aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/rio/rioboot.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/rio/rioboot.c')
-rw-r--r--drivers/char/rio/rioboot.c1360
1 files changed, 1360 insertions, 0 deletions
diff --git a/drivers/char/rio/rioboot.c b/drivers/char/rio/rioboot.c
new file mode 100644
index 000000000000..a8be11dfcba3
--- /dev/null
+++ b/drivers/char/rio/rioboot.c
@@ -0,0 +1,1360 @@
1/*
2** -----------------------------------------------------------------------------
3**
4** Perle Specialix driver for Linux
5** Ported from existing RIO Driver for SCO sources.
6 *
7 * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22**
23** Module : rioboot.c
24** SID : 1.3
25** Last Modified : 11/6/98 10:33:36
26** Retrieved : 11/6/98 10:33:48
27**
28** ident @(#)rioboot.c 1.3
29**
30** -----------------------------------------------------------------------------
31*/
32
33#ifdef SCCS_LABELS
34static char *_rioboot_c_sccs_ = "@(#)rioboot.c 1.3";
35#endif
36
37#include <linux/module.h>
38#include <linux/slab.h>
39#include <linux/errno.h>
40#include <linux/interrupt.h>
41#include <asm/io.h>
42#include <asm/system.h>
43#include <asm/string.h>
44#include <asm/semaphore.h>
45
46
47#include <linux/termios.h>
48#include <linux/serial.h>
49
50#include <linux/generic_serial.h>
51
52
53
54#include "linux_compat.h"
55#include "rio_linux.h"
56#include "typdef.h"
57#include "pkt.h"
58#include "daemon.h"
59#include "rio.h"
60#include "riospace.h"
61#include "top.h"
62#include "cmdpkt.h"
63#include "map.h"
64#include "riotypes.h"
65#include "rup.h"
66#include "port.h"
67#include "riodrvr.h"
68#include "rioinfo.h"
69#include "func.h"
70#include "errors.h"
71#include "pci.h"
72
73#include "parmmap.h"
74#include "unixrup.h"
75#include "board.h"
76#include "host.h"
77#include "error.h"
78#include "phb.h"
79#include "link.h"
80#include "cmdblk.h"
81#include "route.h"
82
83static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP );
84
85static uchar
86RIOAtVec2Ctrl[] =
87{
88 /* 0 */ INTERRUPT_DISABLE,
89 /* 1 */ INTERRUPT_DISABLE,
90 /* 2 */ INTERRUPT_DISABLE,
91 /* 3 */ INTERRUPT_DISABLE,
92 /* 4 */ INTERRUPT_DISABLE,
93 /* 5 */ INTERRUPT_DISABLE,
94 /* 6 */ INTERRUPT_DISABLE,
95 /* 7 */ INTERRUPT_DISABLE,
96 /* 8 */ INTERRUPT_DISABLE,
97 /* 9 */ IRQ_9|INTERRUPT_ENABLE,
98 /* 10 */ INTERRUPT_DISABLE,
99 /* 11 */ IRQ_11|INTERRUPT_ENABLE,
100 /* 12 */ IRQ_12|INTERRUPT_ENABLE,
101 /* 13 */ INTERRUPT_DISABLE,
102 /* 14 */ INTERRUPT_DISABLE,
103 /* 15 */ IRQ_15|INTERRUPT_ENABLE
104};
105
106/*
107** Load in the RTA boot code.
108*/
109int
110RIOBootCodeRTA(p, rbp)
111struct rio_info * p;
112struct DownLoad * rbp;
113{
114 int offset;
115
116 func_enter ();
117
118 /* Linux doesn't allow you to disable interrupts during a
119 "copyin". (Crash when a pagefault occurs). */
120 /* disable(oldspl); */
121
122 rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP);
123
124 /*
125 ** Check that we have set asside enough memory for this
126 */
127 if ( rbp->Count > SIXTY_FOUR_K ) {
128 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
129 p->RIOError.Error = HOST_FILE_TOO_LARGE;
130 /* restore(oldspl); */
131 func_exit ();
132 return -ENOMEM;
133 }
134
135 if ( p->RIOBooting ) {
136 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
137 p->RIOError.Error = BOOT_IN_PROGRESS;
138 /* restore(oldspl); */
139 func_exit ();
140 return -EBUSY;
141 }
142
143 /*
144 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
145 ** so calculate how far we have to move the data up the buffer
146 ** to achieve this.
147 */
148 offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) %
149 RTA_BOOT_DATA_SIZE;
150
151 /*
152 ** Be clean, and clear the 'unused' portion of the boot buffer,
153 ** because it will (eventually) be part of the Rta run time environment
154 ** and so should be zeroed.
155 */
156 bzero( (caddr_t)p->RIOBootPackets, offset );
157
158 /*
159 ** Copy the data from user space.
