aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/ip2/i2ellis.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/ip2/i2ellis.c')
-rw-r--r--drivers/char/ip2/i2ellis.c1403
1 files changed, 0 insertions, 1403 deletions
diff --git a/drivers/char/ip2/i2ellis.c b/drivers/char/ip2/i2ellis.c
deleted file mode 100644
index 29db44de399f..000000000000
--- a/drivers/char/ip2/i2ellis.c
+++ /dev/null
@@ -1,1403 +0,0 @@
1/*******************************************************************************
2*
3* (c) 1998 by Computone Corporation
4*
5********************************************************************************
6*
7*
8* PACKAGE: Linux tty Device Driver for IntelliPort family of multiport
9* serial I/O controllers.
10*
11* DESCRIPTION: Low-level interface code for the device driver
12* (This is included source code, not a separate compilation
13* module.)
14*
15*******************************************************************************/
16//---------------------------------------------
17// Function declarations private to this module
18//---------------------------------------------
19// Functions called only indirectly through i2eBordStr entries.
20
21static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
22static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
23static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
24static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
25
26static unsigned short iiReadWord16(i2eBordStrPtr);
27static unsigned short iiReadWord8(i2eBordStrPtr);
28static void iiWriteWord16(i2eBordStrPtr, unsigned short);
29static void iiWriteWord8(i2eBordStrPtr, unsigned short);
30
31static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
32static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
33static int iiTxMailEmptyII(i2eBordStrPtr);
34static int iiTxMailEmptyIIEX(i2eBordStrPtr);
35static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
36static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
37
38static unsigned short iiGetMailII(i2eBordStrPtr);
39static unsigned short iiGetMailIIEX(i2eBordStrPtr);
40
41static void iiEnableMailIrqII(i2eBordStrPtr);
42static void iiEnableMailIrqIIEX(i2eBordStrPtr);
43static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
44static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
45
46static void ii2Nop(void);
47
48//***************
49//* Static Data *
50//***************
51
52static int ii2Safe; // Safe I/O address for delay routine
53
54static int iiDelayed; // Set when the iiResetDelay function is
55 // called. Cleared when ANY board is reset.
56static DEFINE_RWLOCK(Dl_spinlock);
57
58//********
59//* Code *
60//********
61
62//=======================================================
63// Initialization Routines
64//
65// iiSetAddress
66// iiReset
67// iiResetDelay
68// iiInitialize
69//=======================================================
70
71//******************************************************************************
72// Function: iiSetAddress(pB, address, delay)
73// Parameters: pB - pointer to the board structure
74// address - the purported I/O address of the board
75// delay - pointer to the 1-ms delay function to use
76// in this and any future operations to this board
77//
78// Returns: True if everything appears copacetic.
79// False if there is any error: the pB->i2eError field has the error
80//
81// Description:
82//
83// This routine (roughly) checks for address validity, sets the i2eValid OK and
84// sets the state to II_STATE_COLD which means that we haven't even sent a reset
85// yet.
86//
87//******************************************************************************
88static int
89iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
90{
91 // Should any failure occur before init is finished...
92 pB->i2eValid = I2E_INCOMPLETE;
93
94 // Cannot check upper limit except extremely: Might be microchannel
95 // Address must be on an 8-byte boundary
96
97 if ((unsigned int)address <= 0x100
98 || (unsigned int)address >= 0xfff8
99 || (address & 0x7)
100 )
101 {
102 I2_COMPLETE(pB, I2EE_BADADDR);
103 }
104
105 // Initialize accelerators
106 pB->i2eBase = address;
107 pB->i2eData = address + FIFO_DATA;
108 pB->i2eStatus = address + FIFO_STATUS;
109 pB->i2ePointer = address + FIFO_PTR;
110 pB->i2eXMail = address + FIFO_MAIL;
111 pB->i2eXMask = address + FIFO_MASK;
112
113 // Initialize i/o address for ii2DelayIO
114 ii2Safe = address + FIFO_NOP;
115
116 // Initialize the delay routine
117 pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
118
119 pB->i2eValid = I2E_MAGIC;
120 pB->i2eState = II_STATE_COLD;
121
122 I2_COMPLETE(pB, I2EE_GOOD);
123}
124
125//******************************************************************************
126// Function: iiReset(pB)
127// Parameters: pB - pointer to the board structure
128//
129// Returns: True if everything appears copacetic.
