diff options
Diffstat (limited to 'drivers/char/mmtimer.c')
-rw-r--r-- | drivers/char/mmtimer.c | 725 |
1 files changed, 725 insertions, 0 deletions
diff --git a/drivers/char/mmtimer.c b/drivers/char/mmtimer.c new file mode 100644 index 000000000000..58eddfdd3110 --- /dev/null +++ b/drivers/char/mmtimer.c | |||
@@ -0,0 +1,725 @@ | |||
1 | /* | ||
2 | * Intel Multimedia Timer device implementation for SGI SN platforms. | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. | ||
9 | * | ||
10 | * This driver exports an API that should be supportable by any HPET or IA-PC | ||
11 | * multimedia timer. The code below is currently specific to the SGI Altix | ||
12 | * SHub RTC, however. | ||
13 | * | ||
14 | * 11/01/01 - jbarnes - initial revision | ||
15 | * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion | ||
16 | * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE | ||
17 | * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt | ||
18 | * support via the posix timer interface | ||
19 | */ | ||
20 | |||
21 | #include <linux/types.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/ioctl.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/errno.h> | ||
27 | #include <linux/mm.h> | ||
28 | #include <linux/devfs_fs_kernel.h> | ||
29 | #include <linux/mmtimer.h> | ||
30 | #include <linux/miscdevice.h> | ||
31 | #include <linux/posix-timers.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | |||
34 | #include <asm/uaccess.h> | ||
35 | #include <asm/sn/addrs.h> | ||
36 | #include <asm/sn/intr.h> | ||
37 | #include <asm/sn/shub_mmr.h> | ||
38 | #include <asm/sn/nodepda.h> | ||
39 | #include <asm/sn/shubio.h> | ||
40 | |||
41 | MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); | ||
42 | MODULE_DESCRIPTION("SGI Altix RTC Timer"); | ||
43 | MODULE_LICENSE("GPL"); | ||
44 | |||
45 | /* name of the device, usually in /dev */ | ||
46 | #define MMTIMER_NAME "mmtimer" | ||
47 | #define MMTIMER_DESC "SGI Altix RTC Timer" | ||
48 | #define MMTIMER_VERSION "2.0" | ||
49 | |||
50 | #define RTC_BITS 55 /* 55 bits for this implementation */ | ||
51 | |||
52 | extern unsigned long sn_rtc_cycles_per_second; | ||
53 | |||
54 | #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) | ||
55 | |||
56 | #define rtc_time() (*RTC_COUNTER_ADDR) | ||
57 | |||
58 | static int mmtimer_ioctl(struct inode *inode, struct file *file, | ||
59 | unsigned int cmd, unsigned long arg); | ||
60 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); | ||
61 | |||
62 | /* | ||
63 | * Period in femtoseconds (10^-15 s) | ||
64 | */ | ||
65 | static unsigned long mmtimer_femtoperiod = 0; | ||
66 | |||
67 | static struct file_operations mmtimer_fops = { | ||
68 | .owner = THIS_MODULE, | ||
69 | .mmap = mmtimer_mmap, | ||
70 | .ioctl = mmtimer_ioctl, | ||
71 | }; | ||
72 | |||
73 | /* | ||
74 | * We only have comparison registers RTC1-4 currently available per | ||
75 | * node. RTC0 is used by SAL. | ||
76 | */ | ||
77 | #define NUM_COMPARATORS 3 | ||
78 | /* Check for an RTC interrupt pending */ | ||
79 | static int inline mmtimer_int_pending(int comparator) | ||
80 | { | ||
81 | if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & | ||
82 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) | ||
83 | return 1; | ||
84 | else | ||
85 | return 0; | ||
86 | } | ||
87 | /* Clear the RTC interrupt pending bit */ | ||
88 | static void inline mmtimer_clr_int_pending(int comparator) | ||
89 | { | ||
90 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), | ||
91 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); | ||