160 */
161
162 if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset,
163 rbp->Count) ==COPYFAIL ) {
164 rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n");
165 p->RIOError.Error = COPYIN_FAILED;
166 /* restore(oldspl); */
167 func_exit ();
168 return -EFAULT;
169 }
170
171 /*
172 ** Make sure that our copy of the size includes that offset we discussed
173 ** earlier.
174 */
175 p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE;
176 p->RIOBootCount = rbp->Count;
177
178 /* restore(oldspl); */
179 func_exit();
180 return 0;
181}
182
183void rio_start_card_running (struct Host * HostP)
184{
185 func_enter ();
186
187 switch ( HostP->Type ) {
188 case RIO_AT:
189 rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n");
190 WBYTE(HostP->Control,
191 BOOT_FROM_RAM | EXTERNAL_BUS_ON
192 | HostP->Mode
193 | RIOAtVec2Ctrl[HostP->Ivec & 0xF] );
194 break;
195
196#ifdef FUTURE_RELEASE
197 case RIO_MCA:
198 /*
199 ** MCA handles IRQ vectors differently, so we don't write
200 ** them to this register.
201 */
202 rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n");
203 WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode);
204 break;
205
206 case RIO_EISA:
207 /*
208 ** EISA is totally different and expects OUTBZs to turn it on.
209 */
210 rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n");
211 OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM );
212 break;
213#endif
214
215 case RIO_PCI:
216 /*
217 ** PCI is much the same as MCA. Everything is once again memory
218 ** mapped, so we are writing to memory registers instead of io
219 ** ports.
220 */
221 rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n");
222 WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode);
223 break;
224 default:
225 rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
226 break;
227 }
228/*
229 printk (KERN_INFO "Done with starting the card\n");
230 func_exit ();
231*/
232 return;
233}
234
235/*
236** Load in the host boot code - load it directly onto all halted hosts
237** of the correct type.
238**
239** Put your rubber pants on before messing with this code - even the magic
240** numbers have trouble understanding what they are doing here.
241*/
242int
243RIOBootCodeHOST(p, rbp)
244struct rio_info * p;
245register struct DownLoad *rbp;
246{
247 register struct Host *HostP;
248 register caddr_t Cad;
249 register PARM_MAP *ParmMapP;
250 register int RupN;
251 int PortN;
252 uint host;
253 caddr_t StartP;
254 BYTE *DestP;
255 int wait_count;
256 ushort OldParmMap;
257 ushort offset; /* It is very important that this is a ushort */
258 /* uint byte; */
259 caddr_t DownCode = NULL;
260 unsigned long flags;
261
262 HostP = NULL; /* Assure the compiler we've initialized it */
263 for ( host=0; host<p->RIONumHosts; host++ ) {
264 rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host);
265 HostP = &p->RIOHosts[host];
266
267 rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
268 HostP->Type, HostP->Mode, HostP->Ivec);
269
270
271 if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) {
272 rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host);
273 continue;
274 }
275
276 /*
277 ** Grab a 32 bit pointer to the card.
278 */
279 Cad = HostP->Caddr;
280
281 /*
282 ** We are going to (try) and load in rbp->Count bytes.
283 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
284 ** Therefore, we need to start copying at address
285 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
286 */
287 StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count];
288
289 rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad );
290 rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP);
291 rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
292 rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
293
294 if ( p->RIOConf.HostLoadBase < rbp->Count ) {
295 rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n");
296 p->RIOError.Error = HOST_FILE_TOO_LARGE;
297 func_exit ();
298 return -EFBIG;
299 }
300 /*
301 ** Ensure that the host really is stopped.
302 ** Disable it's external bus & twang its reset line.
303 */
304 RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );
305
306 /*
307 ** Copy the data directly from user space to the SRAM.
308 ** This ain't going to be none too clever if the download
309 ** code is bigger than this segment.
310 */
311 rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n");
312
313 /*
314 ** PCI hostcard can't cope with 32 bit accesses and so need to copy
315 ** data to a local buffer, and then dripfeed the card.
316 */
317 if ( HostP->Type == RIO_PCI ) {
318 /* int offset; */
319
320 DownCode = sysbrk(rbp->Count);
321 if ( !DownCode ) {
322 rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n");
323 p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
324 func_exit ();
325 return -ENOMEM;
326 }
327 bzero(DownCode, rbp->Count);
328
329 if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) {
330 rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
331 sysfree( DownCode, rbp->Count );
332 p->RIOError.Error = COPYIN_FAILED;
333 func_exit ();
334 return -EFAULT;
335 }
336
337 HostP->Copy( DownCode, StartP, rbp->Count );
338
339 sysfree( DownCode, rbp->Count );
340 }
341 else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) {
342 rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
343 p->RIOError.Error = COPYIN_FAILED;
344 func_exit ();
345 return -EFAULT;
346 }
347
348 rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n");
349
350 /*
351 ** S T O P !
