aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/istallion.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/istallion.c')
-rw-r--r--drivers/char/istallion.c4507
1 files changed, 0 insertions, 4507 deletions
diff --git a/drivers/char/istallion.c b/drivers/char/istallion.c
deleted file mode 100644
index 7c6de4c92458..000000000000
--- a/drivers/char/istallion.c
+++ /dev/null
@@ -1,4507 +0,0 @@
1/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 */
18
19/*****************************************************************************/
20
21#include <linux/module.h>
22#include <linux/sched.h>
23#include <linux/slab.h>
24#include <linux/interrupt.h>
25#include <linux/tty.h>
26#include <linux/tty_flip.h>
27#include <linux/serial.h>
28#include <linux/seq_file.h>
29#include <linux/cdk.h>
30#include <linux/comstats.h>
31#include <linux/istallion.h>
32#include <linux/ioport.h>
33#include <linux/delay.h>
34#include <linux/init.h>
35#include <linux/device.h>
36#include <linux/wait.h>
37#include <linux/eisa.h>
38#include <linux/ctype.h>
39
40#include <asm/io.h>
41#include <asm/uaccess.h>
42
43#include <linux/pci.h>
44
45/*****************************************************************************/
46
47/*
48 * Define different board types. Not all of the following board types
49 * are supported by this driver. But I will use the standard "assigned"
50 * board numbers. Currently supported boards are abbreviated as:
51 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
52 * STAL = Stallion.
53 */
54#define BRD_UNKNOWN 0
55#define BRD_STALLION 1
56#define BRD_BRUMBY4 2
57#define BRD_ONBOARD2 3
58#define BRD_ONBOARD 4
59#define BRD_ONBOARDE 7
60#define BRD_ECP 23
61#define BRD_ECPE 24
62#define BRD_ECPMC 25
63#define BRD_ECPPCI 29
64
65#define BRD_BRUMBY BRD_BRUMBY4
66
67/*
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stli_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
74 * Some examples:
75 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
76 * This line will configure an EasyConnection 8/64 at io address 2a0,
77 * and shared memory address of cc000. Multiple EasyConnection 8/64
78 * boards can share the same shared memory address space. No interrupt
79 * is required for this board type.
80 * Another example:
81 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
82 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
83 * shared memory address of 0x80000000 (2 GByte). Multiple
84 * EasyConnection 8/64 EISA boards can share the same shared memory
85 * address space. No interrupt is required for this board type.
86 * Another example:
87 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
88 * This line will configure an ONboard (ISA type) at io address 240,
89 * and shared memory address of d0000. Multiple ONboards can share
90 * the same shared memory address space. No interrupt required.
91 * Another example:
92 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
93 * This line will configure a Brumby board (any number of ports!) at
94 * io address 360 and shared memory address of c8000. All Brumby boards
95 * configured into a system must have their own separate io and memory
96 * addresses. No interrupt is required.
97 * Another example:
98 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
99 * This line will configure an original Stallion board at io address 330
100 * and shared memory address d0000 (this would only be valid for a "V4.0"
101 * or Rev.O Stallion board). All Stallion boards configured into the
102 * system must have their own separate io and memory addresses. No
103 * interrupt is required.
104 */
105
106struct stlconf {
107 int brdtype;
108 int ioaddr1;
109 int ioaddr2;
110 unsigned long memaddr;
111 int irq;
112 int irqtype;
113};
114
115static unsigned int stli_nrbrds;
116
117/* stli_lock must NOT be taken holding brd_lock */
118static spinlock_t stli_lock; /* TTY logic lock */
119static spinlock_t brd_lock; /* Board logic lock */
120
121/*
122 * There is some experimental EISA board detection code in this driver.
123 * By default it is disabled, but for those that want to try it out,
124 * then set the define below to be 1.
125 */
126#define STLI_EISAPROBE 0
127
128/*****************************************************************************/
129
130/*
131 * Define some important driver characteristics. Device major numbers
132 * allocated as per Linux Device Registry.
133 */
134#ifndef STL_SIOMEMMAJOR
135#define STL_SIOMEMMAJOR 28
136#endif
137#ifndef STL_SERIALMAJOR
138#define STL_SERIALMAJOR 24
139#endif
140#ifndef STL_CALLOUTMAJOR
141#define STL_CALLOUTMAJOR 25
142#endif
143
144/*****************************************************************************/
145
146/*
147 * Define our local driver identity first. Set up stuff to deal with
148 * all the local structures required by a serial tty driver.
149 */
150static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
151static char *stli_drvname = "istallion";
152static char *stli_drvversion = "5.6.0";
153static char *stli_serialname = "ttyE";
154
155static struct tty_driver *stli_serial;
156static const struct tty_port_operations stli_port_ops;
157
158#define STLI_TXBUFSIZE 4096
159
160/*
161 * Use a fast local buffer for cooked characters. Typically a whole
162 * bunch of cooked characters come in for a port, 1 at a time. So we
163 * save those up into a local buffer, then write out the whole lot
164 * with a large memcpy. Just use 1 buffer for all ports, since its
165 * use it is only need for short periods of time by each port.
166 */
167static char *stli_txcookbuf;
168static int stli_txcooksize;
169static int stli_txcookrealsize;
170static struct tty_struct *stli_txcooktty;
171
172/*
173 * Define a local default termios struct. All ports will be created
174 * with this termios initially. Basically all it defines is a raw port
175 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
176 */
177static struct ktermios stli_deftermios = {
178 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
179 .c_cc = INIT_C_CC,
180 .c_ispeed = 9600,
181 .c_ospeed = 9600,
182};
183
184/*
185 * Define global stats structures. Not used often, and can be
186 * re-used for each stats call.
187 */
188static comstats_t stli_comstats;
189static combrd_t stli_brdstats;
190static struct asystats stli_cdkstats;
191
192/*****************************************************************************/
193
194static DEFINE_MUTEX(stli_brdslock);
195static struct stlibrd *stli_brds[STL_MAXBRDS];
196
197static int stli_shared;
198
199/*
200 * Per board state flags. Used with the state field of the board struct.
201 * Not really much here... All we need to do is keep track of whether
202 * the board has been detected, and whether it is actually running a slave
203 * or not.
204 */
205#define BST_FOUND 0
206#define BST_STARTED 1
207#define BST_PROBED 2
208
209/*
210 * Define the set of port state flags. These are marked for internal
211 * state purposes only, usually to do with the state of communications
212 * with the slave. Most of them need to be updated atomically, so always
213 * use the bit setting operations (unless protected by cli/sti).
214 */
215#define ST_OPENING 2
216#define ST_CLOSING 3
217#define ST_CMDING 4
218#define ST_TXBUSY 5
219#define ST_RXING 6
220#define ST_DOFLUSHRX 7
221#define ST_DOFLUSHTX 8
222#define ST_DOSIGS 9
223#define ST_RXSTOP 10
224#define ST_GETSIGS 11
225
226/*
227 * Define an array of board names as printable strings. Handy for
228 * referencing boards when printing trace and stuff.
229 */
230static char *stli_brdnames[] = {
231 "Unknown",
232 "Stallion",
233 "Brumby",
234 "ONboard-MC",
235 "ONboard",
236 "Brumby",
237 "Brumby",
238 "ONboard-EI",
239 NULL,
240 "ONboard",
241 "ONboard-MC",
242 "ONboard-MC",
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 "EasyIO",
252 "EC8/32-AT",
253 "EC8/32-MC",
254 "EC8/64-AT",
255 "EC8/64-EI",
256 "EC8/64-MC",
257 "EC8/32-PCI",
258 "EC8/64-PCI",
259 "EasyIO-PCI",
260 "EC/RA-PCI",
261};
262
263/*****************************************************************************/
264
265/*
266 * Define some string labels for arguments passed from the module
267 * load line. These allow for easy board definitions, and easy
268 * modification of the io, memory and irq resoucres.
269 */
270
271static char *board0[8];
272static char *board1[8];
273static char *board2[8];
274static char *board3[8];
275
276static char **stli_brdsp[] = {
277 (char **) &board0,
278 (char **) &board1,
279 (char **) &board2,
280 (char **) &board3
281};
282
283/*
284 * Define a set of common board names, and types. This is used to
285 * parse any module arguments.
286 */
287
288static struct stlibrdtype {
289 char *name;
290 int type;
291} stli_brdstr[] = {
292 { "stallion", BRD_STALLION },
293 { "1", BRD_STALLION },
294 { "brumby", BRD_BRUMBY },
295 { "brumby4", BRD_BRUMBY },
296 { "brumby/4", BRD_BRUMBY },
297 { "brumby-4", BRD_BRUMBY },
298 { "brumby8", BRD_BRUMBY },
299 { "brumby/8", BRD_BRUMBY },
300 { "brumby-8", BRD_BRUMBY },
301 { "brumby16", BRD_BRUMBY },
302 { "brumby/16", BRD_BRUMBY },
303 { "brumby-16", BRD_BRUMBY },
304 { "2", BRD_BRUMBY },
305 { "onboard2", BRD_ONBOARD2 },
306 { "onboard-2", BRD_ONBOARD2 },
307 { "onboard/2", BRD_ONBOARD2 },
308 { "onboard-mc", BRD_ONBOARD2 },
309 { "onboard/mc", BRD_ONBOARD2 },
310 { "onboard-mca", BRD_ONBOARD2 },
311 { "onboard/mca", BRD_ONBOARD2 },
312 { "3", BRD_ONBOARD2 },
313 { "onboard", BRD_ONBOARD },
314 { "onboardat", BRD_ONBOARD },
315 { "4", BRD_ONBOARD },
316 { "onboarde", BRD_ONBOARDE },
317 { "onboard-e", BRD_ONBOARDE },
318 { "onboard/e", BRD_ONBOARDE },
319 { "onboard-ei", BRD_ONBOARDE },
320 { "onboard/ei", BRD_ONBOARDE },
321 { "7", BRD_ONBOARDE },
322 { "ecp", BRD_ECP },
323 { "ecpat", BRD_ECP },
324 { "ec8/64", BRD_ECP },
325 { "ec8/64-at", BRD_ECP },
326 { "ec8/64-isa", BRD_ECP },
327 { "23", BRD_ECP },
328 { "ecpe", BRD_ECPE },
329 { "ecpei", BRD_ECPE },
330 { "ec8/64-e", BRD_ECPE },
331 { "ec8/64-ei", BRD_ECPE },
332 { "24", BRD_ECPE },
333 { "ecpmc", BRD_ECPMC },
334 { "ec8/64-mc", BRD_ECPMC },
335 { "ec8/64-mca", BRD_ECPMC },
336 { "25", BRD_ECPMC },
337 { "ecppci", BRD_ECPPCI },
338 { "ec/ra", BRD_ECPPCI },
339 { "ec/ra-pc", BRD_ECPPCI },
340 { "ec/ra-pci", BRD_ECPPCI },
341 { "29", BRD_ECPPCI },
342};
343
344/*
345 * Define the module agruments.
346 */
347MODULE_AUTHOR("Greg Ungerer");
348MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
349MODULE_LICENSE("GPL");
350
351
352module_param_array(board0, charp, NULL, 0);
353MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
354module_param_array(board1, charp, NULL, 0);
355MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
356module_param_array(board2, charp, NULL, 0);
357MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
358module_param_array(board3, charp, NULL, 0);
359MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
360
361#if STLI_EISAPROBE != 0
362/*
363 * Set up a default memory address table for EISA board probing.
364 * The default addresses are all bellow 1Mbyte, which has to be the
365 * case anyway. They should be safe, since we only read values from
366 * them, and interrupts are disabled while we do it. If the higher
367 * memory support is compiled in then we also try probing around
368 * the 1Gb, 2Gb and 3Gb areas as well...
369 */
370static unsigned long stli_eisamemprobeaddrs[] = {
371 0xc0000, 0xd0000, 0xe0000, 0xf0000,
372 0x80000000, 0x80010000, 0x80020000, 0x80030000,
373 0x40000000, 0x40010000, 0x40020000, 0x40030000,
374 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
375 0xff000000, 0xff010000, 0xff020000, 0xff030000,
376};
377
378static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
379#endif
380
381/*
382 * Define the Stallion PCI vendor and device IDs.
383 */
384#ifndef PCI_DEVICE_ID_ECRA
385#define PCI_DEVICE_ID_ECRA 0x0004
386#endif
387
388static struct pci_device_id istallion_pci_tbl[] = {
389 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
390 { 0 }
391};
392MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
393
394static struct pci_driver stli_pcidriver;
395
396/*****************************************************************************/
397
398/*
399 * Hardware configuration info for ECP boards. These defines apply
400 * to the directly accessible io ports of the ECP. There is a set of
401 * defines for each ECP board type, ISA, EISA, MCA and PCI.
402 */
403#define ECP_IOSIZE 4
404
405#define ECP_MEMSIZE (128 * 1024)
406#define ECP_PCIMEMSIZE (256 * 1024)
407
408#define ECP_ATPAGESIZE (4 * 1024)
409#define ECP_MCPAGESIZE (4 * 1024)
410#define ECP_EIPAGESIZE (64 * 1024)
411#define ECP_PCIPAGESIZE (64 * 1024)
412
413#define STL_EISAID 0x8c4e
414
415/*
416 * Important defines for the ISA class of ECP board.
417 */
418#define ECP_ATIREG 0
419#define ECP_ATCONFR 1
420#define ECP_ATMEMAR 2
421#define ECP_ATMEMPR 3
422#define ECP_ATSTOP 0x1
423#define ECP_ATINTENAB 0x10
424#define ECP_ATENABLE 0x20
425#define ECP_ATDISABLE 0x00
426#define ECP_ATADDRMASK 0x3f000
427#define ECP_ATADDRSHFT 12
428
429/*
430 * Important defines for the EISA class of ECP board.
431 */
432#define ECP_EIIREG 0
433#define ECP_EIMEMARL 1
434#define ECP_EICONFR 2
435#define ECP_EIMEMARH 3
436#define ECP_EIENABLE 0x1
437#define ECP_EIDISABLE 0x0
438#define ECP_EISTOP 0x4
439#define ECP_EIEDGE 0x00
440#define ECP_EILEVEL 0x80
441#define ECP_EIADDRMASKL 0x00ff0000
442#define ECP_EIADDRSHFTL 16
443#define ECP_EIADDRMASKH 0xff000000
444#define ECP_EIADDRSHFTH 24
445#define ECP_EIBRDENAB 0xc84
446
447#define ECP_EISAID 0x4
448
449/*
450 * Important defines for the Micro-channel class of ECP board.
451 * (It has a lot in common with the ISA boards.)
452 */
453#define ECP_MCIREG 0
454#define ECP_MCCONFR 1
455#define ECP_MCSTOP 0x20
456#define ECP_MCENABLE 0x80
457#define ECP_MCDISABLE 0x00
458
459/*
460 * Important defines for the PCI class of ECP board.
461 * (It has a lot in common with the other ECP boards.)
462 */
463#define ECP_PCIIREG 0
464#define ECP_PCICONFR 1
465#define ECP_PCISTOP 0x01
466
467/*
468 * Hardware configuration info for ONboard and Brumby boards. These
469 * defines apply to the directly accessible io ports of these boards.
470 */
471#define ONB_IOSIZE 16
472#define ONB_MEMSIZE (64 * 1024)
473#define ONB_ATPAGESIZE (64 * 1024)
474#define ONB_MCPAGESIZE (64 * 1024)
475#define ONB_EIMEMSIZE (128 * 1024)
476#define ONB_EIPAGESIZE (64 * 1024)
477
478/*
479 * Important defines for the ISA class of ONboard board.
480 */
481#define ONB_ATIREG 0
482#define ONB_ATMEMAR 1
483#define ONB_ATCONFR 2
484#define ONB_ATSTOP 0x4
485#define ONB_ATENABLE 0x01
486#define ONB_ATDISABLE 0x00
487#define ONB_ATADDRMASK 0xff0000
488#define ONB_ATADDRSHFT 16
489
490#define ONB_MEMENABLO 0
491#define ONB_MEMENABHI 0x02
492
493/*
494 * Important defines for the EISA class of ONboard board.
495 */
496#define ONB_EIIREG 0
497#define ONB_EIMEMARL 1
498#define ONB_EICONFR 2
499#define ONB_EIMEMARH 3
500#define ONB_EIENABLE 0x1
501#define ONB_EIDISABLE 0x0
502#define ONB_EISTOP 0x4
503#define ONB_EIEDGE 0x00
504#define ONB_EILEVEL 0x80
505#define ONB_EIADDRMASKL 0x00ff0000
506#define ONB_EIADDRSHFTL 16
507#define ONB_EIADDRMASKH 0xff000000
508#define ONB_EIADDRSHFTH 24
509#define ONB_EIBRDENAB 0xc84
510
511#define ONB_EISAID 0x1
512
513/*
514 * Important defines for the Brumby boards. They are pretty simple,
515 * there is not much that is programmably configurable.