92 | } | ||
93 | |||
94 | /* Setup timer on comparator RTC1 */ | ||
95 | static void inline mmtimer_setup_int_0(u64 expires) | ||
96 | { | ||
97 | u64 val; | ||
98 | |||
99 | /* Disable interrupt */ | ||
100 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); | ||
101 | |||
102 | /* Initialize comparator value */ | ||
103 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); | ||
104 | |||
105 | /* Clear pending bit */ | ||
106 | mmtimer_clr_int_pending(0); | ||
107 | |||
108 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | | ||
109 | ((u64)cpu_physical_id(smp_processor_id()) << | ||
110 | SH_RTC1_INT_CONFIG_PID_SHFT); | ||
111 | |||
112 | /* Set configuration */ | ||
113 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); | ||
114 | |||
115 | /* Enable RTC interrupts */ | ||
116 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); | ||
117 | |||
118 | /* Initialize comparator value */ | ||
119 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); | ||
120 | |||
121 | |||
122 | } | ||
123 | |||
124 | /* Setup timer on comparator RTC2 */ | ||
125 | static void inline mmtimer_setup_int_1(u64 expires) | ||
126 | { | ||
127 | u64 val; | ||
128 | |||
129 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); | ||
130 | |||
131 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); | ||
132 | |||
133 | mmtimer_clr_int_pending(1); | ||
134 | |||
135 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | | ||
136 | ((u64)cpu_physical_id(smp_processor_id()) << | ||
137 | SH_RTC2_INT_CONFIG_PID_SHFT); | ||
138 | |||
139 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); | ||
140 | |||
141 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); | ||
142 | |||
143 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); | ||
144 | } | ||
145 | |||
146 | /* Setup timer on comparator RTC3 */ | ||
147 | static void inline mmtimer_setup_int_2(u64 expires) | ||
148 | { | ||
149 | u64 val; | ||
150 | |||
151 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); | ||
152 | |||
153 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); | ||
154 | |||
155 | mmtimer_clr_int_pending(2); | ||
156 | |||
157 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | | ||
158 | ((u64)cpu_physical_id(smp_processor_id()) << | ||
159 | SH_RTC3_INT_CONFIG_PID_SHFT); | ||
160 | |||
161 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); | ||
162 | |||
163 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); | ||
164 | |||
165 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * This function must be called with interrupts disabled and preemption off | ||
170 | * in order to insure that the setup succeeds in a deterministic time frame. | ||
171 | * It will check if the interrupt setup succeeded. | ||
172 | */ | ||
173 | static int inline mmtimer_setup(int comparator, unsigned long expires) | ||
174 | { | ||
175 | |||
176 | switch (comparator) { | ||
177 | case 0: | ||
178 | mmtimer_setup_int_0(expires); | ||
179 | break; | ||
180 | case 1: | ||
181 | mmtimer_setup_int_1(expires); | ||
182 | break; | ||
183 | case 2: | ||
184 | mmtimer_setup_int_2(expires); | ||
185 | break; | ||
186 | } | ||
187 | /* We might've missed our expiration time */ | ||
188 | if (rtc_time() < expires) | ||
189 | return 1; | ||
190 | |||
191 | /* | ||
192 | * If an interrupt is already pending then its okay | ||
193 | * if not then we failed | ||
194 | */ | ||
195 | return mmtimer_int_pending(comparator); | ||
196 | } | ||
197 | |||
198 | static int inline mmtimer_disable_int(long nasid, int comparator) | ||