352 **
353 ** Upto this point the code has been fairly rational, and possibly
354 ** even straight forward. What follows is a pile of crud that will
355 ** magically turn into six bytes of transputer assembler. Normally
356 ** you would expect an array or something, but, being me, I have
357 ** chosen [been told] to use a technique whereby the startup code
358 ** will be correct if we change the loadbase for the code. Which
359 ** brings us onto another issue - the loadbase is the *end* of the
360 ** code, not the start.
361 **
362 ** If I were you I wouldn't start from here.
363 */
364
365 /*
366 ** We now need to insert a short boot section into
367 ** the memory at the end of Sram2. This is normally (de)composed
368 ** of the last eight bytes of the download code. The
369 ** download has been assembled/compiled to expect to be
370 ** loaded from 0x7FFF downwards. We have loaded it
371 ** at some other address. The startup code goes into the small
372 ** ram window at Sram2, in the last 8 bytes, which are really
373 ** at addresses 0x7FF8-0x7FFF.
374 **
375 ** If the loadbase is, say, 0x7C00, then we need to branch to
376 ** address 0x7BFE to run the host.bin startup code. We assemble
377 ** this jump manually.
378 **
379 ** The two byte sequence 60 08 is loaded into memory at address
380 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
381 ** which adds '0' to the .O register, complements .O, and then shifts
382 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
383 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
384 ** location. Now, the branch starts from the value of .PC (or .IP or
385 ** whatever the bloody register is called on this chip), and the .PC
386 ** will be pointing to the location AFTER the branch, in this case
387 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
388 **
389 ** A long branch is coded at 0x7FF8. This consists of loading a four
390 ** byte offset into .O using nfix (as above) and pfix operators. The
391 ** pfix operates in exactly the same way as the nfix operator, but
392 ** without the complement operation. The offset, of course, must be
393 ** relative to the address of the byte AFTER the branch instruction,
394 ** which will be (urm) 0x7FFC, so, our final destination of the branch
395 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
396 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
397 ** is the first byte of the initial two byte short local branch of the
398 ** download code).
399 **
400 ** To code a jump from 0x7FFC (which is where the branch will start
401 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
402 ** 0x7BFE.
403 ** This will be coded as four bytes:
404 ** 60 2C 20 02
405 ** being nfix .O+0
406 ** pfix .O+C
407 ** pfix .O+0
408 ** jump .O+2
409 **
410 ** The nfix operator is used, so that the startup code will be
411 ** compatible with the whole Tp family. (lies, damn lies, it'll never
412 ** work in a month of Sundays).
413 **
414 ** The nfix nyble is the 1s complement of the nyble value you
415 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
416 */
417
418
419 /*
420 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
421 ** to 0x7FFE at reset time, and starts executing. This is
422 ** a short branch to 0x7FF8, where a long branch is coded.
423 */
424
425 DestP = (BYTE *)&Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
426
427#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
428#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
429#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
430
431 /*
432 ** 0x7FFC is the address of the location following the last byte of
433 ** the four byte jump instruction.
434 ** READ THE ABOVE COMMENTS
435 **
436 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
437 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
438 ** cos I don't understand 2's complement).
439 */
440 offset = (p->RIOConf.HostLoadBase-2)-0x7FFC;
441 WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) );
442 WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) );
443 WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) );
444 WBYTE( DestP[3] , JUMP( offset & 0xF) );
445
446 WBYTE( DestP[6] , NFIX(0) );
447 WBYTE( DestP[7] , JUMP(8) );
448
449 rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
450 rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset);
451
452 /*
453 ** Flag what is going on
454 */
455 HostP->Flags &= ~RUN_STATE;
456 HostP->Flags |= RC_STARTUP;
457
458 /*
459 ** Grab a copy of the current ParmMap pointer, so we
460 ** can tell when it has changed.
461 */
462 OldParmMap = RWORD(HostP->__ParmMapR);
463
464 rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap);
465
466 /*
467 ** And start it running (I hope).
468 ** As there is nothing dodgy or obscure about the
469 ** above code, this is guaranteed to work every time.
470 */
471 rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
472 HostP->Type, HostP->Mode, HostP->Ivec);
473
474 rio_start_card_running(HostP);
475
476 rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n");
477
478 /*
479 ** Now, wait for upto five seconds for the Tp to setup the parmmap
480 ** pointer:
481 */
482 for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&&
483 (RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) {
484 rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR));
485 delay(HostP, HUNDRED_MS);
486
487 }
488
489 /*
490 ** If the parmmap pointer is unchanged, then the host code
491 ** has crashed & burned in a really spectacular way
492 */
493 if ( RWORD(HostP->__ParmMapR) == OldParmMap ) {
494 rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR));
495 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
496
497#define HOST_DISABLE \
498 HostP->Flags &= ~RUN_STATE; \
499 HostP->Flags |= RC_STUFFED; \
500 RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\
501 continue
502
503 HOST_DISABLE;
504 }
505
506 rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
507
508 /*
509 ** Well, the board thought it was OK, and setup its parmmap
510 ** pointer. For the time being, we will pretend that this
511 ** board is running, and check out what the error flag says.