516 */
517#define BBY_IOSIZE 16
518#define BBY_MEMSIZE (64 * 1024)
519#define BBY_PAGESIZE (16 * 1024)
520
521#define BBY_ATIREG 0
522#define BBY_ATCONFR 1
523#define BBY_ATSTOP 0x4
524
525/*
526 * Important defines for the Stallion boards. They are pretty simple,
527 * there is not much that is programmably configurable.
528 */
529#define STAL_IOSIZE 16
530#define STAL_MEMSIZE (64 * 1024)
531#define STAL_PAGESIZE (64 * 1024)
532
533/*
534 * Define the set of status register values for EasyConnection panels.
535 * The signature will return with the status value for each panel. From
536 * this we can determine what is attached to the board - before we have
537 * actually down loaded any code to it.
538 */
539#define ECH_PNLSTATUS 2
540#define ECH_PNL16PORT 0x20
541#define ECH_PNLIDMASK 0x07
542#define ECH_PNLXPID 0x40
543#define ECH_PNLINTRPEND 0x80
544
545/*
546 * Define some macros to do things to the board. Even those these boards
547 * are somewhat related there is often significantly different ways of
548 * doing some operation on it (like enable, paging, reset, etc). So each
549 * board class has a set of functions which do the commonly required
550 * operations. The macros below basically just call these functions,
551 * generally checking for a NULL function - which means that the board
552 * needs nothing done to it to achieve this operation!
553 */
554#define EBRDINIT(brdp) \
555 if (brdp->init != NULL) \
556 (* brdp->init)(brdp)
557
558#define EBRDENABLE(brdp) \
559 if (brdp->enable != NULL) \
560 (* brdp->enable)(brdp);
561
562#define EBRDDISABLE(brdp) \
563 if (brdp->disable != NULL) \
564 (* brdp->disable)(brdp);
565
566#define EBRDINTR(brdp) \
567 if (brdp->intr != NULL) \
568 (* brdp->intr)(brdp);
569
570#define EBRDRESET(brdp) \
571 if (brdp->reset != NULL) \
572 (* brdp->reset)(brdp);
573
574#define EBRDGETMEMPTR(brdp,offset) \
575 (* brdp->getmemptr)(brdp, offset, __LINE__)
576
577/*
578 * Define the maximal baud rate, and the default baud base for ports.
579 */
580#define STL_MAXBAUD 460800
581#define STL_BAUDBASE 115200
582#define STL_CLOSEDELAY (5 * HZ / 10)
583
584/*****************************************************************************/
585
586/*
587 * Define macros to extract a brd or port number from a minor number.
588 */
589#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
590#define MINOR2PORT(min) ((min) & 0x3f)
591
592/*****************************************************************************/
593
594/*
595 * Prototype all functions in this driver!
596 */
597
598static int stli_parsebrd(struct stlconf *confp, char **argp);
599static int stli_open(struct tty_struct *tty, struct file *filp);
600static void stli_close(struct tty_struct *tty, struct file *filp);
601static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
602static int stli_putchar(struct tty_struct *tty, unsigned char ch);
603static void stli_flushchars(struct tty_struct *tty);
604static int stli_writeroom(struct tty_struct *tty);
605static int stli_charsinbuffer(struct tty_struct *tty);
606static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
607static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
608static void stli_throttle(struct tty_struct *tty);
609static void stli_unthrottle(struct tty_struct *tty);
610static void stli_stop(struct tty_struct *tty);
611static void stli_start(struct tty_struct *tty);
612static void stli_flushbuffer(struct tty_struct *tty);
613static int stli_breakctl(struct tty_struct *tty, int state);
614static void stli_waituntilsent(struct tty_struct *tty, int timeout);
615static void stli_sendxchar(struct tty_struct *tty, char ch);
616static void stli_hangup(struct tty_struct *tty);
617
618static int stli_brdinit(struct stlibrd *brdp);
619static int stli_startbrd(struct stlibrd *brdp);
620static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
623static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624static void stli_poll(unsigned long arg);
625static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
627static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629static int stli_setport(struct tty_struct *tty);
630static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
631static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
634static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
635static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
636static long stli_mktiocm(unsigned long sigvalue);
637static void stli_read(struct stlibrd *brdp, struct stliport *portp);
638static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
639static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
640static int stli_getbrdstats(combrd_t __user *bp);
641static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
642static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
643static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
644static int stli_getportstruct(struct stliport __user *arg);
645static int stli_getbrdstruct(struct stlibrd __user *arg);
646static struct stlibrd *stli_allocbrd(void);
647
648static void stli_ecpinit(struct stlibrd *brdp);
649static void stli_ecpenable(struct stlibrd *brdp);
650static void stli_ecpdisable(struct stlibrd *brdp);
651static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
652static void stli_ecpreset(struct stlibrd *brdp);
653static void stli_ecpintr(struct stlibrd *brdp);
654static void stli_ecpeiinit(struct stlibrd *brdp);
655static void stli_ecpeienable(struct stlibrd *brdp);
656static void stli_ecpeidisable(struct stlibrd *brdp);
657static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
658static void stli_ecpeireset(struct stlibrd *brdp);
659static void stli_ecpmcenable(struct stlibrd *brdp);
660static void stli_ecpmcdisable(struct stlibrd *brdp);
661static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
662static void stli_ecpmcreset(struct stlibrd *brdp);
663static void stli_ecppciinit(struct stlibrd *brdp);
664static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
665static void stli_ecppcireset(struct stlibrd *brdp);
666
667static void stli_onbinit(struct stlibrd *brdp);
668static void stli_onbenable(struct stlibrd *brdp);
669static void stli_onbdisable(struct stlibrd *brdp);
670static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
671static void stli_onbreset(struct stlibrd *brdp);
672static void stli_onbeinit(struct stlibrd *brdp);
673static void stli_onbeenable(struct stlibrd *brdp);
674static void stli_onbedisable(struct stlibrd *brdp);
675static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
676static void stli_onbereset(struct stlibrd *brdp);
677static void stli_bbyinit(struct stlibrd *brdp);
678static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
679static void stli_bbyreset(struct stlibrd *brdp);
680static void stli_stalinit(struct stlibrd *brdp);
681static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
682static void stli_stalreset(struct stlibrd *brdp);
683
684static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
685
686static int stli_initecp(struct stlibrd *brdp);
687static int stli_initonb(struct stlibrd *brdp);
688#if STLI_EISAPROBE != 0
689static int stli_eisamemprobe(struct stlibrd *brdp);
690#endif
691static int stli_initports(struct stlibrd *brdp);
692
693/*****************************************************************************/
694
695/*
696 * Define the driver info for a user level shared memory device. This
697 * device will work sort of like the /dev/kmem device - except that it
698 * will give access to the shared memory on the Stallion intelligent
699 * board. This is also a very useful debugging tool.
700 */
701static const struct file_operations stli_fsiomem = {
702 .owner = THIS_MODULE,
703 .read = stli_memread,
704 .write = stli_memwrite,
705 .unlocked_ioctl = stli_memioctl,
706 .llseek = default_llseek,
707};
708
709/*****************************************************************************/
710
711/*
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
716 */
717static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
718
719static int stli_timeron;
720
721/*
722 * Define the calculation for the timeout routine.
723 */
724#define STLI_TIMEOUT (jiffies + 1)
725
726/*****************************************************************************/
727
728static struct class *istallion_class;
729
730static void stli_cleanup_ports(struct stlibrd *brdp)
731{
732 struct stliport *portp;
733 unsigned int j;
734 struct tty_struct *tty;
735
736 for (j = 0; j < STL_MAXPORTS; j++) {
737 portp = brdp->ports[j];
738 if (portp != NULL) {
739 tty = tty_port_tty_get(&portp->port);
740 if (tty != NULL) {
741 tty_hangup(tty);
742 tty_kref_put(tty);
743 }
744 kfree(portp);
745 }
746 }
747}
748
749/*****************************************************************************/
750
751/*
752 * Parse the supplied argument string, into the board conf struct.
753 */
754
755static int stli_parsebrd(struct stlconf *confp, char **argp)
756{
757 unsigned int i;
758 char *sp;
759
760 if (argp[0] == NULL || *argp[0] == 0)
761 return 0;
762
763 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
764 *sp = tolower(*sp);
765
766 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
767 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
768 break;
769 }
770 if (i == ARRAY_SIZE(stli_brdstr)) {
771 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
772 return 0;
773 }
774
775 confp->brdtype = stli_brdstr[i].type;
776 if (argp[1] != NULL && *argp[1] != 0)
777 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
778 if (argp[2] != NULL && *argp[2] != 0)
779 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
780 return(1);
781}
782
783/*****************************************************************************/
784
785/*
786 * On the first open of the device setup the port hardware, and
787 * initialize the per port data structure. Since initializing the port
788 * requires several commands to the board we will need to wait for any
789 * other open that is already initializing the port.
790 *
791 * Locking: protected by the port mutex.
792 */
793
794static int stli_activate(struct tty_port *port, struct tty_struct *tty)
795{
796 struct stliport *portp = container_of(port, struct stliport, port);
797 struct stlibrd *brdp = stli_brds[portp->brdnr];
798 int rc;
799
800 if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
801 clear_bit(TTY_IO_ERROR, &tty->flags);
802 wake_up_interruptible(&portp->raw_wait);
803 return rc;
804}
805
806static int stli_open(struct tty_struct *tty, struct file *filp)
807{
808 struct stlibrd *brdp;
809 struct stliport *portp;
810 unsigned int minordev, brdnr, portnr;
811
812 minordev = tty->index;
813 brdnr = MINOR2BRD(minordev);
814 if (brdnr >= stli_nrbrds)
815 return -ENODEV;
816 brdp = stli_brds[brdnr];
817 if (brdp == NULL)
818 return -ENODEV;
819 if (!test_bit(BST_STARTED, &brdp->state))
820 return -ENODEV;
821 portnr = MINOR2PORT(minordev);
822 if (portnr > brdp->nrports)
823 return -ENODEV;
824
825 portp = brdp->ports[portnr];
826 if (portp == NULL)
827 return -ENODEV;
828 if (portp->devnr < 1)
829 return -ENODEV;
830
831 tty->driver_data = portp;
832 return tty_port_open(&portp->port, tty, filp);
833}
834
835
836/*****************************************************************************/
837
838static void stli_shutdown(struct tty_port *port)
839{
840 struct stlibrd *brdp;
841 unsigned long ftype;
842 unsigned long flags;
843 struct stliport *portp = container_of(port, struct stliport, port);
844
845 if (portp->brdnr >= stli_nrbrds)
846 return;
847 brdp = stli_brds[portp->brdnr];
848 if (brdp == NULL)
849 return;
850
851 /*
852 * May want to wait for data to drain before closing. The BUSY
853 * flag keeps track of whether we are still transmitting or not.
854 * It is updated by messages from the slave - indicating when all
855 * chars really have drained.
856 */
857
858 if (!test_bit(ST_CLOSING, &portp->state))
859 stli_rawclose(brdp, portp, 0, 0);
860
861 spin_lock_irqsave(&stli_lock, flags);
862 clear_bit(ST_TXBUSY, &portp->state);
863 clear_bit(ST_RXSTOP, &portp->state);
864 spin_unlock_irqrestore(&stli_lock, flags);
865
866 ftype = FLUSHTX | FLUSHRX;
867 stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
868}
869
870static void stli_close(struct tty_struct *tty, struct file *filp)
871{
872 struct stliport *portp = tty->driver_data;
873 unsigned long flags;
874 if (portp == NULL)
875 return;
876 spin_lock_irqsave(&stli_lock, flags);
877 /* Flush any internal buffering out first */
878 if (tty == stli_txcooktty)
879 stli_flushchars(tty);
880 spin_unlock_irqrestore(&stli_lock, flags);
881 tty_port_close(&portp->port, tty, filp);
882}
883
884/*****************************************************************************/
885
886/*
887 * Carry out first open operations on a port. This involves a number of
888 * commands to be sent to the slave. We need to open the port, set the
889 * notification events, set the initial port settings, get and set the
890 * initial signal values. We sleep and wait in between each one. But
891 * this still all happens pretty quickly.
892 */
893
894static int stli_initopen(struct tty_struct *tty,
895 struct stlibrd *brdp, struct stliport *portp)
896{
897 asynotify_t nt;
898 asyport_t aport;
899 int rc;
900
901 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
902 return rc;
903
904 memset(&nt, 0, sizeof(asynotify_t));
905 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
906 nt.signal = SG_DCD;
907 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
908 sizeof(asynotify_t), 0)) < 0)
909 return rc;
910
911 stli_mkasyport(tty, portp, &aport, tty->termios);
912 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
913 sizeof(asyport_t), 0)) < 0)
914 return rc;
915
916 set_bit(ST_GETSIGS, &portp->state);
917 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
918 sizeof(asysigs_t), 1)) < 0)
919 return rc;
920 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
921 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
922 stli_mkasysigs(&portp->asig, 1, 1);
923 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
924 sizeof(asysigs_t), 0)) < 0)
925 return rc;
926
927 return 0;
928}
929
930/*****************************************************************************/
931
932/*
933 * Send an open message to the slave. This will sleep waiting for the
934 * acknowledgement, so must have user context. We need to co-ordinate
935 * with close events here, since we don't want open and close events
936 * to overlap.
937 */
938
939static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
940{
941 cdkhdr_t __iomem *hdrp;
942 cdkctrl_t __iomem *cp;
943 unsigned char __iomem *bits;
944 unsigned long flags;
945 int rc;
946
947/*
948 * Send a message to the slave to open this port.
949 */
950
951/*
952 * Slave is already closing this port. This can happen if a hangup
953 * occurs on this port. So we must wait until it is complete. The
954 * order of opens and closes may not be preserved across shared
955 * memory, so we must wait until it is complete.
956 */
957 wait_event_interruptible_tty(portp->raw_wait,
958 !test_bit(ST_CLOSING, &portp->state));
959 if (signal_pending(current)) {
960 return -ERESTARTSYS;
961 }
962
963/*
964 * Everything is ready now, so write the open message into shared
965 * memory. Once the message is in set the service bits to say that
966 * this port wants service.
967 */
968 spin_lock_irqsave(&brd_lock, flags);
969 EBRDENABLE(brdp);
970 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
971 writel(arg, &cp->openarg);
972 writeb(1, &cp->open);
973 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
974 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
975 portp->portidx;
976 writeb(readb(bits) | portp->portbit, bits);
977 EBRDDISABLE(brdp);
978
979 if (wait == 0) {
980 spin_unlock_irqrestore(&brd_lock, flags);
981 return 0;
982 }
983
984/*
985 * Slave is in action, so now we must wait for the open acknowledgment
986 * to come back.
987 */
988 rc = 0;
989 set_bit(ST_OPENING, &portp->state);
990 spin_unlock_irqrestore(&brd_lock, flags);
991
992 wait_event_interruptible_tty(portp->raw_wait,
993 !test_bit(ST_OPENING, &portp->state));
994 if (signal_pending(current))
995 rc = -ERESTARTSYS;
996
997 if ((rc == 0) && (portp->rc != 0))
998 rc = -EIO;
999 return rc;
1000}
1001
1002/*****************************************************************************/
1003
1004/*
1005 * Send a close message to the slave. Normally this will sleep waiting
1006 * for the acknowledgement, but if wait parameter is 0 it will not. If
1007 * wait is true then must have user context (to sleep).
1008 */
1009
1010static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1011{
1012 cdkhdr_t __iomem *hdrp;
1013 cdkctrl_t __iomem *cp;
1014 unsigned char __iomem *bits;
1015 unsigned long flags;
1016 int rc;
1017
1018/*
1019 * Slave is already closing this port. This can happen if a hangup
1020 * occurs on this port.
1021 */
1022 if (wait) {
1023 wait_event_interruptible_tty(portp->raw_wait,
1024 !test_bit(ST_CLOSING, &portp->state));
1025 if (signal_pending(current)) {
1026 return -ERESTARTSYS;
1027 }
1028 }
1029
1030/*
1031 * Write the close command into shared memory.
1032 */
1033 spin_lock_irqsave(&brd_lock, flags);
1034 EBRDENABLE(brdp);
1035 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1036 writel(arg, &cp->closearg);
1037 writeb(1, &cp->close);
1038 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1039 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1040 portp->portidx;
1041 writeb(readb(bits) |portp->portbit, bits);
1042 EBRDDISABLE(brdp);
1043
1044 set_bit(ST_CLOSING, &portp->state);
1045 spin_unlock_irqrestore(&brd_lock, flags);
1046
1047 if (wait == 0)
1048 return 0;
1049
1050/*
1051 * Slave is in action, so now we must wait for the open acknowledgment
1052 * to come back.
1053 */
1054 rc = 0;
1055 wait_event_interruptible_tty(portp->raw_wait,
1056 !test_bit(ST_CLOSING, &portp->state));
1057 if (signal_pending(current))
1058 rc = -ERESTARTSYS;
1059
1060 if ((rc == 0) && (portp->rc != 0))
1061 rc = -EIO;
1062 return rc;
1063}
1064
1065/*****************************************************************************/
1066
1067/*
1068 * Send a command to the slave and wait for the response. This must
1069 * have user context (it sleeps). This routine is generic in that it
1070 * can send any type of command. Its purpose is to wait for that command
1071 * to complete (as opposed to initiating the command then returning).