199 | { | ||
200 | switch (comparator) { | ||
201 | case 0: | ||
202 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), | ||
203 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); | ||
204 | break; | ||
205 | case 1: | ||
206 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), | ||
207 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); | ||
208 | break; | ||
209 | case 2: | ||
210 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), | ||
211 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); | ||
212 | break; | ||
213 | default: | ||
214 | return -EFAULT; | ||
215 | } | ||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | #define TIMER_OFF 0xbadcabLL | ||
220 | |||
221 | /* There is one of these for each comparator */ | ||
222 | typedef struct mmtimer { | ||
223 | spinlock_t lock ____cacheline_aligned; | ||
224 | struct k_itimer *timer; | ||
225 | int i; | ||
226 | int cpu; | ||
227 | struct tasklet_struct tasklet; | ||
228 | } mmtimer_t; | ||
229 | |||
230 | /* | ||
231 | * Total number of comparators is comparators/node * MAX nodes/running kernel | ||
232 | */ | ||
233 | static mmtimer_t timers[NUM_COMPARATORS*MAX_COMPACT_NODES]; | ||
234 | |||
235 | /** | ||
236 | * mmtimer_ioctl - ioctl interface for /dev/mmtimer | ||
237 | * @inode: inode of the device | ||
238 | * @file: file structure for the device | ||
239 | * @cmd: command to execute | ||
240 | * @arg: optional argument to command | ||
241 | * | ||
242 | * Executes the command specified by @cmd. Returns 0 for success, < 0 for | ||
243 | * failure. | ||
244 | * | ||
245 | * Valid commands: | ||
246 | * | ||
247 | * %MMTIMER_GETOFFSET - Should return the offset (relative to the start | ||
248 | * of the page where the registers are mapped) for the counter in question. | ||
249 | * | ||
250 | * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) | ||
251 | * seconds | ||
252 | * | ||
253 | * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address | ||
254 | * specified by @arg | ||
255 | * | ||
256 | * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter | ||
257 | * | ||
258 | * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace | ||
259 | * | ||
260 | * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it | ||
261 | * in the address specified by @arg. | ||
262 | */ | ||
263 | static int mmtimer_ioctl(struct inode *inode, struct file *file, | ||
264 | unsigned int cmd, unsigned long arg) | ||
265 | { | ||
266 | int ret = 0; | ||
267 | |||
268 | switch (cmd) { | ||
269 | case MMTIMER_GETOFFSET: /* offset of the counter */ | ||
270 | /* | ||
271 | * SN RTC registers are on their own 64k page | ||
272 | */ | ||
273 | if(PAGE_SIZE <= (1 << 16)) | ||
274 | ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; | ||
275 | else | ||
276 | ret = -ENOSYS; | ||
277 | break; | ||
278 | |||
279 | case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ | ||
280 | if(copy_to_user((unsigned long __user *)arg, | ||
281 | &mmtimer_femtoperiod, sizeof(unsigned long))) | ||
282 | return -EFAULT; | ||
283 | break; | ||
284 | |||
285 | case MMTIMER_GETFREQ: /* frequency in Hz */ | ||
286 | if(copy_to_user((unsigned long __user *)arg, | ||
287 | &sn_rtc_cycles_per_second, | ||
288 | sizeof(unsigned long))) | ||
289 | return -EFAULT; | ||
290 | ret = 0; | ||
291 | break; | ||
292 | |||
293 | case MMTIMER_GETBITS: /* number of bits in the clock */ | ||
294 | ret = RTC_BITS; | ||
295 | break; | ||
296 | |||
297 | case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ | ||
298 | ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; | ||