512 */
513
514 /*
515 ** Grab a 32 bit pointer to the parmmap structure
516 */
517 ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR));
518 rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
519 ParmMapP = (PARM_MAP *)((unsigned long)Cad +
520 (unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF));
521 rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
522
523 /*
524 ** The links entry should be 0xFFFF; we set it up
525 ** with a mask to say how many PHBs to use, and
526 ** which links to use.
527 */
528 if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) {
529 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
530 rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links));
531 HOST_DISABLE;
532 }
533
534 WWORD(ParmMapP->links , RIO_LINK_ENABLE);
535
536 /*
537 ** now wait for the card to set all the parmmap->XXX stuff
538 ** this is a wait of upto two seconds....
539 */
540 rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime);
541 HostP->timeout_id = 0;
542 for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) &&
543 !RWORD(ParmMapP->init_done); wait_count++ ) {
544 rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n");
545 delay(HostP, HUNDRED_MS);
546 }
547 rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n");
548
549 if (RWORD(ParmMapP->error) != E_NO_ERROR ||
550 !RWORD(ParmMapP->init_done) ) {
551 rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
552 rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
553 HOST_DISABLE;
554 }
555
556 rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n");
557
558 /*
559 ** It runs! It runs!
560 */
561 rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum);
562
563 /*
564 ** set the time period between interrupts.
565 */
566 WWORD(ParmMapP->timer, (short)p->RIOConf.Timer );
567
568 /*
569 ** Translate all the 16 bit pointers in the __ParmMapR into
570 ** 32 bit pointers for the driver.
571 */
572 HostP->ParmMapP = ParmMapP;
573 HostP->PhbP = (PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr));
574 HostP->RupP = (RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups));
575 HostP->PhbNumP = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr));
576 HostP->LinkStrP = (LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr));
577
578 /*
579 ** point the UnixRups at the real Rups
580 */
581 for ( RupN = 0; RupN<MAX_RUP; RupN++ ) {
582 HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
583 HostP->UnixRups[RupN].Id = RupN+1;
584 HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
585 spin_lock_init(&HostP->UnixRups[RupN].RupLock);
586 }
587
588 for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) {
589 HostP->UnixRups[RupN+MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
590 HostP->UnixRups[RupN+MAX_RUP].Id = 0;
591 HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT;
592 spin_lock_init(&HostP->UnixRups[RupN+MAX_RUP].RupLock);
593 }
594
595 /*
596 ** point the PortP->Phbs at the real Phbs
597 */
598 for ( PortN=p->RIOFirstPortsMapped;
599 PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) {
600 if ( p->RIOPortp[PortN]->HostP == HostP ) {
601 struct Port *PortP = p->RIOPortp[PortN];
602 struct PHB *PhbP;
603 /* int oldspl; */
604
605 if ( !PortP->Mapped )
606 continue;
607
608 PhbP = &HostP->PhbP[PortP->HostPort];
609 rio_spin_lock_irqsave(&PortP->portSem, flags);
610
611 PortP->PhbP = PhbP;
612
613 PortP->TxAdd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add));
614 PortP->TxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start));
615 PortP->TxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end));
616 PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove));
617 PortP->RxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start));
618 PortP->RxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end));
619
620 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
621 /*
622 ** point the UnixRup at the base SysPort
623 */
624 if ( !(PortN % PORTS_PER_RTA) )
625 HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
626 }
627 }
628
629 rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n");
630 /*
631 ** last thing - show the world that everything is in place
632 */
633 HostP->Flags &= ~RUN_STATE;
634 HostP->Flags |= RC_RUNNING;
635 }
636 /*
637 ** MPX always uses a poller. This is actually patched into the system
638 ** configuration and called directly from each clock tick.
639 **
640 */
641 p->RIOPolling = 1;
642
643 p->RIOSystemUp++;
644
645 rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
646 func_exit ();
647 return 0;
648}
649
650
651
652/*
653** Boot an RTA. If we have successfully processed this boot, then
654** return 1. If we havent, then return 0.
655*/
656int
657RIOBootRup( p, Rup, HostP, PacketP)
658struct rio_info * p;
659uint Rup;
660struct Host *HostP;
661struct PKT *PacketP;
662{
663 struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data;
664 struct PktCmd_M *PktReplyP;
665 struct CmdBlk *CmdBlkP;
666 uint sequence;
667
668#ifdef CHECK
669 CheckHost(Host);
670 CheckRup(Rup);
671 CheckHostP(HostP);
672 CheckPacketP(PacketP);
673#endif
674
675 /*
676 ** If we haven't been told what to boot, we can't boot it.
677 */
678 if ( p->RIONumBootPkts == 0 ) {
679 rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n");
680 return 0;
681 }
682
683 /* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */
684 /* ShowPacket( DBG_BOOT, PacketP ); */
685
686 /*
687 ** Special case of boot completed - if we get one of these then we
688 ** don't need a command block. For all other cases we do, so handle
689 ** this first and then get a command block, then handle every other
690 ** case, relinquishing the command block if disaster strikes!