1072 */
1073
1074static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1075{
1076 /*
1077 * no need for wait_event_tty because clearing ST_CMDING cannot block
1078 * on BTM
1079 */
1080 wait_event_interruptible(portp->raw_wait,
1081 !test_bit(ST_CMDING, &portp->state));
1082 if (signal_pending(current))
1083 return -ERESTARTSYS;
1084
1085 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1086
1087 wait_event_interruptible(portp->raw_wait,
1088 !test_bit(ST_CMDING, &portp->state));
1089 if (signal_pending(current))
1090 return -ERESTARTSYS;
1091
1092 if (portp->rc != 0)
1093 return -EIO;
1094 return 0;
1095}
1096
1097/*****************************************************************************/
1098
1099/*
1100 * Send the termios settings for this port to the slave. This sleeps
1101 * waiting for the command to complete - so must have user context.
1102 */
1103
1104static int stli_setport(struct tty_struct *tty)
1105{
1106 struct stliport *portp = tty->driver_data;
1107 struct stlibrd *brdp;
1108 asyport_t aport;
1109
1110 if (portp == NULL)
1111 return -ENODEV;
1112 if (portp->brdnr >= stli_nrbrds)
1113 return -ENODEV;
1114 brdp = stli_brds[portp->brdnr];
1115 if (brdp == NULL)
1116 return -ENODEV;
1117
1118 stli_mkasyport(tty, portp, &aport, tty->termios);
1119 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1120}
1121
1122/*****************************************************************************/
1123
1124static int stli_carrier_raised(struct tty_port *port)
1125{
1126 struct stliport *portp = container_of(port, struct stliport, port);
1127 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1128}
1129
1130static void stli_dtr_rts(struct tty_port *port, int on)
1131{
1132 struct stliport *portp = container_of(port, struct stliport, port);
1133 struct stlibrd *brdp = stli_brds[portp->brdnr];
1134 stli_mkasysigs(&portp->asig, on, on);
1135 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1136 sizeof(asysigs_t), 0) < 0)
1137 printk(KERN_WARNING "istallion: dtr set failed.\n");
1138}
1139
1140
1141/*****************************************************************************/
1142
1143/*
1144 * Write routine. Take the data and put it in the shared memory ring
1145 * queue. If port is not already sending chars then need to mark the
1146 * service bits for this port.
1147 */
1148
1149static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1150{
1151 cdkasy_t __iomem *ap;
1152 cdkhdr_t __iomem *hdrp;
1153 unsigned char __iomem *bits;
1154 unsigned char __iomem *shbuf;
1155 unsigned char *chbuf;
1156 struct stliport *portp;
1157 struct stlibrd *brdp;
1158 unsigned int len, stlen, head, tail, size;
1159 unsigned long flags;
1160
1161 if (tty == stli_txcooktty)
1162 stli_flushchars(tty);
1163 portp = tty->driver_data;
1164 if (portp == NULL)
1165 return 0;
1166 if (portp->brdnr >= stli_nrbrds)
1167 return 0;
1168 brdp = stli_brds[portp->brdnr];
1169 if (brdp == NULL)
1170 return 0;
1171 chbuf = (unsigned char *) buf;
1172
1173/*
1174 * All data is now local, shove as much as possible into shared memory.
1175 */
1176 spin_lock_irqsave(&brd_lock, flags);
1177 EBRDENABLE(brdp);
1178 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1179 head = (unsigned int) readw(&ap->txq.head);
1180 tail = (unsigned int) readw(&ap->txq.tail);
1181 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1182 tail = (unsigned int) readw(&ap->txq.tail);
1183 size = portp->txsize;
1184 if (head >= tail) {
1185 len = size - (head - tail) - 1;
1186 stlen = size - head;
1187 } else {
1188 len = tail - head - 1;
1189 stlen = len;
1190 }
1191
1192 len = min(len, (unsigned int)count);
1193 count = 0;
1194 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1195
1196 while (len > 0) {
1197 stlen = min(len, stlen);
1198 memcpy_toio(shbuf + head, chbuf, stlen);
1199 chbuf += stlen;
1200 len -= stlen;
1201 count += stlen;
1202 head += stlen;
1203 if (head >= size) {
1204 head = 0;
1205 stlen = tail;
1206 }
1207 }
1208
1209 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1210 writew(head, &ap->txq.head);
1211 if (test_bit(ST_TXBUSY, &portp->state)) {
1212 if (readl(&ap->changed.data) & DT_TXEMPTY)
1213 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1214 }
1215 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1216 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1217 portp->portidx;
1218 writeb(readb(bits) | portp->portbit, bits);
1219 set_bit(ST_TXBUSY, &portp->state);
1220 EBRDDISABLE(brdp);
1221 spin_unlock_irqrestore(&brd_lock, flags);
1222
1223 return(count);
1224}
1225
1226/*****************************************************************************/
1227
1228/*
1229 * Output a single character. We put it into a temporary local buffer
1230 * (for speed) then write out that buffer when the flushchars routine
1231 * is called. There is a safety catch here so that if some other port
1232 * writes chars before the current buffer has been, then we write them
1233 * first them do the new ports.
1234 */
1235
1236static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1237{
1238 if (tty != stli_txcooktty) {
1239 if (stli_txcooktty != NULL)
1240 stli_flushchars(stli_txcooktty);
1241 stli_txcooktty = tty;
1242 }
1243
1244 stli_txcookbuf[stli_txcooksize++] = ch;
1245 return 0;
1246}
1247
1248/*****************************************************************************/
1249
1250/*
1251 * Transfer characters from the local TX cooking buffer to the board.
1252 * We sort of ignore the tty that gets passed in here. We rely on the
1253 * info stored with the TX cook buffer to tell us which port to flush
1254 * the data on. In any case we clean out the TX cook buffer, for re-use
1255 * by someone else.
1256 */
1257
1258static void stli_flushchars(struct tty_struct *tty)
1259{
1260 cdkhdr_t __iomem *hdrp;
1261 unsigned char __iomem *bits;
1262 cdkasy_t __iomem *ap;
1263 struct tty_struct *cooktty;
1264 struct stliport *portp;
1265 struct stlibrd *brdp;
1266 unsigned int len, stlen, head, tail, size, count, cooksize;
1267 unsigned char *buf;
1268 unsigned char __iomem *shbuf;
1269 unsigned long flags;
1270
1271 cooksize = stli_txcooksize;
1272 cooktty = stli_txcooktty;
1273 stli_txcooksize = 0;
1274 stli_txcookrealsize = 0;
1275 stli_txcooktty = NULL;
1276
1277 if (cooktty == NULL)
1278 return;
1279 if (tty != cooktty)
1280 tty = cooktty;
1281 if (cooksize == 0)
1282 return;
1283
1284 portp = tty->driver_data;
1285 if (portp == NULL)
1286 return;
1287 if (portp->brdnr >= stli_nrbrds)
1288 return;
1289 brdp = stli_brds[portp->brdnr];
1290 if (brdp == NULL)
1291 return;
1292
1293 spin_lock_irqsave(&brd_lock, flags);
1294 EBRDENABLE(brdp);
1295
1296 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1297 head = (unsigned int) readw(&ap->txq.head);
1298 tail = (unsigned int) readw(&ap->txq.tail);
1299 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1300 tail = (unsigned int) readw(&ap->txq.tail);
1301 size = portp->txsize;
1302 if (head >= tail) {
1303 len = size - (head - tail) - 1;
1304 stlen = size - head;
1305 } else {
1306 len = tail - head - 1;
1307 stlen = len;
1308 }
1309
1310 len = min(len, cooksize);
1311 count = 0;
1312 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1313 buf = stli_txcookbuf;
1314
1315 while (len > 0) {
1316 stlen = min(len, stlen);
1317 memcpy_toio(shbuf + head, buf, stlen);
1318 buf += stlen;
1319 len -= stlen;
1320 count += stlen;
1321 head += stlen;
1322 if (head >= size) {
1323 head = 0;
1324 stlen = tail;
1325 }
1326 }
1327
1328 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1329 writew(head, &ap->txq.head);
1330
1331 if (test_bit(ST_TXBUSY, &portp->state)) {
1332 if (readl(&ap->changed.data) & DT_TXEMPTY)
1333 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1334 }
1335 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1336 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1337 portp->portidx;
1338 writeb(readb(bits) | portp->portbit, bits);
1339 set_bit(ST_TXBUSY, &portp->state);
1340
1341 EBRDDISABLE(brdp);
1342 spin_unlock_irqrestore(&brd_lock, flags);
1343}
1344
1345/*****************************************************************************/
1346
1347static int stli_writeroom(struct tty_struct *tty)
1348{
1349 cdkasyrq_t __iomem *rp;
1350 struct stliport *portp;
1351 struct stlibrd *brdp;
1352 unsigned int head, tail, len;
1353 unsigned long flags;
1354
1355 if (tty == stli_txcooktty) {
1356 if (stli_txcookrealsize != 0) {
1357 len = stli_txcookrealsize - stli_txcooksize;
1358 return len;
1359 }
1360 }
1361
1362 portp = tty->driver_data;
1363 if (portp == NULL)
1364 return 0;
1365 if (portp->brdnr >= stli_nrbrds)
1366 return 0;
1367 brdp = stli_brds[portp->brdnr];
1368 if (brdp == NULL)
1369 return 0;
1370
1371 spin_lock_irqsave(&brd_lock, flags);
1372 EBRDENABLE(brdp);
1373 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1374 head = (unsigned int) readw(&rp->head);
1375 tail = (unsigned int) readw(&rp->tail);
1376 if (tail != ((unsigned int) readw(&rp->tail)))
1377 tail = (unsigned int) readw(&rp->tail);
1378 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1379 len--;
1380 EBRDDISABLE(brdp);
1381 spin_unlock_irqrestore(&brd_lock, flags);
1382
1383 if (tty == stli_txcooktty) {
1384 stli_txcookrealsize = len;
1385 len -= stli_txcooksize;
1386 }
1387 return len;
1388}
1389
1390/*****************************************************************************/
1391
1392/*
1393 * Return the number of characters in the transmit buffer. Normally we
1394 * will return the number of chars in the shared memory ring queue.
1395 * We need to kludge around the case where the shared memory buffer is
1396 * empty but not all characters have drained yet, for this case just
1397 * return that there is 1 character in the buffer!
1398 */
1399
1400static int stli_charsinbuffer(struct tty_struct *tty)
1401{
1402 cdkasyrq_t __iomem *rp;
1403 struct stliport *portp;
1404 struct stlibrd *brdp;
1405 unsigned int head, tail, len;
1406 unsigned long flags;
1407
1408 if (tty == stli_txcooktty)
1409 stli_flushchars(tty);
1410 portp = tty->driver_data;
1411 if (portp == NULL)
1412 return 0;
1413 if (portp->brdnr >= stli_nrbrds)
1414 return 0;
1415 brdp = stli_brds[portp->brdnr];
1416 if (brdp == NULL)
1417 return 0;
1418
1419 spin_lock_irqsave(&brd_lock, flags);
1420 EBRDENABLE(brdp);
1421 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1422 head = (unsigned int) readw(&rp->head);
1423 tail = (unsigned int) readw(&rp->tail);
1424 if (tail != ((unsigned int) readw(&rp->tail)))
1425 tail = (unsigned int) readw(&rp->tail);
1426 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1427 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1428 len = 1;
1429 EBRDDISABLE(brdp);
1430 spin_unlock_irqrestore(&brd_lock, flags);
1431
1432 return len;
1433}
1434
1435/*****************************************************************************/
1436
1437/*
1438 * Generate the serial struct info.
1439 */
1440
1441static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1442{
1443 struct serial_struct sio;
1444 struct stlibrd *brdp;
1445
1446 memset(&sio, 0, sizeof(struct serial_struct));
1447 sio.type = PORT_UNKNOWN;
1448 sio.line = portp->portnr;
1449 sio.irq = 0;
1450 sio.flags = portp->port.flags;
1451 sio.baud_base = portp->baud_base;
1452 sio.close_delay = portp->port.close_delay;
1453 sio.closing_wait = portp->closing_wait;
1454 sio.custom_divisor = portp->custom_divisor;
1455 sio.xmit_fifo_size = 0;
1456 sio.hub6 = 0;
1457
1458 brdp = stli_brds[portp->brdnr];
1459 if (brdp != NULL)
1460 sio.port = brdp->iobase;
1461
1462 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1463 -EFAULT : 0;
1464}
1465
1466/*****************************************************************************/
1467
1468/*
1469 * Set port according to the serial struct info.
1470 * At this point we do not do any auto-configure stuff, so we will
1471 * just quietly ignore any requests to change irq, etc.
1472 */
1473
1474static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1475{
1476 struct serial_struct sio;
1477 int rc;
1478 struct stliport *portp = tty->driver_data;
1479
1480 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1481 return -EFAULT;
1482 if (!capable(CAP_SYS_ADMIN)) {
1483 if ((sio.baud_base != portp->baud_base) ||
1484 (sio.close_delay != portp->port.close_delay) ||
1485 ((sio.flags & ~ASYNC_USR_MASK) !=
1486 (portp->port.flags & ~ASYNC_USR_MASK)))
1487 return -EPERM;
1488 }
1489
1490 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1491 (sio.flags & ASYNC_USR_MASK);
1492 portp->baud_base = sio.baud_base;
1493 portp->port.close_delay = sio.close_delay;
1494 portp->closing_wait = sio.closing_wait;
1495 portp->custom_divisor = sio.custom_divisor;
1496
1497 if ((rc = stli_setport(tty)) < 0)
1498 return rc;
1499 return 0;
1500}
1501
1502/*****************************************************************************/
1503
1504static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1505{
1506 struct stliport *portp = tty->driver_data;
1507 struct stlibrd *brdp;
1508 int rc;
1509
1510 if (portp == NULL)
1511 return -ENODEV;
1512 if (portp->brdnr >= stli_nrbrds)
1513 return 0;
1514 brdp = stli_brds[portp->brdnr];
1515 if (brdp == NULL)
1516 return 0;
1517 if (tty->flags & (1 << TTY_IO_ERROR))
1518 return -EIO;
1519
1520 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1521 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1522 return rc;
1523
1524 return stli_mktiocm(portp->asig.sigvalue);
1525}
1526
1527static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1528 unsigned int set, unsigned int clear)
1529{
1530 struct stliport *portp = tty->driver_data;
1531 struct stlibrd *brdp;
1532 int rts = -1, dtr = -1;
1533
1534 if (portp == NULL)
1535 return -ENODEV;
1536 if (portp->brdnr >= stli_nrbrds)
1537 return 0;
1538 brdp = stli_brds[portp->brdnr];
1539 if (brdp == NULL)
1540 return 0;
1541 if (tty->flags & (1 << TTY_IO_ERROR))
1542 return -EIO;
1543
1544 if (set & TIOCM_RTS)
1545 rts = 1;
1546 if (set & TIOCM_DTR)
1547 dtr = 1;
1548 if (clear & TIOCM_RTS)
1549 rts = 0;
1550 if (clear & TIOCM_DTR)
1551 dtr = 0;
1552
1553 stli_mkasysigs(&portp->asig, dtr, rts);
1554
1555 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1556 sizeof(asysigs_t), 0);
1557}
1558
1559static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1560{
1561 struct stliport *portp;
1562 struct stlibrd *brdp;
1563 int rc;
1564 void __user *argp = (void __user *)arg;
1565
1566 portp = tty->driver_data;
1567 if (portp == NULL)
1568 return -ENODEV;
1569 if (portp->brdnr >= stli_nrbrds)
1570 return 0;
1571 brdp = stli_brds[portp->brdnr];
1572 if (brdp == NULL)
1573 return 0;
1574
1575 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1576 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1577 if (tty->flags & (1 << TTY_IO_ERROR))
1578 return -EIO;
1579 }
1580
1581 rc = 0;
1582
1583 switch (cmd) {
1584 case TIOCGSERIAL:
1585 rc = stli_getserial(portp, argp);
1586 break;
1587 case TIOCSSERIAL:
1588 rc = stli_setserial(tty, argp);
1589 break;
1590 case STL_GETPFLAG:
1591 rc = put_user(portp->pflag, (unsigned __user *)argp);
1592 break;
1593 case STL_SETPFLAG:
1594 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1595 stli_setport(tty);
1596 break;
1597 case COM_GETPORTSTATS:
1598 rc = stli_getportstats(tty, portp, argp);
1599 break;
1600 case COM_CLRPORTSTATS:
1601 rc = stli_clrportstats(portp, argp);
1602 break;
1603 case TIOCSERCONFIG:
1604 case TIOCSERGWILD:
1605 case TIOCSERSWILD:
1606 case TIOCSERGETLSR:
1607 case TIOCSERGSTRUCT:
1608 case TIOCSERGETMULTI:
1609 case TIOCSERSETMULTI:
1610 default:
1611 rc = -ENOIOCTLCMD;
1612 break;
1613 }
1614
1615 return rc;
1616}
1617
1618/*****************************************************************************/
1619
1620/*
1621 * This routine assumes that we have user context and can sleep.