299 | break; | ||
300 | |||
301 | case MMTIMER_GETCOUNTER: | ||
302 | if(copy_to_user((unsigned long __user *)arg, | ||
303 | RTC_COUNTER_ADDR, sizeof(unsigned long))) | ||
304 | return -EFAULT; | ||
305 | break; | ||
306 | default: | ||
307 | ret = -ENOSYS; | ||
308 | break; | ||
309 | } | ||
310 | |||
311 | return ret; | ||
312 | } | ||
313 | |||
314 | /** | ||
315 | * mmtimer_mmap - maps the clock's registers into userspace | ||
316 | * @file: file structure for the device | ||
317 | * @vma: VMA to map the registers into | ||
318 | * | ||
319 | * Calls remap_pfn_range() to map the clock's registers into | ||
320 | * the calling process' address space. | ||
321 | */ | ||
322 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) | ||
323 | { | ||
324 | unsigned long mmtimer_addr; | ||
325 | |||
326 | if (vma->vm_end - vma->vm_start != PAGE_SIZE) | ||
327 | return -EINVAL; | ||
328 | |||
329 | if (vma->vm_flags & VM_WRITE) | ||
330 | return -EPERM; | ||
331 | |||
332 | if (PAGE_SIZE > (1 << 16)) | ||
333 | return -ENOSYS; | ||
334 | |||
335 | vma->vm_flags |= (VM_IO | VM_SHM | VM_LOCKED ); | ||
336 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | ||
337 | |||
338 | mmtimer_addr = __pa(RTC_COUNTER_ADDR); | ||
339 | mmtimer_addr &= ~(PAGE_SIZE - 1); | ||
340 | mmtimer_addr &= 0xfffffffffffffffUL; | ||
341 | |||
342 | if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, | ||
343 | PAGE_SIZE, vma->vm_page_prot)) { | ||
344 | printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); | ||
345 | return -EAGAIN; | ||
346 | } | ||
347 | |||
348 | return 0; | ||
349 | } | ||
350 | |||
351 | static struct miscdevice mmtimer_miscdev = { | ||
352 | SGI_MMTIMER, | ||
353 | MMTIMER_NAME, | ||
354 | &mmtimer_fops | ||
355 | }; | ||
356 | |||
357 | static struct timespec sgi_clock_offset; | ||
358 | static int sgi_clock_period; | ||
359 | |||
360 | /* | ||
361 | * Posix Timer Interface | ||
362 | */ | ||
363 | |||
364 | static struct timespec sgi_clock_offset; | ||
365 | static int sgi_clock_period; | ||
366 | |||
367 | static int sgi_clock_get(clockid_t clockid, struct timespec *tp) | ||
368 | { | ||
369 | u64 nsec; | ||
370 | |||
371 | nsec = rtc_time() * sgi_clock_period | ||
372 | + sgi_clock_offset.tv_nsec; | ||
373 | tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec) | ||
374 | + sgi_clock_offset.tv_sec; | ||
375 | return 0; | ||
376 | }; | ||
377 | |||
378 | static int sgi_clock_set(clockid_t clockid, struct timespec *tp) | ||
379 | { | ||
380 | |||
381 | u64 nsec; | ||
382 | u64 rem; | ||
383 | |||
384 | nsec = rtc_time() * sgi_clock_period; | ||
385 | |||
386 | sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem); | ||
387 | |||
388 | if (rem <= tp->tv_nsec) | ||
389 | sgi_clock_offset.tv_nsec = tp->tv_sec - rem; | ||
390 | else { | ||
391 | sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; | ||
392 | sgi_clock_offset.tv_sec--; | ||
393 | } | ||
394 | return 0; | ||
395 | } | ||
396 | |||
397 | /* | ||
398 | * Schedule the next periodic interrupt. This function will attempt | ||
399 | * to schedule a periodic interrupt later if necessary. If the scheduling | ||
400 | * of an interrupt fails then the time to skip is lengthened | ||
401 | * exponentially in order to ensure that the next interrupt | ||
402 | * can be properly scheduled.. | ||
403 | */ | ||
404 | static int inline reschedule_periodic_timer(mmtimer_t *x) | ||
405 | { | ||
406 | int n; | ||
407 | struct k_itimer *t = x->timer; | ||
408 | |||
409 | t->it.mmtimer.clock = x->i; | ||