691 */
692 if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) &&
693 (RBYTE(PktCmdP->Command)==BOOT_COMPLETED) )
694 return RIOBootComplete(p, HostP, Rup, PktCmdP );
695
696 /*
697 ** try to unhook a command block from the command free list.
698 */
699 if ( !(CmdBlkP = RIOGetCmdBlk()) ) {
700 rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
701 return 0;
702 }
703
704 /*
705 ** Fill in the default info on the command block
706 */
707 CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0;
708 CmdBlkP->Packet.dest_port = BOOT_RUP;
709 CmdBlkP->Packet.src_unit = 0;
710 CmdBlkP->Packet.src_port = BOOT_RUP;
711
712 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
713 PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data;
714
715 /*
716 ** process COMMANDS on the boot rup!
717 */
718 if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) {
719 /*
720 ** We only expect one type of command - a BOOT_REQUEST!
721 */
722 if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) {
723 rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n",
724 PktCmdP->Command,Rup,HostP-p->RIOHosts);
725 ShowPacket( DBG_BOOT, PacketP );
726 RIOFreeCmdBlk( CmdBlkP );
727 return 1;
728 }
729
730 /*
731 ** Build a Boot Sequence command block
732 **
733 ** 02.03.1999 ARG - ESIL 0820 fix
734 ** We no longer need to use "Boot Mode", we'll always allow
735 ** boot requests - the boot will not complete if the device
736 ** appears in the bindings table.
737 ** So, this conditional is not required ...
738 **
739 if (p->RIOBootMode == RC_BOOT_NONE)
740 **
741 ** If the system is in slave mode, and a boot request is
742 ** received, set command to BOOT_ABORT so that the boot
743 ** will not complete.
744 **
745 PktReplyP->Command = BOOT_ABORT;
746 else
747 **
748 ** We'll just (always) set the command field in packet reply
749 ** to allow an attempted boot sequence :
750 */
751 PktReplyP->Command = BOOT_SEQUENCE;
752
753 PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
754 PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
755 PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
756
757 CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
758
759 bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4);
760
761 rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n",
762 HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts,
763 p->RIOConf.RtaLoadBase);
764
765 /*
766 ** If this host is in slave mode, send the RTA an invalid boot
767 ** sequence command block to force it to kill the boot. We wait
768 ** for half a second before sending this packet to prevent the RTA
769 ** attempting to boot too often. The master host should then grab
770 ** the RTA and make it its own.
771 */
772 p->RIOBooting++;
773 RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
774 return 1;
775 }
776
777 /*
778 ** It is a request for boot data.
779 */
780 sequence = RWORD(PktCmdP->Sequence);
781
782 rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup);
783
784 if ( sequence >= p->RIONumBootPkts ) {
785 rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence,
786 p->RIONumBootPkts);
787 ShowPacket( DBG_BOOT, PacketP );
788 }
789
790 PktReplyP->Sequence = sequence;
791
792 bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ],
793 PktReplyP->BootData, RTA_BOOT_DATA_SIZE );
794
795 CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
796 ShowPacket( DBG_BOOT, &CmdBlkP->Packet );
797 RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
798 return 1;
799}
800
801/*
802** This function is called when an RTA been booted.
803** If booted by a host, HostP->HostUniqueNum is the booting host.
804** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
805** RtaUniq is the booted RTA.
806*/
807static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP )
808{
809 struct Map *MapP = NULL;
810 struct Map *MapP2 = NULL;
811 int Flag;
812 int found;
813 int host, rta;
814 int EmptySlot = -1;
815 int entry, entry2;
816 char *MyType, *MyName;
817 uint MyLink;
818 ushort RtaType;
819 uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) +
820 (RBYTE(PktCmdP->UniqNum[1]) << 8) +
821 (RBYTE(PktCmdP->UniqNum[2]) << 16) +
822 (RBYTE(PktCmdP->UniqNum[3]) << 24);
823
824 /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the
825 driver will never think that the RTA has booted... -- REW */
826 p->RIOBooting = 0;
827
828 rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
829
830 /*
831 ** Determine type of unit (16/8 port RTA).
832 */
833 RtaType = GetUnitType(RtaUniq);
834 if ( Rup >= (ushort)MAX_RUP ) {
835 rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n",
836 HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A');
837 } else {
838 rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n",
839 HostP->Mapping[Rup].Name, 8 * RtaType,
840 RBYTE(PktCmdP->LinkNum)+'A');
841 }
842
843 rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq);
844
845 if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) )
846 {
847 rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
848 return TRUE;
849 }
850
851 /*
852 ** If this RTA has just booted an RTA which doesn't belong to this
853 ** system, or the system is in slave mode, do not attempt to create
854 ** a new table entry for it.