1622 * Looks like it is true for the current ttys implementation..!!
1623 */
1624
1625static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1626{
1627 struct stliport *portp;
1628 struct stlibrd *brdp;
1629 struct ktermios *tiosp;
1630 asyport_t aport;
1631
1632 portp = tty->driver_data;
1633 if (portp == NULL)
1634 return;
1635 if (portp->brdnr >= stli_nrbrds)
1636 return;
1637 brdp = stli_brds[portp->brdnr];
1638 if (brdp == NULL)
1639 return;
1640
1641 tiosp = tty->termios;
1642
1643 stli_mkasyport(tty, portp, &aport, tiosp);
1644 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1645 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1646 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1647 sizeof(asysigs_t), 0);
1648 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1649 tty->hw_stopped = 0;
1650 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1651 wake_up_interruptible(&portp->port.open_wait);
1652}
1653
1654/*****************************************************************************/
1655
1656/*
1657 * Attempt to flow control who ever is sending us data. We won't really
1658 * do any flow control action here. We can't directly, and even if we
1659 * wanted to we would have to send a command to the slave. The slave
1660 * knows how to flow control, and will do so when its buffers reach its
1661 * internal high water marks. So what we will do is set a local state
1662 * bit that will stop us sending any RX data up from the poll routine
1663 * (which is the place where RX data from the slave is handled).
1664 */
1665
1666static void stli_throttle(struct tty_struct *tty)
1667{
1668 struct stliport *portp = tty->driver_data;
1669 if (portp == NULL)
1670 return;
1671 set_bit(ST_RXSTOP, &portp->state);
1672}
1673
1674/*****************************************************************************/
1675
1676/*
1677 * Unflow control the device sending us data... That means that all
1678 * we have to do is clear the RXSTOP state bit. The next poll call
1679 * will then be able to pass the RX data back up.
1680 */
1681
1682static void stli_unthrottle(struct tty_struct *tty)
1683{
1684 struct stliport *portp = tty->driver_data;
1685 if (portp == NULL)
1686 return;
1687 clear_bit(ST_RXSTOP, &portp->state);
1688}
1689
1690/*****************************************************************************/
1691
1692/*
1693 * Stop the transmitter.
1694 */
1695
1696static void stli_stop(struct tty_struct *tty)
1697{
1698}
1699
1700/*****************************************************************************/
1701
1702/*
1703 * Start the transmitter again.
1704 */
1705
1706static void stli_start(struct tty_struct *tty)
1707{
1708}
1709
1710/*****************************************************************************/
1711
1712
1713/*
1714 * Hangup this port. This is pretty much like closing the port, only
1715 * a little more brutal. No waiting for data to drain. Shutdown the
1716 * port and maybe drop signals. This is rather tricky really. We want
1717 * to close the port as well.
1718 */
1719
1720static void stli_hangup(struct tty_struct *tty)
1721{
1722 struct stliport *portp = tty->driver_data;
1723 tty_port_hangup(&portp->port);
1724}
1725
1726/*****************************************************************************/
1727
1728/*
1729 * Flush characters from the lower buffer. We may not have user context
1730 * so we cannot sleep waiting for it to complete. Also we need to check
1731 * if there is chars for this port in the TX cook buffer, and flush them
1732 * as well.
1733 */
1734
1735static void stli_flushbuffer(struct tty_struct *tty)
1736{
1737 struct stliport *portp;
1738 struct stlibrd *brdp;
1739 unsigned long ftype, flags;
1740
1741 portp = tty->driver_data;
1742 if (portp == NULL)
1743 return;
1744 if (portp->brdnr >= stli_nrbrds)
1745 return;
1746 brdp = stli_brds[portp->brdnr];
1747 if (brdp == NULL)
1748 return;
1749
1750 spin_lock_irqsave(&brd_lock, flags);
1751 if (tty == stli_txcooktty) {
1752 stli_txcooktty = NULL;
1753 stli_txcooksize = 0;
1754 stli_txcookrealsize = 0;
1755 }
1756 if (test_bit(ST_CMDING, &portp->state)) {
1757 set_bit(ST_DOFLUSHTX, &portp->state);
1758 } else {
1759 ftype = FLUSHTX;
1760 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1761 ftype |= FLUSHRX;
1762 clear_bit(ST_DOFLUSHRX, &portp->state);
1763 }
1764 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1765 }
1766 spin_unlock_irqrestore(&brd_lock, flags);
1767 tty_wakeup(tty);
1768}
1769
1770/*****************************************************************************/
1771
1772static int stli_breakctl(struct tty_struct *tty, int state)
1773{
1774 struct stlibrd *brdp;
1775 struct stliport *portp;
1776 long arg;
1777
1778 portp = tty->driver_data;
1779 if (portp == NULL)
1780 return -EINVAL;
1781 if (portp->brdnr >= stli_nrbrds)
1782 return -EINVAL;
1783 brdp = stli_brds[portp->brdnr];
1784 if (brdp == NULL)
1785 return -EINVAL;
1786
1787 arg = (state == -1) ? BREAKON : BREAKOFF;
1788 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1789 return 0;
1790}
1791
1792/*****************************************************************************/
1793
1794static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1795{
1796 struct stliport *portp;
1797 unsigned long tend;
1798
1799 portp = tty->driver_data;
1800 if (portp == NULL)
1801 return;
1802
1803 if (timeout == 0)
1804 timeout = HZ;
1805 tend = jiffies + timeout;
1806
1807 while (test_bit(ST_TXBUSY, &portp->state)) {
1808 if (signal_pending(current))
1809 break;
1810 msleep_interruptible(20);
1811 if (time_after_eq(jiffies, tend))
1812 break;
1813 }
1814}
1815
1816/*****************************************************************************/
1817
1818static void stli_sendxchar(struct tty_struct *tty, char ch)
1819{
1820 struct stlibrd *brdp;
1821 struct stliport *portp;
1822 asyctrl_t actrl;
1823
1824 portp = tty->driver_data;
1825 if (portp == NULL)
1826 return;
1827 if (portp->brdnr >= stli_nrbrds)
1828 return;
1829 brdp = stli_brds[portp->brdnr];
1830 if (brdp == NULL)
1831 return;
1832
1833 memset(&actrl, 0, sizeof(asyctrl_t));
1834 if (ch == STOP_CHAR(tty)) {
1835 actrl.rxctrl = CT_STOPFLOW;
1836 } else if (ch == START_CHAR(tty)) {
1837 actrl.rxctrl = CT_STARTFLOW;
1838 } else {
1839 actrl.txctrl = CT_SENDCHR;
1840 actrl.tximdch = ch;
1841 }
1842 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1843}
1844
1845static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1846{
1847 char *uart;
1848 int rc;
1849
1850 rc = stli_portcmdstats(NULL, portp);
1851
1852 uart = "UNKNOWN";
1853 if (test_bit(BST_STARTED, &brdp->state)) {
1854 switch (stli_comstats.hwid) {
1855 case 0: uart = "2681"; break;
1856 case 1: uart = "SC26198"; break;
1857 default:uart = "CD1400"; break;
1858 }
1859 }
1860 seq_printf(m, "%d: uart:%s ", portnr, uart);
1861
1862 if (test_bit(BST_STARTED, &brdp->state) && rc >= 0) {
1863 char sep;
1864
1865 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1866 (int) stli_comstats.rxtotal);
1867
1868 if (stli_comstats.rxframing)
1869 seq_printf(m, " fe:%d",
1870 (int) stli_comstats.rxframing);
1871 if (stli_comstats.rxparity)
1872 seq_printf(m, " pe:%d",
1873 (int) stli_comstats.rxparity);
1874 if (stli_comstats.rxbreaks)
1875 seq_printf(m, " brk:%d",
1876 (int) stli_comstats.rxbreaks);
1877 if (stli_comstats.rxoverrun)
1878 seq_printf(m, " oe:%d",
1879 (int) stli_comstats.rxoverrun);
1880
1881 sep = ' ';
1882 if (stli_comstats.signals & TIOCM_RTS) {
1883 seq_printf(m, "%c%s", sep, "RTS");
1884 sep = '|';
1885 }
1886 if (stli_comstats.signals & TIOCM_CTS) {
1887 seq_printf(m, "%c%s", sep, "CTS");
1888 sep = '|';
1889 }
1890 if (stli_comstats.signals & TIOCM_DTR) {
1891 seq_printf(m, "%c%s", sep, "DTR");
1892 sep = '|';
1893 }
1894 if (stli_comstats.signals & TIOCM_CD) {
1895 seq_printf(m, "%c%s", sep, "DCD");
1896 sep = '|';
1897 }
1898 if (stli_comstats.signals & TIOCM_DSR) {
1899 seq_printf(m, "%c%s", sep, "DSR");
1900 sep = '|';
1901 }
1902 }
1903 seq_putc(m, '\n');
1904}
1905
1906/*****************************************************************************/
1907
1908/*
1909 * Port info, read from the /proc file system.
1910 */
1911
1912static int stli_proc_show(struct seq_file *m, void *v)
1913{
1914 struct stlibrd *brdp;
1915 struct stliport *portp;
1916 unsigned int brdnr, portnr, totalport;
1917
1918 totalport = 0;
1919
1920 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1921
1922/*
1923 * We scan through for each board, panel and port. The offset is
1924 * calculated on the fly, and irrelevant ports are skipped.
1925 */
1926 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1927 brdp = stli_brds[brdnr];
1928 if (brdp == NULL)
1929 continue;
1930 if (brdp->state == 0)
1931 continue;
1932
1933 totalport = brdnr * STL_MAXPORTS;
1934 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1935 totalport++) {
1936 portp = brdp->ports[portnr];
1937 if (portp == NULL)
1938 continue;
1939 stli_portinfo(m, brdp, portp, totalport);
1940 }
1941 }
1942 return 0;
1943}
1944
1945static int stli_proc_open(struct inode *inode, struct file *file)
1946{
1947 return single_open(file, stli_proc_show, NULL);
1948}
1949
1950static const struct file_operations stli_proc_fops = {
1951 .owner = THIS_MODULE,
1952 .open = stli_proc_open,
1953 .read = seq_read,
1954 .llseek = seq_lseek,
1955 .release = single_release,
1956};
1957
1958/*****************************************************************************/
1959
1960/*
1961 * Generic send command routine. This will send a message to the slave,
1962 * of the specified type with the specified argument. Must be very
1963 * careful of data that will be copied out from shared memory -
1964 * containing command results. The command completion is all done from
1965 * a poll routine that does not have user context. Therefore you cannot
1966 * copy back directly into user space, or to the kernel stack of a
1967 * process. This routine does not sleep, so can be called from anywhere.
1968 *
1969 * The caller must hold the brd_lock (see also stli_sendcmd the usual
1970 * entry point)
1971 */
1972
1973static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1974{
1975 cdkhdr_t __iomem *hdrp;
1976 cdkctrl_t __iomem *cp;
1977 unsigned char __iomem *bits;
1978
1979 if (test_bit(ST_CMDING, &portp->state)) {
1980 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1981 (int) cmd);
1982 return;
1983 }
1984
1985 EBRDENABLE(brdp);
1986 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1987 if (size > 0) {
1988 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1989 if (copyback) {
1990 portp->argp = arg;
1991 portp->argsize = size;
1992 }
1993 }
1994 writel(0, &cp->status);
1995 writel(cmd, &cp->cmd);
1996 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1997 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1998 portp->portidx;
1999 writeb(readb(bits) | portp->portbit, bits);
2000 set_bit(ST_CMDING, &portp->state);
2001 EBRDDISABLE(brdp);
2002}
2003
2004static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2005{
2006 unsigned long flags;
2007
2008 spin_lock_irqsave(&brd_lock, flags);
2009 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2010 spin_unlock_irqrestore(&brd_lock, flags);
2011}
2012
2013/*****************************************************************************/
2014
2015/*
2016 * Read data from shared memory. This assumes that the shared memory
2017 * is enabled and that interrupts are off. Basically we just empty out
2018 * the shared memory buffer into the tty buffer. Must be careful to
2019 * handle the case where we fill up the tty buffer, but still have
2020 * more chars to unload.
2021 */
2022
2023static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2024{
2025 cdkasyrq_t __iomem *rp;
2026 char __iomem *shbuf;
2027 struct tty_struct *tty;
2028 unsigned int head, tail, size;
2029 unsigned int len, stlen;
2030
2031 if (test_bit(ST_RXSTOP, &portp->state))
2032 return;
2033 tty = tty_port_tty_get(&portp->port);
2034 if (tty == NULL)
2035 return;
2036
2037 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2038 head = (unsigned int) readw(&rp->head);
2039 if (head != ((unsigned int) readw(&rp->head)))
2040 head = (unsigned int) readw(&rp->head);
2041 tail = (unsigned int) readw(&rp->tail);
2042 size = portp->rxsize;
2043 if (head >= tail) {
2044 len = head - tail;
2045 stlen = len;
2046 } else {
2047 len = size - (tail - head);
2048 stlen = size - tail;
2049 }
2050
2051 len = tty_buffer_request_room(tty, len);
2052
2053 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2054
2055 while (len > 0) {
2056 unsigned char *cptr;
2057
2058 stlen = min(len, stlen);
2059 tty_prepare_flip_string(tty, &cptr, stlen);
2060 memcpy_fromio(cptr, shbuf + tail, stlen);
2061 len -= stlen;
2062 tail += stlen;
2063 if (tail >= size) {
2064 tail = 0;
2065 stlen = head;
2066 }
2067 }
2068 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2069 writew(tail, &rp->tail);
2070
2071 if (head != tail)
2072 set_bit(ST_RXING, &portp->state);
2073
2074 tty_schedule_flip(tty);
2075 tty_kref_put(tty);
2076}
2077
2078/*****************************************************************************/
2079
2080/*
2081 * Set up and carry out any delayed commands. There is only a small set
2082 * of slave commands that can be done "off-level". So it is not too
2083 * difficult to deal with them here.
2084 */
2085
2086static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2087{
2088 int cmd;
2089
2090 if (test_bit(ST_DOSIGS, &portp->state)) {
2091 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2092 test_bit(ST_DOFLUSHRX, &portp->state))
2093 cmd = A_SETSIGNALSF;
2094 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2095 cmd = A_SETSIGNALSFTX;
2096 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2097 cmd = A_SETSIGNALSFRX;
2098 else
2099 cmd = A_SETSIGNALS;
2100 clear_bit(ST_DOFLUSHTX, &portp->state);
2101 clear_bit(ST_DOFLUSHRX, &portp->state);
2102 clear_bit(ST_DOSIGS, &portp->state);
2103 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2104 sizeof(asysigs_t));
2105 writel(0, &cp->status);
2106 writel(cmd, &cp->cmd);
2107 set_bit(ST_CMDING, &portp->state);
2108 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2109 test_bit(ST_DOFLUSHRX, &portp->state)) {
2110 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2111 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2112 clear_bit(ST_DOFLUSHTX, &portp->state);
2113 clear_bit(ST_DOFLUSHRX, &portp->state);
2114 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2115 writel(0, &cp->status);
2116 writel(A_FLUSH, &cp->cmd);
2117 set_bit(ST_CMDING, &portp->state);
2118 }
2119}
2120
2121/*****************************************************************************/
2122
2123/*
2124 * Host command service checking. This handles commands or messages
2125 * coming from the slave to the host. Must have board shared memory
2126 * enabled and interrupts off when called. Notice that by servicing the
2127 * read data last we don't need to change the shared memory pointer
2128 * during processing (which is a slow IO operation).
2129 * Return value indicates if this port is still awaiting actions from
2130 * the slave (like open, command, or even TX data being sent). If 0
2131 * then port is still busy, otherwise no longer busy.
2132 */
2133
2134static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2135{
2136 cdkasy_t __iomem *ap;
2137 cdkctrl_t __iomem *cp;
2138 struct tty_struct *tty;
2139 asynotify_t nt;
2140 unsigned long oldsigs;
2141 int rc, donerx;
2142
2143 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2144 cp = &ap->ctrl;
2145
2146/*
2147 * Check if we are waiting for an open completion message.
2148 */
2149 if (test_bit(ST_OPENING, &portp->state)) {
2150 rc = readl(&cp->openarg);
2151 if (readb(&cp->open) == 0 && rc != 0) {
2152 if (rc > 0)
2153 rc--;
2154 writel(0, &cp->openarg);
2155 portp->rc = rc;
2156 clear_bit(ST_OPENING, &portp->state);
2157 wake_up_interruptible(&portp->raw_wait);
2158 }
2159 }
2160
2161/*
2162 * Check if we are waiting for a close completion message.
2163 */
2164 if (test_bit(ST_CLOSING, &portp->state)) {
2165 rc = (int) readl(&cp->closearg);
2166 if (readb(&cp->close) == 0 && rc != 0) {
2167 if (rc > 0)
2168 rc--;
2169 writel(0, &cp->closearg);
2170 portp->rc = rc;
2171 clear_bit(ST_CLOSING, &portp->state);
2172 wake_up_interruptible(&portp->raw_wait);
2173 }
2174 }
2175
2176/*
2177 * Check if we are waiting for a command completion message. We may
2178 * need to copy out the command results associated with this command.