410 | t->it_overrun--; | ||
411 | |||
412 | n = 0; | ||
413 | do { | ||
414 | |||
415 | t->it.mmtimer.expires += t->it.mmtimer.incr << n; | ||
416 | t->it_overrun += 1 << n; | ||
417 | n++; | ||
418 | if (n > 20) | ||
419 | return 1; | ||
420 | |||
421 | } while (!mmtimer_setup(x->i, t->it.mmtimer.expires)); | ||
422 | |||
423 | return 0; | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * mmtimer_interrupt - timer interrupt handler | ||
428 | * @irq: irq received | ||
429 | * @dev_id: device the irq came from | ||
430 | * @regs: register state upon receipt of the interrupt | ||
431 | * | ||
432 | * Called when one of the comarators matches the counter, This | ||
433 | * routine will send signals to processes that have requested | ||
434 | * them. | ||
435 | * | ||
436 | * This interrupt is run in an interrupt context | ||
437 | * by the SHUB. It is therefore safe to locally access SHub | ||
438 | * registers. | ||
439 | */ | ||
440 | static irqreturn_t | ||
441 | mmtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
442 | { | ||
443 | int i; | ||
444 | mmtimer_t *base = timers + cpuid_to_cnodeid(smp_processor_id()) * | ||
445 | NUM_COMPARATORS; | ||
446 | unsigned long expires = 0; | ||
447 | int result = IRQ_NONE; | ||
448 | |||
449 | /* | ||
450 | * Do this once for each comparison register | ||
451 | */ | ||
452 | for (i = 0; i < NUM_COMPARATORS; i++) { | ||
453 | /* Make sure this doesn't get reused before tasklet_sched */ | ||
454 | spin_lock(&base[i].lock); | ||
455 | if (base[i].cpu == smp_processor_id()) { | ||
456 | if (base[i].timer) | ||
457 | expires = base[i].timer->it.mmtimer.expires; | ||
458 | /* expires test won't work with shared irqs */ | ||
459 | if ((mmtimer_int_pending(i) > 0) || | ||
460 | (expires && (expires < rtc_time()))) { | ||
461 | mmtimer_clr_int_pending(i); | ||
462 | tasklet_schedule(&base[i].tasklet); | ||
463 | result = IRQ_HANDLED; | ||
464 | } | ||
465 | } | ||
466 | spin_unlock(&base[i].lock); | ||
467 | expires = 0; | ||
468 | } | ||
469 | return result; | ||
470 | } | ||
471 | |||
472 | void mmtimer_tasklet(unsigned long data) { | ||
473 | mmtimer_t *x = (mmtimer_t *)data; | ||
474 | struct k_itimer *t = x->timer; | ||
475 | unsigned long flags; | ||
476 | |||
477 | if (t == NULL) | ||
478 | return; | ||
479 | |||
480 | /* Send signal and deal with periodic signals */ | ||
481 | spin_lock_irqsave(&t->it_lock, flags); | ||
482 | spin_lock(&x->lock); | ||
483 | /* If timer was deleted between interrupt and here, leave */ | ||
484 | if (t != x->timer) | ||
485 | goto out; | ||
486 | t->it_overrun = 0; | ||
487 | |||
488 | if (tasklist_lock.write_lock || posix_timer_event(t, 0) != 0) { | ||
489 | |||
490 | // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n"); | ||
491 | |||
492 | t->it_overrun++; | ||
493 | } | ||
494 | if(t->it.mmtimer.incr) { | ||
495 | /* Periodic timer */ | ||
496 | if (reschedule_periodic_timer(x)) { | ||
497 | printk(KERN_WARNING "mmtimer: unable to reschedule\n"); | ||
498 | x->timer = NULL; | ||
499 | } | ||
500 | } else { | ||
501 | /* Ensure we don't false trigger in mmtimer_interrupt */ | ||
502 | t->it.mmtimer.expires = 0; | ||
503 | } | ||
504 | t->it_overrun_last = t->it_overrun; | ||
505 | out: | ||
506 | spin_unlock(&x->lock); | ||
507 | spin_unlock_irqrestore(&t->it_lock, flags); | ||
508 | } | ||
509 | |||
510 | static int sgi_timer_create(struct k_itimer *timer) | ||
511 | { | ||
512 | /* Insure that a newly created timer is off */ | ||
513 | timer->it.mmtimer.clock = TIMER_OFF; | ||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | /* This does not really delete a timer. It just insures | ||