855 */
856 if (!RIOBootOk(p, HostP, RtaUniq))
857 {
858 MyLink = RBYTE(PktCmdP->LinkNum);
859 if (Rup < (ushort) MAX_RUP)
860 {
861 /*
862 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
863 ** to hold off further attempts to boot on this link for 30
864 ** seconds.
865 */
866 if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink))
867 {
868 rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n",
869 'A' + MyLink);
870 }
871 }
872 else
873 {
874 /*
875 ** RtaUniq was booted by this host. Set the booting link
876 ** to hold off for 30 seconds to give another unit a
877 ** chance to boot it.
878 */
879 WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
880 }
881 rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n",
882 RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
883 return TRUE;
884 }
885
886 /*
887 ** Check for a SLOT_IN_USE entry for this RTA attached to the
888 ** current host card in the driver table.
889 **
890 ** If it exists, make a note that we have booted it. Other parts of
891 ** the driver are interested in this information at a later date,
892 ** in particular when the booting RTA asks for an ID for this unit,
893 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
894 ** to force an open on any ports that where previously open on this
895 ** unit.
896 */
897 for ( entry=0; entry<MAX_RUP; entry++ )
898 {
899 uint sysport;
900
901 if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) &&
902 (HostP->Mapping[entry].RtaUniqueNum==RtaUniq))
903 {
904 HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT;
905#if NEED_TO_FIX
906 RIO_SV_BROADCAST(HostP->svFlags[entry]);
907#endif
908 if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT )
909 {
910 if ( sysport < p->RIOFirstPortsBooted )
911 p->RIOFirstPortsBooted = sysport;
912 if ( sysport > p->RIOLastPortsBooted )
913 p->RIOLastPortsBooted = sysport;
914 /*
915 ** For a 16 port RTA, check the second bank of 8 ports
916 */
917 if (RtaType == TYPE_RTA16)
918 {
919 entry2 = HostP->Mapping[entry].ID2 - 1;
920 HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT;
921#if NEED_TO_FIX
922 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
923#endif
924 sysport = HostP->Mapping[entry2].SysPort;
925 if ( sysport < p->RIOFirstPortsBooted )
926 p->RIOFirstPortsBooted = sysport;
927 if ( sysport > p->RIOLastPortsBooted )
928 p->RIOLastPortsBooted = sysport;
929 }
930 }
931 if (RtaType == TYPE_RTA16) {
932 rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n",
933 entry+1, entry2+1);
934 } else {
935 rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1);
936 }
937 return TRUE;
938 }
939 }
940
941 rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n");
942
943 if ( Rup >= (ushort)MAX_RUP )
944 {
945 /*
946 ** It was a host that did the booting
947 */
948 MyType = "Host";
949 MyName = HostP->Name;
950 }
951 else
952 {
953 /*
954 ** It was an RTA that did the booting
955 */
956 MyType = "RTA";
957 MyName = HostP->Mapping[Rup].Name;
958 }
959#ifdef CHECK
960 CheckString(MyType);
961 CheckString(MyName);
962#endif
963
964 MyLink = RBYTE(PktCmdP->LinkNum);
965
966 /*
967 ** There is no SLOT_IN_USE entry for this RTA attached to the current
968 ** host card in the driver table.
969 **
970 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
971 ** current host card in the driver table.
972 **
973 ** If we find one, then we re-use that slot.
974 */
975 for ( entry=0; entry<MAX_RUP; entry++ )
976 {
977 if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) &&
978 (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) )
979 {
980 if (RtaType == TYPE_RTA16)
981 {
982 entry2 = HostP->Mapping[entry].ID2 - 1;
983 if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) &&
984 (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) )
985 rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n",
986 entry, entry2);
987 else
988 continue;
989 }
990 else
991 rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry);
992 if (! p->RIONoMessage)
993 cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
994 return TRUE;
995 }
996 }
997
998 /*
999 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1000 ** attached to the current host card in the driver table.
1001 **
1002 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
1003 ** host for this RTA in the driver table.
1004 **
1005 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
1006 ** entry from the other host and add it to this host (using some of
1007 ** the functions from table.c which do this).
1008 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
1009 ** following scenario:
1010 **
1011 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
1012 ** in table)
1013 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
1014 ** entries)
1015 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
1016 ** + Unplug RTA and plug back into host A.
1017 ** + Configure RTA on host A. We now have the same RTA configured
1018 ** with different ports on two different hosts.
1019 */
1020 rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq );
1021 found = 0;
1022 Flag = 0; /* Convince the compiler this variable is initialized */
1023 for ( host = 0; !found && (host < p->RIONumHosts); host++ )
1024 {
1025 for ( rta=0; rta<MAX_RUP; rta++ )
1026 {
1027 if ((p->RIOHosts[host].Mapping[rta].Flags &
1028 (SLOT_IN_USE | SLOT_TENTATIVE)) &&
1029 (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq))
1030 {
1031 Flag = p->RIOHosts[host].Mapping[rta].Flags;
1032 MapP = &p->RIOHosts[host].Mapping[rta];
1033 if (RtaType == TYPE_RTA16)
1034 {
1035 MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
1036 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n",
1037 rta+1, MapP->ID2, p->RIOHosts[host].Name);
1038 }
1039 else
1040 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n",
1041 rta+1, p->RIOHosts[host].Name);
1042 found = 1;
1043 break;
1044 }
1045 }
1046 }
1047
1048 /*
1049 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1050 ** attached to the current host card in the driver table.