2179 */
2180 if (test_bit(ST_CMDING, &portp->state)) {
2181 rc = readl(&cp->status);
2182 if (readl(&cp->cmd) == 0 && rc != 0) {
2183 if (rc > 0)
2184 rc--;
2185 if (portp->argp != NULL) {
2186 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2187 portp->argsize);
2188 portp->argp = NULL;
2189 }
2190 writel(0, &cp->status);
2191 portp->rc = rc;
2192 clear_bit(ST_CMDING, &portp->state);
2193 stli_dodelaycmd(portp, cp);
2194 wake_up_interruptible(&portp->raw_wait);
2195 }
2196 }
2197
2198/*
2199 * Check for any notification messages ready. This includes lots of
2200 * different types of events - RX chars ready, RX break received,
2201 * TX data low or empty in the slave, modem signals changed state.
2202 */
2203 donerx = 0;
2204
2205 if (ap->notify) {
2206 nt = ap->changed;
2207 ap->notify = 0;
2208 tty = tty_port_tty_get(&portp->port);
2209
2210 if (nt.signal & SG_DCD) {
2211 oldsigs = portp->sigs;
2212 portp->sigs = stli_mktiocm(nt.sigvalue);
2213 clear_bit(ST_GETSIGS, &portp->state);
2214 if ((portp->sigs & TIOCM_CD) &&
2215 ((oldsigs & TIOCM_CD) == 0))
2216 wake_up_interruptible(&portp->port.open_wait);
2217 if ((oldsigs & TIOCM_CD) &&
2218 ((portp->sigs & TIOCM_CD) == 0)) {
2219 if (portp->port.flags & ASYNC_CHECK_CD) {
2220 if (tty)
2221 tty_hangup(tty);
2222 }
2223 }
2224 }
2225
2226 if (nt.data & DT_TXEMPTY)
2227 clear_bit(ST_TXBUSY, &portp->state);
2228 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2229 if (tty != NULL) {
2230 tty_wakeup(tty);
2231 EBRDENABLE(brdp);
2232 }
2233 }
2234
2235 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2236 if (tty != NULL) {
2237 tty_insert_flip_char(tty, 0, TTY_BREAK);
2238 if (portp->port.flags & ASYNC_SAK) {
2239 do_SAK(tty);
2240 EBRDENABLE(brdp);
2241 }
2242 tty_schedule_flip(tty);
2243 }
2244 }
2245 tty_kref_put(tty);
2246
2247 if (nt.data & DT_RXBUSY) {
2248 donerx++;
2249 stli_read(brdp, portp);
2250 }
2251 }
2252
2253/*
2254 * It might seem odd that we are checking for more RX chars here.
2255 * But, we need to handle the case where the tty buffer was previously
2256 * filled, but we had more characters to pass up. The slave will not
2257 * send any more RX notify messages until the RX buffer has been emptied.
2258 * But it will leave the service bits on (since the buffer is not empty).
2259 * So from here we can try to process more RX chars.
2260 */
2261 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2262 clear_bit(ST_RXING, &portp->state);
2263 stli_read(brdp, portp);
2264 }
2265
2266 return((test_bit(ST_OPENING, &portp->state) ||
2267 test_bit(ST_CLOSING, &portp->state) ||
2268 test_bit(ST_CMDING, &portp->state) ||
2269 test_bit(ST_TXBUSY, &portp->state) ||
2270 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2271}
2272
2273/*****************************************************************************/
2274
2275/*
2276 * Service all ports on a particular board. Assumes that the boards
2277 * shared memory is enabled, and that the page pointer is pointed
2278 * at the cdk header structure.
2279 */
2280
2281static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2282{
2283 struct stliport *portp;
2284 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2285 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2286 unsigned char __iomem *slavep;
2287 int bitpos, bitat, bitsize;
2288 int channr, nrdevs, slavebitchange;
2289
2290 bitsize = brdp->bitsize;
2291 nrdevs = brdp->nrdevs;
2292
2293/*
2294 * Check if slave wants any service. Basically we try to do as
2295 * little work as possible here. There are 2 levels of service
2296 * bits. So if there is nothing to do we bail early. We check
2297 * 8 service bits at a time in the inner loop, so we can bypass
2298 * the lot if none of them want service.
2299 */
2300 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2301 bitsize);
2302
2303 memset(&slavebits[0], 0, bitsize);
2304 slavebitchange = 0;
2305
2306 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2307 if (hostbits[bitpos] == 0)
2308 continue;
2309 channr = bitpos * 8;
2310 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2311 if (hostbits[bitpos] & bitat) {
2312 portp = brdp->ports[(channr - 1)];
2313 if (stli_hostcmd(brdp, portp)) {
2314 slavebitchange++;
2315 slavebits[bitpos] |= bitat;
2316 }
2317 }
2318 }
2319 }
2320
2321/*
2322 * If any of the ports are no longer busy then update them in the
2323 * slave request bits. We need to do this after, since a host port
2324 * service may initiate more slave requests.
2325 */
2326 if (slavebitchange) {
2327 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2328 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2329 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2330 if (readb(slavebits + bitpos))
2331 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2332 }
2333 }
2334}
2335
2336/*****************************************************************************/
2337
2338/*
2339 * Driver poll routine. This routine polls the boards in use and passes
2340 * messages back up to host when necessary. This is actually very
2341 * CPU efficient, since we will always have the kernel poll clock, it
2342 * adds only a few cycles when idle (since board service can be
2343 * determined very easily), but when loaded generates no interrupts
2344 * (with their expensive associated context change).
2345 */
2346
2347static void stli_poll(unsigned long arg)
2348{
2349 cdkhdr_t __iomem *hdrp;
2350 struct stlibrd *brdp;
2351 unsigned int brdnr;
2352
2353 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2354
2355/*
2356 * Check each board and do any servicing required.
2357 */
2358 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2359 brdp = stli_brds[brdnr];
2360 if (brdp == NULL)
2361 continue;
2362 if (!test_bit(BST_STARTED, &brdp->state))
2363 continue;
2364
2365 spin_lock(&brd_lock);
2366 EBRDENABLE(brdp);
2367 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2368 if (readb(&hdrp->hostreq))
2369 stli_brdpoll(brdp, hdrp);
2370 EBRDDISABLE(brdp);
2371 spin_unlock(&brd_lock);
2372 }
2373}
2374
2375/*****************************************************************************/
2376
2377/*
2378 * Translate the termios settings into the port setting structure of
2379 * the slave.
2380 */
2381
2382static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2383 asyport_t *pp, struct ktermios *tiosp)
2384{
2385 memset(pp, 0, sizeof(asyport_t));
2386
2387/*
2388 * Start of by setting the baud, char size, parity and stop bit info.
2389 */
2390 pp->baudout = tty_get_baud_rate(tty);
2391 if ((tiosp->c_cflag & CBAUD) == B38400) {
2392 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2393 pp->baudout = 57600;
2394 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2395 pp->baudout = 115200;
2396 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2397 pp->baudout = 230400;
2398 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2399 pp->baudout = 460800;
2400 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2401 pp->baudout = (portp->baud_base / portp->custom_divisor);
2402 }
2403 if (pp->baudout > STL_MAXBAUD)
2404 pp->baudout = STL_MAXBAUD;
2405 pp->baudin = pp->baudout;
2406
2407 switch (tiosp->c_cflag & CSIZE) {
2408 case CS5:
2409 pp->csize = 5;
2410 break;
2411 case CS6:
2412 pp->csize = 6;
2413 break;
2414 case CS7:
2415 pp->csize = 7;
2416 break;
2417 default:
2418 pp->csize = 8;
2419 break;
2420 }
2421
2422 if (tiosp->c_cflag & CSTOPB)
2423 pp->stopbs = PT_STOP2;
2424 else
2425 pp->stopbs = PT_STOP1;
2426
2427 if (tiosp->c_cflag & PARENB) {
2428 if (tiosp->c_cflag & PARODD)
2429 pp->parity = PT_ODDPARITY;
2430 else
2431 pp->parity = PT_EVENPARITY;
2432 } else {
2433 pp->parity = PT_NOPARITY;
2434 }
2435
2436/*
2437 * Set up any flow control options enabled.
2438 */
2439 if (tiosp->c_iflag & IXON) {
2440 pp->flow |= F_IXON;
2441 if (tiosp->c_iflag & IXANY)
2442 pp->flow |= F_IXANY;
2443 }
2444 if (tiosp->c_cflag & CRTSCTS)
2445 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2446
2447 pp->startin = tiosp->c_cc[VSTART];
2448 pp->stopin = tiosp->c_cc[VSTOP];
2449 pp->startout = tiosp->c_cc[VSTART];
2450 pp->stopout = tiosp->c_cc[VSTOP];
2451
2452/*
2453 * Set up the RX char marking mask with those RX error types we must
2454 * catch. We can get the slave to help us out a little here, it will
2455 * ignore parity errors and breaks for us, and mark parity errors in
2456 * the data stream.
2457 */
2458 if (tiosp->c_iflag & IGNPAR)
2459 pp->iflag |= FI_IGNRXERRS;
2460 if (tiosp->c_iflag & IGNBRK)
2461 pp->iflag |= FI_IGNBREAK;
2462
2463 portp->rxmarkmsk = 0;
2464 if (tiosp->c_iflag & (INPCK | PARMRK))
2465 pp->iflag |= FI_1MARKRXERRS;
2466 if (tiosp->c_iflag & BRKINT)
2467 portp->rxmarkmsk |= BRKINT;
2468
2469/*
2470 * Set up clocal processing as required.
2471 */
2472 if (tiosp->c_cflag & CLOCAL)
2473 portp->port.flags &= ~ASYNC_CHECK_CD;
2474 else
2475 portp->port.flags |= ASYNC_CHECK_CD;
2476
2477/*
2478 * Transfer any persistent flags into the asyport structure.
2479 */
2480 pp->pflag = (portp->pflag & 0xffff);
2481 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2482 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2483 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2484}
2485
2486/*****************************************************************************/
2487
2488/*
2489 * Construct a slave signals structure for setting the DTR and RTS
2490 * signals as specified.
2491 */
2492
2493static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2494{
2495 memset(sp, 0, sizeof(asysigs_t));
2496 if (dtr >= 0) {
2497 sp->signal |= SG_DTR;
2498 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2499 }
2500 if (rts >= 0) {
2501 sp->signal |= SG_RTS;
2502 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2503 }
2504}
2505
2506/*****************************************************************************/
2507
2508/*
2509 * Convert the signals returned from the slave into a local TIOCM type
2510 * signals value. We keep them locally in TIOCM format.
2511 */
2512
2513static long stli_mktiocm(unsigned long sigvalue)
2514{
2515 long tiocm = 0;
2516 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2517 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2518 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2519 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2520 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2521 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2522 return(tiocm);
2523}
2524
2525/*****************************************************************************/
2526
2527/*
2528 * All panels and ports actually attached have been worked out. All
2529 * we need to do here is set up the appropriate per port data structures.
2530 */
2531
2532static int stli_initports(struct stlibrd *brdp)
2533{
2534 struct stliport *portp;
2535 unsigned int i, panelnr, panelport;
2536
2537 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2538 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2539 if (!portp) {
2540 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2541 continue;
2542 }
2543 tty_port_init(&portp->port);
2544 portp->port.ops = &stli_port_ops;
2545 portp->magic = STLI_PORTMAGIC;
2546 portp->portnr = i;
2547 portp->brdnr = brdp->brdnr;
2548 portp->panelnr = panelnr;
2549 portp->baud_base = STL_BAUDBASE;
2550 portp->port.close_delay = STL_CLOSEDELAY;
2551 portp->closing_wait = 30 * HZ;
2552 init_waitqueue_head(&portp->port.open_wait);
2553 init_waitqueue_head(&portp->port.close_wait);
2554 init_waitqueue_head(&portp->raw_wait);
2555 panelport++;
2556 if (panelport >= brdp->panels[panelnr]) {
2557 panelport = 0;
2558 panelnr++;
2559 }
2560 brdp->ports[i] = portp;
2561 }
2562
2563 return 0;
2564}
2565
2566/*****************************************************************************/
2567
2568/*
2569 * All the following routines are board specific hardware operations.
2570 */
2571
2572static void stli_ecpinit(struct stlibrd *brdp)
2573{
2574 unsigned long memconf;
2575
2576 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2577 udelay(10);
2578 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2579 udelay(100);
2580
2581 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2582 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2583}
2584
2585/*****************************************************************************/
2586
2587static void stli_ecpenable(struct stlibrd *brdp)
2588{
2589 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2590}
2591
2592/*****************************************************************************/
2593
2594static void stli_ecpdisable(struct stlibrd *brdp)
2595{
2596 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2597}
2598
2599/*****************************************************************************/
2600
2601static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2602{
2603 void __iomem *ptr;
2604 unsigned char val;
2605
2606 if (offset > brdp->memsize) {
2607 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2608 "range at line=%d(%d), brd=%d\n",
2609 (int) offset, line, __LINE__, brdp->brdnr);
2610 ptr = NULL;
2611 val = 0;
2612 } else {
2613 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2614 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2615 }
2616 outb(val, (brdp->iobase + ECP_ATMEMPR));
2617 return(ptr);
2618}
2619
2620/*****************************************************************************/
2621
2622static void stli_ecpreset(struct stlibrd *brdp)
2623{
2624 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2625 udelay(10);
2626 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2627 udelay(500);
2628}
2629
2630/*****************************************************************************/
2631
2632static void stli_ecpintr(struct stlibrd *brdp)
2633{
2634 outb(0x1, brdp->iobase);
2635}
2636
2637/*****************************************************************************/
2638
2639/*
2640 * The following set of functions act on ECP EISA boards.
2641 */
2642
2643static void stli_ecpeiinit(struct stlibrd *brdp)
2644{
2645 unsigned long memconf;
2646
2647 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2648 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2649 udelay(10);
2650 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2651 udelay(500);
2652
2653 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2654 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2655 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2656 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2657}
2658
2659/*****************************************************************************/
2660
2661static void stli_ecpeienable(struct stlibrd *brdp)
2662{
2663 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2664}
2665
2666/*****************************************************************************/
2667
2668static void stli_ecpeidisable(struct stlibrd *brdp)
2669{
2670 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2671}
2672
2673/*****************************************************************************/
2674
2675static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2676{
2677 void __iomem *ptr;
2678 unsigned char val;
2679
2680 if (offset > brdp->memsize) {
2681 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2682 "range at line=%d(%d), brd=%d\n",
2683 (int) offset, line, __LINE__, brdp->brdnr);
2684 ptr = NULL;
2685 val = 0;
2686 } else {
2687 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2688 if (offset < ECP_EIPAGESIZE)
2689 val = ECP_EIENABLE;
2690 else
2691 val = ECP_EIENABLE | 0x40;
2692 }
2693 outb(val, (brdp->iobase + ECP_EICONFR));
2694 return(ptr);
2695}
2696
2697/*****************************************************************************/
2698
2699static void stli_ecpeireset(struct stlibrd *brdp)
2700{
2701 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2702 udelay(10);
2703 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2704 udelay(500);
2705}
2706
2707/*****************************************************************************/
2708
2709/*
2710 * The following set of functions act on ECP MCA boards.
2711 */
2712
2713static void stli_ecpmcenable(struct stlibrd *brdp)
2714{
2715 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2716}
2717
2718/*****************************************************************************/
2719
2720static void stli_ecpmcdisable(struct stlibrd *brdp)
2721{
2722 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2723}
2724
2725/*****************************************************************************/
2726
2727static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2728{
2729 void __iomem *ptr;
2730 unsigned char val;
2731
2732 if (offset > brdp->memsize) {
2733 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2734 "range at line=%d(%d), brd=%d\n",
2735 (int) offset, line, __LINE__, brdp->brdnr);
2736 ptr = NULL;
2737 val = 0;
2738 } else {
2739 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2740 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2741 }
2742 outb(val, (brdp->iobase + ECP_MCCONFR));
2743 return(ptr);
2744}
2745
2746/*****************************************************************************/
2747
2748static void stli_ecpmcreset(struct stlibrd *brdp)
2749{
2750 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2751 udelay(10);
2752 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2753 udelay(500);
2754}
2755
2756/*****************************************************************************/
2757
2758/*
2759 * The following set of functions act on ECP PCI boards.
2760 */
2761
2762static void stli_ecppciinit(struct stlibrd *brdp)
2763{
2764 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2765 udelay(10);
2766 outb(0, (brdp->iobase + ECP_PCICONFR));
2767 udelay(500);
2768}
2769
2770/*****************************************************************************/
2771
2772static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2773{
2774 void __iomem *ptr;
2775 unsigned char val;
2776
2777 if (offset > brdp->memsize) {
2778 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2779 "range at line=%d(%d), board=%d\n",
2780 (int) offset, line, __LINE__, brdp->brdnr);
2781 ptr = NULL;
2782 val = 0;
2783 } else {
2784 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2785 val = (offset / ECP_PCIPAGESIZE) << 1;
2786 }
2787 outb(val, (brdp->iobase + ECP_PCICONFR));
2788 return(ptr);
2789}
2790
2791/*****************************************************************************/
2792
2793static void stli_ecppcireset(struct stlibrd *brdp)
2794{
2795 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2796 udelay(10);
2797 outb(0, (brdp->iobase + ECP_PCICONFR));
2798 udelay(500);
2799}
2800
2801/*****************************************************************************/
2802
2803/*
2804 * The following routines act on ONboards.