518 | * that the timer is not active | ||
519 | * | ||
520 | * Assumption: it_lock is already held with irq's disabled | ||
521 | */ | ||
522 | static int sgi_timer_del(struct k_itimer *timr) | ||
523 | { | ||
524 | int i = timr->it.mmtimer.clock; | ||
525 | cnodeid_t nodeid = timr->it.mmtimer.node; | ||
526 | mmtimer_t *t = timers + nodeid * NUM_COMPARATORS +i; | ||
527 | unsigned long irqflags; | ||
528 | |||
529 | if (i != TIMER_OFF) { | ||
530 | spin_lock_irqsave(&t->lock, irqflags); | ||
531 | mmtimer_disable_int(cnodeid_to_nasid(nodeid),i); | ||
532 | t->timer = NULL; | ||
533 | timr->it.mmtimer.clock = TIMER_OFF; | ||
534 | timr->it.mmtimer.expires = 0; | ||
535 | spin_unlock_irqrestore(&t->lock, irqflags); | ||
536 | } | ||
537 | return 0; | ||
538 | } | ||
539 | |||
540 | #define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC) | ||
541 | #define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec) | ||
542 | |||
543 | /* Assumption: it_lock is already held with irq's disabled */ | ||
544 | static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | ||
545 | { | ||
546 | |||
547 | if (timr->it.mmtimer.clock == TIMER_OFF) { | ||
548 | cur_setting->it_interval.tv_nsec = 0; | ||
549 | cur_setting->it_interval.tv_sec = 0; | ||
550 | cur_setting->it_value.tv_nsec = 0; | ||
551 | cur_setting->it_value.tv_sec =0; | ||
552 | return; | ||
553 | } | ||
554 | |||
555 | ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period); | ||
556 | ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period); | ||
557 | return; | ||
558 | } | ||
559 | |||
560 | |||
561 | static int sgi_timer_set(struct k_itimer *timr, int flags, | ||
562 | struct itimerspec * new_setting, | ||
563 | struct itimerspec * old_setting) | ||
564 | { | ||
565 | |||
566 | int i; | ||
567 | unsigned long when, period, irqflags; | ||
568 | int err = 0; | ||
569 | cnodeid_t nodeid; | ||
570 | mmtimer_t *base; | ||
571 | |||
572 | if (old_setting) | ||
573 | sgi_timer_get(timr, old_setting); | ||
574 | |||
575 | sgi_timer_del(timr); | ||
576 | when = timespec_to_ns(new_setting->it_value); | ||
577 | period = timespec_to_ns(new_setting->it_interval); | ||
578 | |||
579 | if (when == 0) | ||
580 | /* Clear timer */ | ||
581 | return 0; | ||
582 | |||
583 | if (flags & TIMER_ABSTIME) { | ||
584 | struct timespec n; | ||
585 | unsigned long now; | ||
586 | |||
587 | getnstimeofday(&n); | ||
588 | now = timespec_to_ns(n); | ||
589 | if (when > now) | ||
590 | when -= now; | ||
591 | else | ||
592 | /* Fire the timer immediately */ | ||
593 | when = 0; | ||
594 | } | ||
595 | |||
596 | /* | ||
597 | * Convert to sgi clock period. Need to keep rtc_time() as near as possible | ||
598 | * to getnstimeofday() in order to be as faithful as possible to the time | ||
599 | * specified. | ||
600 | */ | ||
601 | when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); | ||
602 | period = (period + sgi_clock_period - 1) / sgi_clock_period; | ||
603 | |||
604 | /* | ||
605 | * We are allocating a local SHub comparator. If we would be moved to another | ||
606 | * cpu then another SHub may be local to us. Prohibit that by switching off | ||
607 | * preemption. | ||
608 | */ | ||
609 | preempt_disable(); | ||
610 | |||
611 | nodeid = cpuid_to_cnodeid(smp_processor_id()); | ||
612 | base = timers + nodeid * NUM_COMPARATORS; | ||
613 | retry: | ||
614 | /* Don't use an allocated timer, or a deleted one that's pending */ | ||
615 | for(i = 0; i< NUM_COMPARATORS; i++) { | ||