1051 **
1052 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
1053 ** another host for this RTA in the driver table...
1054 **
1055 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
1056 */
1057 if ( !MapP )
1058 {
1059 rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq);
1060 for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ )
1061 {
1062 rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)",
1063 rta,
1064 p->RIOSavedTable[rta].RtaUniqueNum);
1065
1066 if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) &&
1067 (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) )
1068 {
1069 MapP = &p->RIOSavedTable[rta];
1070 Flag = p->RIOSavedTable[rta].Flags;
1071 if (RtaType == TYPE_RTA16)
1072 {
1073 for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES;
1074 entry2++)
1075 {
1076 if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
1077 break;
1078 }
1079 MapP2 = &p->RIOSavedTable[entry2];
1080 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n",
1081 rta, entry2);
1082 }
1083 else
1084 rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
1085 break;
1086 }
1087 }
1088 }
1089
1090 /*
1091 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1092 ** attached to the current host card in the driver table.
1093 **
1094 ** We may have found a SLOT_IN_USE entry on another host for this
1095 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
1096 ** on another host for this RTA in the driver table.
1097 **
1098 ** Check the driver table for room to fit this newly discovered RTA.
1099 ** RIOFindFreeID() first looks for free slots and if it does not
1100 ** find any free slots it will then attempt to oust any
1101 ** tentative entry in the table.
1102 */
1103 EmptySlot = 1;
1104 if (RtaType == TYPE_RTA16)
1105 {
1106 if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0)
1107 {
1108 RIODefaultName(p, HostP, entry);
1109 FillSlot(entry, entry2, RtaUniq, HostP);
1110 EmptySlot = 0;
1111 }
1112 }
1113 else
1114 {
1115 if (RIOFindFreeID(p, HostP, &entry, NULL) == 0)
1116 {
1117 RIODefaultName(p, HostP, entry);
1118 FillSlot(entry, 0, RtaUniq, HostP);
1119 EmptySlot = 0;
1120 }
1121 }
1122
1123 /*
1124 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1125 ** attached to the current host card in the driver table.
1126 **
1127 ** If we found a SLOT_IN_USE entry on another host for this
1128 ** RTA in the config or driver table, and there are enough free
1129 ** slots in the driver table, then we need to move it over and
1130 ** delete it from the other host.
1131 ** If we found a SLOT_TENTATIVE entry on another host for this
1132 ** RTA in the driver table, just delete the other host entry.
1133 */
1134 if (EmptySlot == 0)
1135 {
1136 if ( MapP )
1137 {
1138 if (Flag & SLOT_IN_USE)
1139 {
1140 rio_dprintk (RIO_DEBUG_BOOT,
1141 "This RTA configured on another host - move entry to current host (1)\n");
1142 HostP->Mapping[entry].SysPort = MapP->SysPort;
1143 CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN );
1144 HostP->Mapping[entry].Flags =
1145 SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
1146#if NEED_TO_FIX
1147 RIO_SV_BROADCAST(HostP->svFlags[entry]);
1148#endif
1149 RIOReMapPorts( p, HostP, &HostP->Mapping[entry] );
1150 if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted )
1151 p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
1152 if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted )
1153 p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
1154 rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name);
1155 }
1156 else
1157 {
1158 rio_dprintk (RIO_DEBUG_BOOT,
1159 "This RTA has a tentative entry on another host - delete that entry (1)\n");
1160 HostP->Mapping[entry].Flags =
1161 SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
1162#if NEED_TO_FIX
1163 RIO_SV_BROADCAST(HostP->svFlags[entry]);
1164#endif
1165 }
1166 if (RtaType == TYPE_RTA16)
1167 {
1168 if (Flag & SLOT_IN_USE)
1169 {
1170 HostP->Mapping[entry2].Flags = SLOT_IN_USE |
1171 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1172#if NEED_TO_FIX
1173 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1174#endif
1175 HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1176 /*
1177 ** Map second block of ttys for 16 port RTA
1178 */
1179 RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] );
1180 if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1181 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1182 if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1183 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1184 rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",
1185 (int)HostP->Mapping[entry2].SysPort,
1186 HostP->Mapping[entry].Name);
1187 }
1188 else
1189 HostP->Mapping[entry2].Flags = SLOT_TENTATIVE |
1190 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1191#if NEED_TO_FIX
1192 RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1193#endif
1194 bzero( (caddr_t)MapP2, sizeof(struct Map) );
1195 }
1196 bzero( (caddr_t)MapP, sizeof(struct Map) );
1197 if (! p->RIONoMessage)
1198 cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A');
1199 }
1200 else if (! p->RIONoMessage)
1201 cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
1202 RIOSetChange(p);
1203 return TRUE;
1204 }
1205
1206 /*
1207 ** There is no room in the driver table to make an entry for the
1208 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1209 ** so we can ignore it's ID requests.