2805 */
2806
2807static void stli_onbinit(struct stlibrd *brdp)
2808{
2809 unsigned long memconf;
2810
2811 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2812 udelay(10);
2813 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2814 mdelay(1000);
2815
2816 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2817 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2818 outb(0x1, brdp->iobase);
2819 mdelay(1);
2820}
2821
2822/*****************************************************************************/
2823
2824static void stli_onbenable(struct stlibrd *brdp)
2825{
2826 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2827}
2828
2829/*****************************************************************************/
2830
2831static void stli_onbdisable(struct stlibrd *brdp)
2832{
2833 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2834}
2835
2836/*****************************************************************************/
2837
2838static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2839{
2840 void __iomem *ptr;
2841
2842 if (offset > brdp->memsize) {
2843 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2844 "range at line=%d(%d), brd=%d\n",
2845 (int) offset, line, __LINE__, brdp->brdnr);
2846 ptr = NULL;
2847 } else {
2848 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2849 }
2850 return(ptr);
2851}
2852
2853/*****************************************************************************/
2854
2855static void stli_onbreset(struct stlibrd *brdp)
2856{
2857 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2858 udelay(10);
2859 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2860 mdelay(1000);
2861}
2862
2863/*****************************************************************************/
2864
2865/*
2866 * The following routines act on ONboard EISA.
2867 */
2868
2869static void stli_onbeinit(struct stlibrd *brdp)
2870{
2871 unsigned long memconf;
2872
2873 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2874 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2875 udelay(10);
2876 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2877 mdelay(1000);
2878
2879 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2880 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2881 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2882 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2883 outb(0x1, brdp->iobase);
2884 mdelay(1);
2885}
2886
2887/*****************************************************************************/
2888
2889static void stli_onbeenable(struct stlibrd *brdp)
2890{
2891 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2892}
2893
2894/*****************************************************************************/
2895
2896static void stli_onbedisable(struct stlibrd *brdp)
2897{
2898 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2899}
2900
2901/*****************************************************************************/
2902
2903static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2904{
2905 void __iomem *ptr;
2906 unsigned char val;
2907
2908 if (offset > brdp->memsize) {
2909 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2910 "range at line=%d(%d), brd=%d\n",
2911 (int) offset, line, __LINE__, brdp->brdnr);
2912 ptr = NULL;
2913 val = 0;
2914 } else {
2915 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2916 if (offset < ONB_EIPAGESIZE)
2917 val = ONB_EIENABLE;
2918 else
2919 val = ONB_EIENABLE | 0x40;
2920 }
2921 outb(val, (brdp->iobase + ONB_EICONFR));
2922 return(ptr);
2923}
2924
2925/*****************************************************************************/
2926
2927static void stli_onbereset(struct stlibrd *brdp)
2928{
2929 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2930 udelay(10);
2931 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2932 mdelay(1000);
2933}
2934
2935/*****************************************************************************/
2936
2937/*
2938 * The following routines act on Brumby boards.
2939 */
2940
2941static void stli_bbyinit(struct stlibrd *brdp)
2942{
2943 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2944 udelay(10);
2945 outb(0, (brdp->iobase + BBY_ATCONFR));
2946 mdelay(1000);
2947 outb(0x1, brdp->iobase);
2948 mdelay(1);
2949}
2950
2951/*****************************************************************************/
2952
2953static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2954{
2955 void __iomem *ptr;
2956 unsigned char val;
2957
2958 BUG_ON(offset > brdp->memsize);
2959
2960 ptr = brdp->membase + (offset % BBY_PAGESIZE);
2961 val = (unsigned char) (offset / BBY_PAGESIZE);
2962 outb(val, (brdp->iobase + BBY_ATCONFR));
2963 return(ptr);
2964}
2965
2966/*****************************************************************************/
2967
2968static void stli_bbyreset(struct stlibrd *brdp)
2969{
2970 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2971 udelay(10);
2972 outb(0, (brdp->iobase + BBY_ATCONFR));
2973 mdelay(1000);
2974}
2975
2976/*****************************************************************************/
2977
2978/*
2979 * The following routines act on original old Stallion boards.
2980 */
2981
2982static void stli_stalinit(struct stlibrd *brdp)
2983{
2984 outb(0x1, brdp->iobase);
2985 mdelay(1000);
2986}
2987
2988/*****************************************************************************/
2989
2990static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2991{
2992 BUG_ON(offset > brdp->memsize);
2993 return brdp->membase + (offset % STAL_PAGESIZE);
2994}
2995
2996/*****************************************************************************/
2997
2998static void stli_stalreset(struct stlibrd *brdp)
2999{
3000 u32 __iomem *vecp;
3001
3002 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3003 writel(0xffff0000, vecp);
3004 outb(0, brdp->iobase);
3005 mdelay(1000);
3006}
3007
3008/*****************************************************************************/
3009
3010/*
3011 * Try to find an ECP board and initialize it. This handles only ECP
3012 * board types.
3013 */
3014
3015static int stli_initecp(struct stlibrd *brdp)
3016{
3017 cdkecpsig_t sig;
3018 cdkecpsig_t __iomem *sigsp;
3019 unsigned int status, nxtid;
3020 char *name;
3021 int retval, panelnr, nrports;
3022
3023 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3024 retval = -ENODEV;
3025 goto err;
3026 }
3027
3028 brdp->iosize = ECP_IOSIZE;
3029
3030 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3031 retval = -EIO;
3032 goto err;
3033 }
3034
3035/*
3036 * Based on the specific board type setup the common vars to access
3037 * and enable shared memory. Set all board specific information now
3038 * as well.
3039 */
3040 switch (brdp->brdtype) {
3041 case BRD_ECP:
3042 brdp->memsize = ECP_MEMSIZE;
3043 brdp->pagesize = ECP_ATPAGESIZE;
3044 brdp->init = stli_ecpinit;
3045 brdp->enable = stli_ecpenable;
3046 brdp->reenable = stli_ecpenable;
3047 brdp->disable = stli_ecpdisable;
3048 brdp->getmemptr = stli_ecpgetmemptr;
3049 brdp->intr = stli_ecpintr;
3050 brdp->reset = stli_ecpreset;
3051 name = "serial(EC8/64)";
3052 break;
3053
3054 case BRD_ECPE:
3055 brdp->memsize = ECP_MEMSIZE;
3056 brdp->pagesize = ECP_EIPAGESIZE;
3057 brdp->init = stli_ecpeiinit;
3058 brdp->enable = stli_ecpeienable;
3059 brdp->reenable = stli_ecpeienable;
3060 brdp->disable = stli_ecpeidisable;
3061 brdp->getmemptr = stli_ecpeigetmemptr;
3062 brdp->intr = stli_ecpintr;
3063 brdp->reset = stli_ecpeireset;
3064 name = "serial(EC8/64-EI)";
3065 break;
3066
3067 case BRD_ECPMC:
3068 brdp->memsize = ECP_MEMSIZE;
3069 brdp->pagesize = ECP_MCPAGESIZE;
3070 brdp->init = NULL;
3071 brdp->enable = stli_ecpmcenable;
3072 brdp->reenable = stli_ecpmcenable;
3073 brdp->disable = stli_ecpmcdisable;
3074 brdp->getmemptr = stli_ecpmcgetmemptr;
3075 brdp->intr = stli_ecpintr;
3076 brdp->reset = stli_ecpmcreset;
3077 name = "serial(EC8/64-MCA)";
3078 break;
3079
3080 case BRD_ECPPCI:
3081 brdp->memsize = ECP_PCIMEMSIZE;
3082 brdp->pagesize = ECP_PCIPAGESIZE;
3083 brdp->init = stli_ecppciinit;
3084 brdp->enable = NULL;
3085 brdp->reenable = NULL;
3086 brdp->disable = NULL;
3087 brdp->getmemptr = stli_ecppcigetmemptr;
3088 brdp->intr = stli_ecpintr;
3089 brdp->reset = stli_ecppcireset;
3090 name = "serial(EC/RA-PCI)";
3091 break;
3092
3093 default:
3094 retval = -EINVAL;
3095 goto err_reg;
3096 }
3097
3098/*
3099 * The per-board operations structure is all set up, so now let's go
3100 * and get the board operational. Firstly initialize board configuration
3101 * registers. Set the memory mapping info so we can get at the boards
3102 * shared memory.
3103 */
3104 EBRDINIT(brdp);
3105
3106 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3107 if (brdp->membase == NULL) {
3108 retval = -ENOMEM;
3109 goto err_reg;
3110 }
3111
3112/*
3113 * Now that all specific code is set up, enable the shared memory and
3114 * look for the a signature area that will tell us exactly what board
3115 * this is, and what it is connected to it.
3116 */
3117 EBRDENABLE(brdp);
3118 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3119 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3120 EBRDDISABLE(brdp);
3121
3122 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3123 retval = -ENODEV;
3124 goto err_unmap;
3125 }
3126
3127/*
3128 * Scan through the signature looking at the panels connected to the
3129 * board. Calculate the total number of ports as we go.
3130 */
3131 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3132 status = sig.panelid[nxtid];
3133 if ((status & ECH_PNLIDMASK) != nxtid)
3134 break;
3135
3136 brdp->panelids[panelnr] = status;
3137 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3138 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3139 nxtid++;
3140 brdp->panels[panelnr] = nrports;
3141 brdp->nrports += nrports;
3142 nxtid++;
3143 brdp->nrpanels++;
3144 }
3145
3146
3147 set_bit(BST_FOUND, &brdp->state);
3148 return 0;
3149err_unmap:
3150 iounmap(brdp->membase);
3151 brdp->membase = NULL;
3152err_reg:
3153 release_region(brdp->iobase, brdp->iosize);
3154err:
3155 return retval;
3156}
3157
3158/*****************************************************************************/
3159
3160/*
3161 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3162 * This handles only these board types.
3163 */
3164
3165static int stli_initonb(struct stlibrd *brdp)
3166{
3167 cdkonbsig_t sig;
3168 cdkonbsig_t __iomem *sigsp;
3169 char *name;
3170 int i, retval;
3171
3172/*
3173 * Do a basic sanity check on the IO and memory addresses.
3174 */
3175 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3176 retval = -ENODEV;
3177 goto err;
3178 }
3179
3180 brdp->iosize = ONB_IOSIZE;
3181
3182 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3183 retval = -EIO;
3184 goto err;
3185 }
3186
3187/*
3188 * Based on the specific board type setup the common vars to access
3189 * and enable shared memory. Set all board specific information now
3190 * as well.
3191 */
3192 switch (brdp->brdtype) {
3193 case BRD_ONBOARD:
3194 case BRD_ONBOARD2:
3195 brdp->memsize = ONB_MEMSIZE;
3196 brdp->pagesize = ONB_ATPAGESIZE;
3197 brdp->init = stli_onbinit;
3198 brdp->enable = stli_onbenable;
3199 brdp->reenable = stli_onbenable;
3200 brdp->disable = stli_onbdisable;
3201 brdp->getmemptr = stli_onbgetmemptr;
3202 brdp->intr = stli_ecpintr;
3203 brdp->reset = stli_onbreset;
3204 if (brdp->memaddr > 0x100000)
3205 brdp->enabval = ONB_MEMENABHI;
3206 else
3207 brdp->enabval = ONB_MEMENABLO;
3208 name = "serial(ONBoard)";
3209 break;
3210
3211 case BRD_ONBOARDE:
3212 brdp->memsize = ONB_EIMEMSIZE;
3213 brdp->pagesize = ONB_EIPAGESIZE;
3214 brdp->init = stli_onbeinit;
3215 brdp->enable = stli_onbeenable;
3216 brdp->reenable = stli_onbeenable;
3217 brdp->disable = stli_onbedisable;
3218 brdp->getmemptr = stli_onbegetmemptr;
3219 brdp->intr = stli_ecpintr;
3220 brdp->reset = stli_onbereset;
3221 name = "serial(ONBoard/E)";
3222 break;
3223
3224 case BRD_BRUMBY4:
3225 brdp->memsize = BBY_MEMSIZE;
3226 brdp->pagesize = BBY_PAGESIZE;
3227 brdp->init = stli_bbyinit;
3228 brdp->enable = NULL;
3229 brdp->reenable = NULL;
3230 brdp->disable = NULL;
3231 brdp->getmemptr = stli_bbygetmemptr;
3232 brdp->intr = stli_ecpintr;
3233 brdp->reset = stli_bbyreset;
3234 name = "serial(Brumby)";
3235 break;
3236
3237 case BRD_STALLION:
3238 brdp->memsize = STAL_MEMSIZE;
3239 brdp->pagesize = STAL_PAGESIZE;
3240 brdp->init = stli_stalinit;
3241 brdp->enable = NULL;
3242 brdp->reenable = NULL;
3243 brdp->disable = NULL;
3244 brdp->getmemptr = stli_stalgetmemptr;
3245 brdp->intr = stli_ecpintr;
3246 brdp->reset = stli_stalreset;
3247 name = "serial(Stallion)";
3248 break;
3249
3250 default:
3251 retval = -EINVAL;
3252 goto err_reg;
3253 }
3254
3255/*
3256 * The per-board operations structure is all set up, so now let's go
3257 * and get the board operational. Firstly initialize board configuration
3258 * registers. Set the memory mapping info so we can get at the boards
3259 * shared memory.
3260 */
3261 EBRDINIT(brdp);
3262
3263 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3264 if (brdp->membase == NULL) {
3265 retval = -ENOMEM;
3266 goto err_reg;
3267 }
3268
3269/*
3270 * Now that all specific code is set up, enable the shared memory and
3271 * look for the a signature area that will tell us exactly what board
3272 * this is, and how many ports.
3273 */
3274 EBRDENABLE(brdp);
3275 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3276 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3277 EBRDDISABLE(brdp);
3278
3279 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3280 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3281 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3282 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3283 retval = -ENODEV;
3284 goto err_unmap;
3285 }
3286
3287/*
3288 * Scan through the signature alive mask and calculate how many ports
3289 * there are on this board.
3290 */
3291 brdp->nrpanels = 1;
3292 if (sig.amask1) {
3293 brdp->nrports = 32;
3294 } else {
3295 for (i = 0; (i < 16); i++) {
3296 if (((sig.amask0 << i) & 0x8000) == 0)
3297 break;
3298 }
3299 brdp->nrports = i;
3300 }
3301 brdp->panels[0] = brdp->nrports;
3302
3303
3304 set_bit(BST_FOUND, &brdp->state);
3305 return 0;
3306err_unmap:
3307 iounmap(brdp->membase);
3308 brdp->membase = NULL;
3309err_reg:
3310 release_region(brdp->iobase, brdp->iosize);
3311err:
3312 return retval;
3313}
3314
3315/*****************************************************************************/
3316
3317/*
3318 * Start up a running board. This routine is only called after the
3319 * code has been down loaded to the board and is operational. It will
3320 * read in the memory map, and get the show on the road...
3321 */
3322
3323static int stli_startbrd(struct stlibrd *brdp)
3324{
3325 cdkhdr_t __iomem *hdrp;
3326 cdkmem_t __iomem *memp;
3327 cdkasy_t __iomem *ap;
3328 unsigned long flags;
3329 unsigned int portnr, nrdevs, i;
3330 struct stliport *portp;
3331 int rc = 0;
3332 u32 memoff;
3333
3334 spin_lock_irqsave(&brd_lock, flags);
3335 EBRDENABLE(brdp);
3336 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3337 nrdevs = hdrp->nrdevs;
3338
3339#if 0
3340 printk("%s(%d): CDK version %d.%d.%d --> "
3341 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3342 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3343 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3344 readl(&hdrp->slavep));
3345#endif
3346
3347 if (nrdevs < (brdp->nrports + 1)) {
3348 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3349 "all devices, devices=%d\n", nrdevs);
3350 brdp->nrports = nrdevs - 1;
3351 }
3352 brdp->nrdevs = nrdevs;
3353 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3354 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3355 brdp->bitsize = (nrdevs + 7) / 8;
3356 memoff = readl(&hdrp->memp);
3357 if (memoff > brdp->memsize) {
3358 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3359 rc = -EIO;
3360 goto stli_donestartup;
3361 }
3362 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3363 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3364 printk(KERN_ERR "istallion: no slave control device found\n");
3365 goto stli_donestartup;
3366 }
3367 memp++;
3368
3369/*
3370 * Cycle through memory allocation of each port. We are guaranteed to
3371 * have all ports inside the first page of slave window, so no need to
3372 * change pages while reading memory map.
