0;
1275 if (entry2) { 1170 if (entry2) {
1276 HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | 1171 HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1277 SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1278 HostP->Mapping[entry2].SysPort = NO_PORT; 1172 HostP->Mapping[entry2].SysPort = NO_PORT;
1279 HostP->Mapping[entry2].RtaUniqueNum = RtaUniq; 1173 HostP->Mapping[entry2].RtaUniqueNum = RtaUniq;
1280 HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum; 1174 HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum;
@@ -1284,10 +1178,10 @@ struct Host *HostP;
1284 HostP->Mapping[entry].ID2 = entry2 + 1; 1178 HostP->Mapping[entry].ID2 = entry2 + 1;
1285 } 1179 }
1286 /* 1180 /*
1287 ** Must set these up, so that utilities show 1181 ** Must set these up, so that utilities show
1288 ** topology of 16 port RTAs correctly 1182 ** topology of 16 port RTAs correctly
1289 */ 1183 */
1290 for ( link=0; link<LINKS_PER_UNIT; link++ ) { 1184 for (link = 0; link < LINKS_PER_UNIT; link++) {
1291 HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; 1185 HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1292 HostP->Mapping[entry].Topology[link].Link = NO_LINK; 1186 HostP->Mapping[entry].Topology[link].Link = NO_LINK;
1293 if (entry2) { 1187 if (entry2) {
@@ -1296,4 +1190,3 @@ struct Host *HostP;
1296 } 1190 }
1297 } 1191 }
1298} 1192}
1299