1210 */
1211 if (! p->RIONoMessage)
1212 cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A');
1213 for ( entry=0; entry<HostP->NumExtraBooted; entry++ )
1214 {
1215 if ( HostP->ExtraUnits[entry] == RtaUniq )
1216 {
1217 /*
1218 ** already got it!
1219 */
1220 return TRUE;
1221 }
1222 }
1223 /*
1224 ** If there is room, add the unit to the list of extras
1225 */
1226 if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS )
1227 HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1228 return TRUE;
1229}
1230
1231
1232/*
1233** If the RTA or its host appears in the RIOBindTab[] structure then
1234** we mustn't boot the RTA and should return FALSE.
1235** This operation is slightly different from the other drivers for RIO
1236** in that this is designed to work with the new utilities
1237** not config.rio and is FAR SIMPLER.
1238** We no longer support the RIOBootMode variable. It is all done from the
1239** "boot/noboot" field in the rio.cf file.
1240*/
1241int
1242RIOBootOk(p, HostP, RtaUniq)
1243struct rio_info * p;
1244struct Host * HostP;
1245ulong RtaUniq;
1246{
1247 int Entry;
1248 uint HostUniq = HostP->UniqueNum;
1249
1250 /*
1251 ** Search bindings table for RTA or its parent.
1252 ** If it exists, return 0, else 1.
1253 */
1254 for (Entry = 0;
1255 ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 );
1256 Entry++)
1257 {
1258 if ( (p->RIOBindTab[Entry] == HostUniq) ||
1259 (p->RIOBindTab[Entry] == RtaUniq) )
1260 return 0;
1261 }
1262 return 1;
1263}
1264
1265/*
1266** Make an empty slot tentative. If this is a 16 port RTA, make both
1267** slots tentative, and the second one RTA_SECOND_SLOT as well.
1268*/
1269
1270void
1271FillSlot(entry, entry2, RtaUniq, HostP)
1272int entry;
1273int entry2;
1274uint RtaUniq;
1275struct Host *HostP;
1276{
1277 int link;
1278
1279 rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq);
1280
1281 HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1282 HostP->Mapping[entry].SysPort = NO_PORT;
1283 HostP->Mapping[entry].RtaUniqueNum = RtaUniq;
1284 HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum;
1285 HostP->Mapping[entry].ID = entry + 1;
1286 HostP->Mapping[entry].ID2 = 0;
1287 if (entry2) {
1288 HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT |
1289 SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1290 HostP->Mapping[entry2].SysPort = NO_PORT;
1291 HostP->Mapping[entry2].RtaUniqueNum = RtaUniq;
1292 HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum;
1293 HostP->Mapping[entry2].Name[0] = '\0';
1294 HostP->Mapping[entry2].ID = entry2 + 1;
1295 HostP->Mapping[entry2].ID2 = entry + 1;
1296 HostP->Mapping[entry].ID2 = entry2 + 1;
1297 }
1298 /*
1299 ** Must set these up, so that utilities show
1300 ** topology of 16 port RTAs correctly
1301 */
1302 for ( link=0; link<LINKS_PER_UNIT; link++ ) {
1303 HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1304 HostP->Mapping[entry].Topology[link].Link = NO_LINK;
1305 if (entry2) {
1306 HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1307 HostP->Mapping[entry2].Topology[link].Link = NO_LINK;
1308 }
1309 }
1310}
1311
1312#if 0
1313/*
1314 Function: This function is to disable the disk interrupt
1315 Returns : Nothing
1316*/
1317void
1318disable_interrupt(vector)
1319int vector;
1320{
1321 int ps;
1322 int val;
1323
1324 disable(ps);
1325 if (vector > 40) {
1326 val = 1 << (vector - 40);
1327 __outb(S8259+1, __inb(S8259+1) | val);
1328 }
1329 else {
1330 val = 1 << (vector - 32);
1331 __outb(M8259+1, __inb(M8259+1) | val);
1332 }
1333 restore(ps);
1334}
1335
1336/*
1337 Function: This function is to enable the disk interrupt
1338 Returns : Nothing
1339*/
1340void
1341enable_interrupt(vector)
1342int vector;
1343{
1344 int ps;
1345 int val;
1346
1347 disable(ps);
1348 if (vector > 40) {
1349 val = 1 << (vector - 40);
1350 val = ~val;
1351 __outb(S8259+1, __inb(S8259+1) & val);
1352 }
1353 else {
1354 val = 1 << (vector - 32);
1355 val = ~val;
1356 __outb(M8259+1, __inb(M8259+1) & val);
1357 }
1358 restore(ps);
1359}
1360#endif