3373 */
3374 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3375 if (readw(&memp->dtype) != TYP_ASYNC)
3376 break;
3377 portp = brdp->ports[portnr];
3378 if (portp == NULL)
3379 break;
3380 portp->devnr = i;
3381 portp->addr = readl(&memp->offset);
3382 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3383 portp->portidx = (unsigned char) (i / 8);
3384 portp->portbit = (unsigned char) (0x1 << (i % 8));
3385 }
3386
3387 writeb(0xff, &hdrp->slavereq);
3388
3389/*
3390 * For each port setup a local copy of the RX and TX buffer offsets
3391 * and sizes. We do this separate from the above, because we need to
3392 * move the shared memory page...
3393 */
3394 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3395 portp = brdp->ports[portnr];
3396 if (portp == NULL)
3397 break;
3398 if (portp->addr == 0)
3399 break;
3400 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3401 if (ap != NULL) {
3402 portp->rxsize = readw(&ap->rxq.size);
3403 portp->txsize = readw(&ap->txq.size);
3404 portp->rxoffset = readl(&ap->rxq.offset);
3405 portp->txoffset = readl(&ap->txq.offset);
3406 }
3407 }
3408
3409stli_donestartup:
3410 EBRDDISABLE(brdp);
3411 spin_unlock_irqrestore(&brd_lock, flags);
3412
3413 if (rc == 0)
3414 set_bit(BST_STARTED, &brdp->state);
3415
3416 if (! stli_timeron) {
3417 stli_timeron++;
3418 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3419 }
3420
3421 return rc;
3422}
3423
3424/*****************************************************************************/
3425
3426/*
3427 * Probe and initialize the specified board.
3428 */
3429
3430static int __devinit stli_brdinit(struct stlibrd *brdp)
3431{
3432 int retval;
3433
3434 switch (brdp->brdtype) {
3435 case BRD_ECP:
3436 case BRD_ECPE:
3437 case BRD_ECPMC:
3438 case BRD_ECPPCI:
3439 retval = stli_initecp(brdp);
3440 break;
3441 case BRD_ONBOARD:
3442 case BRD_ONBOARDE:
3443 case BRD_ONBOARD2:
3444 case BRD_BRUMBY4:
3445 case BRD_STALLION:
3446 retval = stli_initonb(brdp);
3447 break;
3448 default:
3449 printk(KERN_ERR "istallion: board=%d is unknown board "
3450 "type=%d\n", brdp->brdnr, brdp->brdtype);
3451 retval = -ENODEV;
3452 }
3453
3454 if (retval)
3455 return retval;
3456
3457 stli_initports(brdp);
3458 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3459 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3460 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3461 brdp->nrpanels, brdp->nrports);
3462 return 0;
3463}
3464
3465#if STLI_EISAPROBE != 0
3466/*****************************************************************************/
3467
3468/*
3469 * Probe around trying to find where the EISA boards shared memory
3470 * might be. This is a bit if hack, but it is the best we can do.
3471 */
3472
3473static int stli_eisamemprobe(struct stlibrd *brdp)
3474{
3475 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3476 cdkonbsig_t onbsig, __iomem *onbsigp;
3477 int i, foundit;
3478
3479/*
3480 * First up we reset the board, to get it into a known state. There
3481 * is only 2 board types here we need to worry about. Don;t use the
3482 * standard board init routine here, it programs up the shared
3483 * memory address, and we don't know it yet...
3484 */
3485 if (brdp->brdtype == BRD_ECPE) {
3486 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3487 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3488 udelay(10);
3489 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3490 udelay(500);
3491 stli_ecpeienable(brdp);
3492 } else if (brdp->brdtype == BRD_ONBOARDE) {
3493 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3494 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3495 udelay(10);
3496 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3497 mdelay(100);
3498 outb(0x1, brdp->iobase);
3499 mdelay(1);
3500 stli_onbeenable(brdp);
3501 } else {
3502 return -ENODEV;
3503 }
3504
3505 foundit = 0;
3506 brdp->memsize = ECP_MEMSIZE;
3507
3508/*
3509 * Board shared memory is enabled, so now we have a poke around and
3510 * see if we can find it.
3511 */
3512 for (i = 0; (i < stli_eisamempsize); i++) {
3513 brdp->memaddr = stli_eisamemprobeaddrs[i];
3514 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3515 if (brdp->membase == NULL)
3516 continue;
3517
3518 if (brdp->brdtype == BRD_ECPE) {
3519 ecpsigp = stli_ecpeigetmemptr(brdp,
3520 CDK_SIGADDR, __LINE__);
3521 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3522 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3523 foundit = 1;
3524 } else {
3525 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3526 CDK_SIGADDR, __LINE__);
3527 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3528 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3529 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3530 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3531 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3532 foundit = 1;
3533 }
3534
3535 iounmap(brdp->membase);
3536 if (foundit)
3537 break;
3538 }
3539
3540/*
3541 * Regardless of whether we found the shared memory or not we must
3542 * disable the region. After that return success or failure.
3543 */
3544 if (brdp->brdtype == BRD_ECPE)
3545 stli_ecpeidisable(brdp);
3546 else
3547 stli_onbedisable(brdp);
3548
3549 if (! foundit) {
3550 brdp->memaddr = 0;
3551 brdp->membase = NULL;
3552 printk(KERN_ERR "istallion: failed to probe shared memory "
3553 "region for %s in EISA slot=%d\n",
3554 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3555 return -ENODEV;
3556 }
3557 return 0;
3558}
3559#endif
3560
3561static int stli_getbrdnr(void)
3562{
3563 unsigned int i;
3564
3565 for (i = 0; i < STL_MAXBRDS; i++) {
3566 if (!stli_brds[i]) {
3567 if (i >= stli_nrbrds)
3568 stli_nrbrds = i + 1;
3569 return i;
3570 }
3571 }
3572 return -1;
3573}
3574
3575#if STLI_EISAPROBE != 0
3576/*****************************************************************************/
3577
3578/*
3579 * Probe around and try to find any EISA boards in system. The biggest
3580 * problem here is finding out what memory address is associated with
3581 * an EISA board after it is found. The registers of the ECPE and
3582 * ONboardE are not readable - so we can't read them from there. We
3583 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3584 * actually have any way to find out the real value. The best we can
3585 * do is go probing around in the usual places hoping we can find it.
3586 */
3587
3588static int __init stli_findeisabrds(void)
3589{
3590 struct stlibrd *brdp;
3591 unsigned int iobase, eid, i;
3592 int brdnr, found = 0;
3593
3594/*
3595 * Firstly check if this is an EISA system. If this is not an EISA system then
3596 * don't bother going any further!
3597 */
3598 if (EISA_bus)
3599 return 0;
3600
3601/*
3602 * Looks like an EISA system, so go searching for EISA boards.
3603 */
3604 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3605 outb(0xff, (iobase + 0xc80));
3606 eid = inb(iobase + 0xc80);
3607 eid |= inb(iobase + 0xc81) << 8;
3608 if (eid != STL_EISAID)
3609 continue;
3610
3611/*
3612 * We have found a board. Need to check if this board was
3613 * statically configured already (just in case!).
3614 */
3615 for (i = 0; (i < STL_MAXBRDS); i++) {
3616 brdp = stli_brds[i];
3617 if (brdp == NULL)
3618 continue;
3619 if (brdp->iobase == iobase)
3620 break;
3621 }
3622 if (i < STL_MAXBRDS)
3623 continue;
3624
3625/*
3626 * We have found a Stallion board and it is not configured already.
3627 * Allocate a board structure and initialize it.
3628 */
3629 if ((brdp = stli_allocbrd()) == NULL)
3630 return found ? : -ENOMEM;
3631 brdnr = stli_getbrdnr();
3632 if (brdnr < 0)
3633 return found ? : -ENOMEM;
3634 brdp->brdnr = (unsigned int)brdnr;
3635 eid = inb(iobase + 0xc82);
3636 if (eid == ECP_EISAID)
3637 brdp->brdtype = BRD_ECPE;
3638 else if (eid == ONB_EISAID)
3639 brdp->brdtype = BRD_ONBOARDE;
3640 else
3641 brdp->brdtype = BRD_UNKNOWN;
3642 brdp->iobase = iobase;
3643 outb(0x1, (iobase + 0xc84));
3644 if (stli_eisamemprobe(brdp))
3645 outb(0, (iobase + 0xc84));
3646 if (stli_brdinit(brdp) < 0) {
3647 kfree(brdp);
3648 continue;
3649 }
3650
3651 stli_brds[brdp->brdnr] = brdp;
3652 found++;
3653
3654 for (i = 0; i < brdp->nrports; i++)
3655 tty_register_device(stli_serial,
3656 brdp->brdnr * STL_MAXPORTS + i, NULL);
3657 }
3658
3659 return found;
3660}
3661#else
3662static inline int stli_findeisabrds(void) { return 0; }
3663#endif
3664
3665/*****************************************************************************/
3666
3667/*
3668 * Find the next available board number that is free.
3669 */
3670
3671/*****************************************************************************/
3672
3673/*
3674 * We have a Stallion board. Allocate a board structure and
3675 * initialize it. Read its IO and MEMORY resources from PCI
3676 * configuration space.
3677 */
3678
3679static int __devinit stli_pciprobe(struct pci_dev *pdev,
3680 const struct pci_device_id *ent)
3681{
3682 struct stlibrd *brdp;
3683 unsigned int i;
3684 int brdnr, retval = -EIO;
3685
3686 retval = pci_enable_device(pdev);
3687 if (retval)
3688 goto err;
3689 brdp = stli_allocbrd();
3690 if (brdp == NULL) {
3691 retval = -ENOMEM;
3692 goto err;
3693 }
3694 mutex_lock(&stli_brdslock);
3695 brdnr = stli_getbrdnr();
3696 if (brdnr < 0) {
3697 printk(KERN_INFO "istallion: too many boards found, "
3698 "maximum supported %d\n", STL_MAXBRDS);
3699 mutex_unlock(&stli_brdslock);
3700 retval = -EIO;
3701 goto err_fr;
3702 }
3703 brdp->brdnr = (unsigned int)brdnr;
3704 stli_brds[brdp->brdnr] = brdp;
3705 mutex_unlock(&stli_brdslock);
3706 brdp->brdtype = BRD_ECPPCI;
3707/*
3708 * We have all resources from the board, so lets setup the actual
3709 * board structure now.
3710 */
3711 brdp->iobase = pci_resource_start(pdev, 3);
3712 brdp->memaddr = pci_resource_start(pdev, 2);
3713 retval = stli_brdinit(brdp);
3714 if (retval)
3715 goto err_null;
3716
3717 set_bit(BST_PROBED, &brdp->state);
3718 pci_set_drvdata(pdev, brdp);
3719
3720 EBRDENABLE(brdp);
3721 brdp->enable = NULL;
3722 brdp->disable = NULL;
3723
3724 for (i = 0; i < brdp->nrports; i++)
3725 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3726 &pdev->dev);
3727
3728 return 0;
3729err_null:
3730 stli_brds[brdp->brdnr] = NULL;
3731err_fr:
3732 kfree(brdp);
3733err:
3734 return retval;
3735}
3736
3737static void __devexit stli_pciremove(struct pci_dev *pdev)
3738{
3739 struct stlibrd *brdp = pci_get_drvdata(pdev);
3740
3741 stli_cleanup_ports(brdp);
3742
3743 iounmap(brdp->membase);
3744 if (brdp->iosize > 0)
3745 release_region(brdp->iobase, brdp->iosize);
3746
3747 stli_brds[brdp->brdnr] = NULL;
3748 kfree(brdp);
3749}
3750
3751static struct pci_driver stli_pcidriver = {
3752 .name = "istallion",
3753 .id_table = istallion_pci_tbl,
3754 .probe = stli_pciprobe,
3755 .remove = __devexit_p(stli_pciremove)
3756};
3757/*****************************************************************************/
3758
3759/*
3760 * Allocate a new board structure. Fill out the basic info in it.
3761 */
3762
3763static struct stlibrd *stli_allocbrd(void)
3764{
3765 struct stlibrd *brdp;
3766
3767 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3768 if (!brdp) {
3769 printk(KERN_ERR "istallion: failed to allocate memory "
3770 "(size=%Zd)\n", sizeof(struct stlibrd));
3771 return NULL;
3772 }
3773 brdp->magic = STLI_BOARDMAGIC;
3774 return brdp;
3775}
3776
3777/*****************************************************************************/
3778
3779/*
3780 * Scan through all the boards in the configuration and see what we
3781 * can find.
3782 */
3783
3784static int __init stli_initbrds(void)
3785{
3786 struct stlibrd *brdp, *nxtbrdp;
3787 struct stlconf conf;
3788 unsigned int i, j, found = 0;
3789 int retval;
3790
3791 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3792 stli_nrbrds++) {
3793 memset(&conf, 0, sizeof(conf));
3794 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3795 continue;
3796 if ((brdp = stli_allocbrd()) == NULL)
3797 continue;
3798 brdp->brdnr = stli_nrbrds;
3799 brdp->brdtype = conf.brdtype;
3800 brdp->iobase = conf.ioaddr1;
3801 brdp->memaddr = conf.memaddr;
3802 if (stli_brdinit(brdp) < 0) {
3803 kfree(brdp);
3804 continue;
3805 }
3806 stli_brds[brdp->brdnr] = brdp;
3807 found++;
3808
3809 for (i = 0; i < brdp->nrports; i++)
3810 tty_register_device(stli_serial,
3811 brdp->brdnr * STL_MAXPORTS + i, NULL);
3812 }
3813
3814 retval = stli_findeisabrds();
3815 if (retval > 0)
3816 found += retval;
3817
3818/*
3819 * All found boards are initialized. Now for a little optimization, if
3820 * no boards are sharing the "shared memory" regions then we can just
3821 * leave them all enabled. This is in fact the usual case.
3822 */
3823 stli_shared = 0;
3824 if (stli_nrbrds > 1) {
3825 for (i = 0; (i < stli_nrbrds); i++) {
3826 brdp = stli_brds[i];
3827 if (brdp == NULL)
3828 continue;
3829 for (j = i + 1; (j < stli_nrbrds); j++) {
3830 nxtbrdp = stli_brds[j];
3831 if (nxtbrdp == NULL)
3832 continue;
3833 if ((brdp->membase >= nxtbrdp->membase) &&
3834 (brdp->membase <= (nxtbrdp->membase +
3835 nxtbrdp->memsize - 1))) {
3836 stli_shared++;
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 if (stli_shared == 0) {
3844 for (i = 0; (i < stli_nrbrds); i++) {
3845 brdp = stli_brds[i];
3846 if (brdp == NULL)
3847 continue;
3848 if (test_bit(BST_FOUND, &brdp->state)) {
3849 EBRDENABLE(brdp);
3850 brdp->enable = NULL;
3851 brdp->disable = NULL;
3852 }
3853 }
3854 }
3855
3856 retval = pci_register_driver(&stli_pcidriver);
3857 if (retval && found == 0) {
3858 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3859 "driver can be registered!\n");
3860 goto err;
3861 }
3862
3863 return 0;
3864err:
3865 return retval;
3866}
3867
3868/*****************************************************************************/
3869
3870/*
3871 * Code to handle an "staliomem" read operation. This device is the
3872 * contents of the board shared memory. It is used for down loading
3873 * the slave image (and debugging :-)
3874 */
3875
3876static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3877{
3878 unsigned long flags;
3879 void __iomem *memptr;
3880 struct stlibrd *brdp;
3881 unsigned int brdnr;
3882 int size, n;
3883 void *p;
3884 loff_t off = *offp;
3885
3886 brdnr = iminor(fp->f_path.dentry->d_inode);
3887 if (brdnr >= stli_nrbrds)
3888 return -ENODEV;
3889 brdp = stli_brds[brdnr];
3890 if (brdp == NULL)
3891 return -ENODEV;
3892 if (brdp->state == 0)
3893 return -ENODEV;
3894 if (off >= brdp->memsize || off + count < off)
3895 return 0;
3896
3897 size = min(count, (size_t)(brdp->memsize - off));
3898
3899 /*
3900 * Copy the data a page at a time
3901 */
3902
3903 p = (void *)__get_free_page(GFP_KERNEL);
3904 if(p == NULL)
3905 return -ENOMEM;
3906
3907 while (size > 0) {
3908 spin_lock_irqsave(&brd_lock, flags);
3909 EBRDENABLE(brdp);
3910 memptr = EBRDGETMEMPTR(brdp, off);
3911 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3912 n = min(n, (int)PAGE_SIZE);
3913 memcpy_fromio(p, memptr, n);
3914 EBRDDISABLE(brdp);
3915 spin_unlock_irqrestore(&brd_lock, flags);
3916 if (copy_to_user(buf, p, n)) {
3917 count = -EFAULT;
3918 goto out;
3919 }
3920 off += n;
3921 buf += n;
3922 size -= n;
3923 }
3924out:
3925 *offp = off;
3926 free_page((unsigned long)p);
3927 return count;
3928}
3929
3930/*****************************************************************************/
3931
3932/*
3933 * Code to handle an "staliomem" write operation. This device is the
3934 * contents of the board shared memory. It is used for down loading
3935 * the slave image (and debugging :-)
3936 *
3937 * FIXME: copy under lock
3938 */
3939
3940static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3941{
3942 unsigned long flags;
3943 void __iomem *memptr;
3944 struct stlibrd *brdp;
3945 char __user *chbuf;
3946 unsigned int brdnr;
3947 int size, n;
3948 void *p;
3949 loff_t off = *offp;
3950
3951 brdnr = iminor(fp->f_path.dentry->d_inode);
3952
3953 if (brdnr >= stli_nrbrds)
3954 return -ENODEV;
3955 brdp = stli_brds[brdnr];
3956 if (brdp == NULL)
3957 return -ENODEV;
3958 if (brdp->state == 0)
3959 return -ENODEV;
3960 if (off >= brdp->memsize || off + count < off)
3961 return 0;
3962
3963 chbuf = (char __user *) buf;
3964 size = min(count, (size_t)(brdp->memsize - off));
3965
3966 /*
3967 * Copy the data a page at a time
3968 */
3969
3970 p = (void *)__get_free_page(GFP_KERNEL);
3971 if(p == NULL)
3972 return -ENOMEM;
3973
3974 while (size > 0) {
3975 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3976 n = min(n, (int)PAGE_SIZE);
3977 if (copy_from_user(p, chbuf, n)) {
3978 if (count == 0)
3979 count = -EFAULT;
3980 goto out;
3981 }
3982 spin_lock_irqsave(&brd_lock, flags);
3983 EBRDENABLE(brdp);
3984 memptr = EBRDGETMEMPTR(brdp, off);
3985 memcpy_toio(memptr, p, n);
3986 EBRDDISABLE(brdp);
3987 spin_unlock_irqrestore(&brd_lock, flags);
3988 off += n;
3989 chbuf += n;
3990 size -= n;
3991 }
3992out:
3993 free_page((unsigned long) p);
3994 *offp = off;
3995 return count;
3996}
3997
3998/*****************************************************************************/
3999
4000/*
4001 * Return the board stats structure to user app.