616 | if (!base[i].timer && !base[i].tasklet.state) { | ||
617 | break; | ||
618 | } | ||
619 | } | ||
620 | |||
621 | if (i == NUM_COMPARATORS) { | ||
622 | preempt_enable(); | ||
623 | return -EBUSY; | ||
624 | } | ||
625 | |||
626 | spin_lock_irqsave(&base[i].lock, irqflags); | ||
627 | |||
628 | if (base[i].timer || base[i].tasklet.state != 0) { | ||
629 | spin_unlock_irqrestore(&base[i].lock, irqflags); | ||
630 | goto retry; | ||
631 | } | ||
632 | base[i].timer = timr; | ||
633 | base[i].cpu = smp_processor_id(); | ||
634 | |||
635 | timr->it.mmtimer.clock = i; | ||
636 | timr->it.mmtimer.node = nodeid; | ||
637 | timr->it.mmtimer.incr = period; | ||
638 | timr->it.mmtimer.expires = when; | ||
639 | |||
640 | if (period == 0) { | ||
641 | if (!mmtimer_setup(i, when)) { | ||
642 | mmtimer_disable_int(-1, i); | ||
643 | posix_timer_event(timr, 0); | ||
644 | timr->it.mmtimer.expires = 0; | ||
645 | } | ||
646 | } else { | ||
647 | timr->it.mmtimer.expires -= period; | ||
648 | if (reschedule_periodic_timer(base+i)) | ||
649 | err = -EINVAL; | ||
650 | } | ||
651 | |||
652 | spin_unlock_irqrestore(&base[i].lock, irqflags); | ||
653 | |||
654 | preempt_enable(); | ||
655 | |||
656 | return err; | ||
657 | } | ||
658 | |||
659 | static struct k_clock sgi_clock = { | ||
660 | .res = 0, | ||
661 | .clock_set = sgi_clock_set, | ||
662 | .clock_get = sgi_clock_get, | ||
663 | .timer_create = sgi_timer_create, | ||
664 | .nsleep = do_posix_clock_nonanosleep, | ||
665 | .timer_set = sgi_timer_set, | ||
666 | .timer_del = sgi_timer_del, | ||
667 | .timer_get = sgi_timer_get | ||
668 | }; | ||
669 | |||
670 | /** | ||
671 | * mmtimer_init - device initialization routine | ||
672 | * | ||
673 | * Does initial setup for the mmtimer device. | ||
674 | */ | ||
675 | static int __init mmtimer_init(void) | ||
676 | { | ||
677 | unsigned i; | ||
678 | |||
679 | if (!ia64_platform_is("sn2")) | ||
680 | return -1; | ||
681 | |||
682 | /* | ||
683 | * Sanity check the cycles/sec variable | ||
684 | */ | ||
685 | if (sn_rtc_cycles_per_second < 100000) { | ||
686 | printk(KERN_ERR "%s: unable to determine clock frequency\n", | ||
687 | MMTIMER_NAME); | ||
688 | return -1; | ||
689 | } | ||
690 | |||
691 | mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / | ||
692 | 2) / sn_rtc_cycles_per_second; | ||
693 | |||
694 | for (i=0; i< NUM_COMPARATORS*MAX_COMPACT_NODES; i++) { | ||
695 | spin_lock_init(&timers[i].lock); | ||
696 | timers[i].timer = NULL; | ||
697 | timers[i].cpu = 0; | ||
698 | timers[i].i = i % NUM_COMPARATORS; | ||
699 | tasklet_init(&timers[i].tasklet, mmtimer_tasklet, (unsigned long) (timers+i)); | ||
700 | } | ||
701 | |||
702 | if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, SA_PERCPU_IRQ, MMTIMER_NAME, NULL)) { | ||
703 | printk(KERN_WARNING "%s: unable to allocate interrupt.", | ||
704 | MMTIMER_NAME); | ||
705 | return -1; | ||
706 | } | ||
707 | |||
708 | strcpy(mmtimer_miscdev.devfs_name, MMTIMER_NAME); | ||
709 | if (misc_register(&mmtimer_miscdev)) { | ||
710 | printk(KERN_ERR "%s: failed to register device\n", | ||
711 | MMTIMER_NAME); | ||
712 | return -1; | ||
713 | } | ||
714 | |||
715 | sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second; | ||
716 | register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock); | ||
717 | |||
718 | printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, | ||
719 | sn_rtc_cycles_per_second/(unsigned long)1E6); | ||
720 | |||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | module_init(mmtimer_init); | ||
725 | |||