4002 */
4003
4004static int stli_getbrdstats(combrd_t __user *bp)
4005{
4006 struct stlibrd *brdp;
4007 unsigned int i;
4008
4009 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4010 return -EFAULT;
4011 if (stli_brdstats.brd >= STL_MAXBRDS)
4012 return -ENODEV;
4013 brdp = stli_brds[stli_brdstats.brd];
4014 if (brdp == NULL)
4015 return -ENODEV;
4016
4017 memset(&stli_brdstats, 0, sizeof(combrd_t));
4018
4019 stli_brdstats.brd = brdp->brdnr;
4020 stli_brdstats.type = brdp->brdtype;
4021 stli_brdstats.hwid = 0;
4022 stli_brdstats.state = brdp->state;
4023 stli_brdstats.ioaddr = brdp->iobase;
4024 stli_brdstats.memaddr = brdp->memaddr;
4025 stli_brdstats.nrpanels = brdp->nrpanels;
4026 stli_brdstats.nrports = brdp->nrports;
4027 for (i = 0; (i < brdp->nrpanels); i++) {
4028 stli_brdstats.panels[i].panel = i;
4029 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4030 stli_brdstats.panels[i].nrports = brdp->panels[i];
4031 }
4032
4033 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4034 return -EFAULT;
4035 return 0;
4036}
4037
4038/*****************************************************************************/
4039
4040/*
4041 * Resolve the referenced port number into a port struct pointer.
4042 */
4043
4044static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4045 unsigned int portnr)
4046{
4047 struct stlibrd *brdp;
4048 unsigned int i;
4049
4050 if (brdnr >= STL_MAXBRDS)
4051 return NULL;
4052 brdp = stli_brds[brdnr];
4053 if (brdp == NULL)
4054 return NULL;
4055 for (i = 0; (i < panelnr); i++)
4056 portnr += brdp->panels[i];
4057 if (portnr >= brdp->nrports)
4058 return NULL;
4059 return brdp->ports[portnr];
4060}
4061
4062/*****************************************************************************/
4063
4064/*
4065 * Return the port stats structure to user app. A NULL port struct
4066 * pointer passed in means that we need to find out from the app
4067 * what port to get stats for (used through board control device).
4068 */
4069
4070static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4071{
4072 unsigned long flags;
4073 struct stlibrd *brdp;
4074 int rc;
4075
4076 memset(&stli_comstats, 0, sizeof(comstats_t));
4077
4078 if (portp == NULL)
4079 return -ENODEV;
4080 brdp = stli_brds[portp->brdnr];
4081 if (brdp == NULL)
4082 return -ENODEV;
4083
4084 mutex_lock(&portp->port.mutex);
4085 if (test_bit(BST_STARTED, &brdp->state)) {
4086 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4087 &stli_cdkstats, sizeof(asystats_t), 1)) < 0) {
4088 mutex_unlock(&portp->port.mutex);
4089 return rc;
4090 }
4091 } else {
4092 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4093 }
4094
4095 stli_comstats.brd = portp->brdnr;
4096 stli_comstats.panel = portp->panelnr;
4097 stli_comstats.port = portp->portnr;
4098 stli_comstats.state = portp->state;
4099 stli_comstats.flags = portp->port.flags;
4100
4101 spin_lock_irqsave(&brd_lock, flags);
4102 if (tty != NULL) {
4103 if (portp->port.tty == tty) {
4104 stli_comstats.ttystate = tty->flags;
4105 stli_comstats.rxbuffered = -1;
4106 if (tty->termios != NULL) {
4107 stli_comstats.cflags = tty->termios->c_cflag;
4108 stli_comstats.iflags = tty->termios->c_iflag;
4109 stli_comstats.oflags = tty->termios->c_oflag;
4110 stli_comstats.lflags = tty->termios->c_lflag;
4111 }
4112 }
4113 }
4114 spin_unlock_irqrestore(&brd_lock, flags);
4115
4116 stli_comstats.txtotal = stli_cdkstats.txchars;
4117 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4118 stli_comstats.txbuffered = stli_cdkstats.txringq;
4119 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4120 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4121 stli_comstats.rxparity = stli_cdkstats.parity;
4122 stli_comstats.rxframing = stli_cdkstats.framing;
4123 stli_comstats.rxlost = stli_cdkstats.ringover;
4124 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4125 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4126 stli_comstats.txxon = stli_cdkstats.txstart;
4127 stli_comstats.txxoff = stli_cdkstats.txstop;
4128 stli_comstats.rxxon = stli_cdkstats.rxstart;
4129 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4130 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4131 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4132 stli_comstats.modem = stli_cdkstats.dcdcnt;
4133 stli_comstats.hwid = stli_cdkstats.hwid;
4134 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4135 mutex_unlock(&portp->port.mutex);
4136
4137 return 0;
4138}
4139
4140/*****************************************************************************/
4141
4142/*
4143 * Return the port stats structure to user app. A NULL port struct
4144 * pointer passed in means that we need to find out from the app
4145 * what port to get stats for (used through board control device).
4146 */
4147
4148static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4149 comstats_t __user *cp)
4150{
4151 struct stlibrd *brdp;
4152 int rc;
4153
4154 if (!portp) {
4155 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4156 return -EFAULT;
4157 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4158 stli_comstats.port);
4159 if (!portp)
4160 return -ENODEV;
4161 }
4162
4163 brdp = stli_brds[portp->brdnr];
4164 if (!brdp)
4165 return -ENODEV;
4166
4167 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4168 return rc;
4169
4170 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4171 -EFAULT : 0;
4172}
4173
4174/*****************************************************************************/
4175
4176/*
4177 * Clear the port stats structure. We also return it zeroed out...
4178 */
4179
4180static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4181{
4182 struct stlibrd *brdp;
4183 int rc;
4184
4185 if (!portp) {
4186 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4187 return -EFAULT;
4188 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4189 stli_comstats.port);
4190 if (!portp)
4191 return -ENODEV;
4192 }
4193
4194 brdp = stli_brds[portp->brdnr];
4195 if (!brdp)
4196 return -ENODEV;
4197
4198 mutex_lock(&portp->port.mutex);
4199
4200 if (test_bit(BST_STARTED, &brdp->state)) {
4201 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0) {
4202 mutex_unlock(&portp->port.mutex);
4203 return rc;
4204 }
4205 }
4206
4207 memset(&stli_comstats, 0, sizeof(comstats_t));
4208 stli_comstats.brd = portp->brdnr;
4209 stli_comstats.panel = portp->panelnr;
4210 stli_comstats.port = portp->portnr;
4211 mutex_unlock(&portp->port.mutex);
4212
4213 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4214 return -EFAULT;
4215 return 0;
4216}
4217
4218/*****************************************************************************/
4219
4220/*
4221 * Return the entire driver ports structure to a user app.
4222 */
4223
4224static int stli_getportstruct(struct stliport __user *arg)
4225{
4226 struct stliport stli_dummyport;
4227 struct stliport *portp;
4228
4229 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4230 return -EFAULT;
4231 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4232 stli_dummyport.portnr);
4233 if (!portp)
4234 return -ENODEV;
4235 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4236 return -EFAULT;
4237 return 0;
4238}
4239
4240/*****************************************************************************/
4241
4242/*
4243 * Return the entire driver board structure to a user app.
4244 */
4245
4246static int stli_getbrdstruct(struct stlibrd __user *arg)
4247{
4248 struct stlibrd stli_dummybrd;
4249 struct stlibrd *brdp;
4250
4251 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4252 return -EFAULT;
4253 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4254 return -ENODEV;
4255 brdp = stli_brds[stli_dummybrd.brdnr];
4256 if (!brdp)
4257 return -ENODEV;
4258 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4259 return -EFAULT;
4260 return 0;
4261}
4262
4263/*****************************************************************************/
4264
4265/*
4266 * The "staliomem" device is also required to do some special operations on
4267 * the board. We need to be able to send an interrupt to the board,
4268 * reset it, and start/stop it.
4269 */
4270
4271static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4272{
4273 struct stlibrd *brdp;
4274 int brdnr, rc, done;
4275 void __user *argp = (void __user *)arg;
4276
4277/*
4278 * First up handle the board independent ioctls.
4279 */
4280 done = 0;
4281 rc = 0;
4282
4283 switch (cmd) {
4284 case COM_GETPORTSTATS:
4285 rc = stli_getportstats(NULL, NULL, argp);
4286 done++;
4287 break;
4288 case COM_CLRPORTSTATS:
4289 rc = stli_clrportstats(NULL, argp);
4290 done++;
4291 break;
4292 case COM_GETBRDSTATS:
4293 rc = stli_getbrdstats(argp);
4294 done++;
4295 break;
4296 case COM_READPORT:
4297 rc = stli_getportstruct(argp);
4298 done++;
4299 break;
4300 case COM_READBOARD:
4301 rc = stli_getbrdstruct(argp);
4302 done++;
4303 break;
4304 }
4305 if (done)
4306 return rc;
4307
4308/*
4309 * Now handle the board specific ioctls. These all depend on the
4310 * minor number of the device they were called from.
4311 */
4312 brdnr = iminor(fp->f_dentry->d_inode);
4313 if (brdnr >= STL_MAXBRDS)
4314 return -ENODEV;
4315 brdp = stli_brds[brdnr];
4316 if (!brdp)
4317 return -ENODEV;
4318 if (brdp->state == 0)
4319 return -ENODEV;
4320
4321 switch (cmd) {
4322 case STL_BINTR:
4323 EBRDINTR(brdp);
4324 break;
4325 case STL_BSTART:
4326 rc = stli_startbrd(brdp);
4327 break;
4328 case STL_BSTOP:
4329 clear_bit(BST_STARTED, &brdp->state);
4330 break;
4331 case STL_BRESET:
4332 clear_bit(BST_STARTED, &brdp->state);
4333 EBRDRESET(brdp);
4334 if (stli_shared == 0) {
4335 if (brdp->reenable != NULL)
4336 (* brdp->reenable)(brdp);
4337 }
4338 break;
4339 default:
4340 rc = -ENOIOCTLCMD;
4341 break;
4342 }
4343 return rc;
4344}
4345
4346static const struct tty_operations stli_ops = {
4347 .open = stli_open,
4348 .close = stli_close,
4349 .write = stli_write,
4350 .put_char = stli_putchar,
4351 .flush_chars = stli_flushchars,
4352 .write_room = stli_writeroom,
4353 .chars_in_buffer = stli_charsinbuffer,
4354 .ioctl = stli_ioctl,
4355 .set_termios = stli_settermios,
4356 .throttle = stli_throttle,
4357 .unthrottle = stli_unthrottle,
4358 .stop = stli_stop,
4359 .start = stli_start,
4360 .hangup = stli_hangup,
4361 .flush_buffer = stli_flushbuffer,
4362 .break_ctl = stli_breakctl,
4363 .wait_until_sent = stli_waituntilsent,
4364 .send_xchar = stli_sendxchar,
4365 .tiocmget = stli_tiocmget,
4366 .tiocmset = stli_tiocmset,
4367 .proc_fops = &stli_proc_fops,
4368};
4369
4370static const struct tty_port_operations stli_port_ops = {
4371 .carrier_raised = stli_carrier_raised,
4372 .dtr_rts = stli_dtr_rts,
4373 .activate = stli_activate,
4374 .shutdown = stli_shutdown,
4375};
4376
4377/*****************************************************************************/
4378/*
4379 * Loadable module initialization stuff.
4380 */
4381
4382static void istallion_cleanup_isa(void)
4383{
4384 struct stlibrd *brdp;
4385 unsigned int j;
4386
4387 for (j = 0; (j < stli_nrbrds); j++) {
4388 if ((brdp = stli_brds[j]) == NULL ||
4389 test_bit(BST_PROBED, &brdp->state))
4390 continue;
4391
4392 stli_cleanup_ports(brdp);
4393
4394 iounmap(brdp->membase);
4395 if (brdp->iosize > 0)
4396 release_region(brdp->iobase, brdp->iosize);
4397 kfree(brdp);
4398 stli_brds[j] = NULL;
4399 }
4400}
4401
4402static int __init istallion_module_init(void)
4403{
4404 unsigned int i;
4405 int retval;
4406
4407 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4408
4409 spin_lock_init(&stli_lock);
4410 spin_lock_init(&brd_lock);
4411
4412 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4413 if (!stli_txcookbuf) {
4414 printk(KERN_ERR "istallion: failed to allocate memory "
4415 "(size=%d)\n", STLI_TXBUFSIZE);
4416 retval = -ENOMEM;
4417 goto err;
4418 }
4419
4420 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4421 if (!stli_serial) {
4422 retval = -ENOMEM;
4423 goto err_free;
4424 }
4425
4426 stli_serial->owner = THIS_MODULE;
4427 stli_serial->driver_name = stli_drvname;
4428 stli_serial->name = stli_serialname;
4429 stli_serial->major = STL_SERIALMAJOR;
4430 stli_serial->minor_start = 0;
4431 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4432 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4433 stli_serial->init_termios = stli_deftermios;
4434 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4435 tty_set_operations(stli_serial, &stli_ops);
4436
4437 retval = tty_register_driver(stli_serial);
4438 if (retval) {
4439 printk(KERN_ERR "istallion: failed to register serial driver\n");
4440 goto err_ttyput;
4441 }
4442
4443 retval = stli_initbrds();
4444 if (retval)
4445 goto err_ttyunr;
4446
4447/*
4448 * Set up a character driver for the shared memory region. We need this
4449 * to down load the slave code image. Also it is a useful debugging tool.
4450 */
4451 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4452 if (retval) {
4453 printk(KERN_ERR "istallion: failed to register serial memory "
4454 "device\n");
4455 goto err_deinit;
4456 }
4457
4458 istallion_class = class_create(THIS_MODULE, "staliomem");
4459 for (i = 0; i < 4; i++)
4460 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4461 NULL, "staliomem%d", i);
4462
4463 return 0;
4464err_deinit:
4465 pci_unregister_driver(&stli_pcidriver);
4466 istallion_cleanup_isa();
4467err_ttyunr:
4468 tty_unregister_driver(stli_serial);
4469err_ttyput:
4470 put_tty_driver(stli_serial);
4471err_free:
4472 kfree(stli_txcookbuf);
4473err:
4474 return retval;
4475}
4476
4477/*****************************************************************************/
4478
4479static void __exit istallion_module_exit(void)
4480{
4481 unsigned int j;
4482
4483 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4484 stli_drvversion);
4485
4486 if (stli_timeron) {
4487 stli_timeron = 0;
4488 del_timer_sync(&stli_timerlist);
4489 }
4490
4491 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4492
4493 for (j = 0; j < 4; j++)
4494 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4495 class_destroy(istallion_class);
4496
4497 pci_unregister_driver(&stli_pcidriver);
4498 istallion_cleanup_isa();
4499
4500 tty_unregister_driver(stli_serial);
4501 put_tty_driver(stli_serial);
4502
4503 kfree(stli_txcookbuf);
4504}
4505
4506module_init(istallion_module_init);
4507module_exit(istallion_module_exit);