130// False if there is any error: the pB->i2eError field has the error
131//
132// Description:
133//
134// Attempts to reset the board (see also i2hw.h). Normally, we would use this to
135// reset a board immediately after iiSetAddress(), but it is valid to reset a
136// board from any state, say, in order to change or re-load loadware. (Under
137// such circumstances, no reason to re-run iiSetAddress(), which is why it is a
138// separate routine and not included in this routine.
139//
140//******************************************************************************
141static int
142iiReset(i2eBordStrPtr pB)
143{
144 // Magic number should be set, else even the address is suspect
145 if (pB->i2eValid != I2E_MAGIC)
146 {
147 I2_COMPLETE(pB, I2EE_BADMAGIC);
148 }
149
150 outb(0, pB->i2eBase + FIFO_RESET); /* Any data will do */
151 iiDelay(pB, 50); // Pause between resets
152 outb(0, pB->i2eBase + FIFO_RESET); /* Second reset */
153
154 // We must wait before even attempting to read anything from the FIFO: the
155 // board's P.O.S.T may actually attempt to read and write its end of the
156 // FIFO in order to check flags, loop back (where supported), etc. On
157 // completion of this testing it would reset the FIFO, and on completion
158 // of all // P.O.S.T., write the message. We must not mistake data which
159 // might have been sent for testing as part of the reset message. To
160 // better utilize time, say, when resetting several boards, we allow the
161 // delay to be performed externally; in this way the caller can reset
162 // several boards, delay a single time, then call the initialization
163 // routine for all.
164
165 pB->i2eState = II_STATE_RESET;
166
167 iiDelayed = 0; // i.e., the delay routine hasn't been called since the most
168 // recent reset.
169
170 // Ensure anything which would have been of use to standard loadware is
171 // blanked out, since board has now forgotten everything!.
172
173 pB->i2eUsingIrq = I2_IRQ_UNDEFINED; /* to not use an interrupt so far */
174 pB->i2eWaitingForEmptyFifo = 0;
175 pB->i2eOutMailWaiting = 0;
176 pB->i2eChannelPtr = NULL;
177 pB->i2eChannelCnt = 0;
178
179 pB->i2eLeadoffWord[0] = 0;
180 pB->i2eFifoInInts = 0;
181 pB->i2eFifoOutInts = 0;
182 pB->i2eFatalTrap = NULL;
183 pB->i2eFatal = 0;
184
185 I2_COMPLETE(pB, I2EE_GOOD);
186}
187
188//******************************************************************************
189// Function: iiResetDelay(pB)
190// Parameters: pB - pointer to the board structure
191//
192// Returns: True if everything appears copacetic.
193// False if there is any error: the pB->i2eError field has the error
194//
195// Description:
196//
197// Using the delay defined in board structure, waits two seconds (for board to
198// reset).
199//
200//******************************************************************************
201static int
202iiResetDelay(i2eBordStrPtr pB)
203{
204 if (pB->i2eValid != I2E_MAGIC) {
205 I2_COMPLETE(pB, I2EE_BADMAGIC);
206 }
207 if (pB->i2eState != II_STATE_RESET) {
208 I2_COMPLETE(pB, I2EE_BADSTATE);
209 }
210 iiDelay(pB,2000); /* Now we wait for two seconds. */
211 iiDelayed = 1; /* Delay has been called: ok to initialize */
212 I2_COMPLETE(pB, I2EE_GOOD);
213}
214
215//******************************************************************************
216// Function: iiInitialize(pB)
217// Parameters: pB - pointer to the board structure
218//
219// Returns: True if everything appears copacetic.
220// False if there is any error: the pB->i2eError field has the error
221//
222// Description:
223//
224// Attempts to read the Power-on reset message. Initializes any remaining fields
225// in the pB structure.
226//
227// This should be called as the third step of a process beginning with
228// iiReset(), then iiResetDelay(). This routine checks to see that the structure
229// is "valid" and in the reset state, also confirms that the delay routine has
230// been called since the latest reset (to any board! overly strong!).
231//
232//******************************************************************************
233static int
234iiInitialize(i2eBordStrPtr pB)
235{
236 int itemp;
237 unsigned char c;
238 unsigned short utemp;
239 unsigned int ilimit;
240
241 if (pB->i2eValid != I2E_MAGIC)
242 {
243 I2_COMPLETE(pB, I2EE_BADMAGIC);
244 }
245
246 if (pB->i2eState != II_STATE_RESET || !iiDelayed)
247 {
248 I2_COMPLETE(pB, I2EE_BADSTATE);
249 }
250
251 // In case there is a failure short of our completely reading the power-up
252 // message.
253 pB->i2eValid = I2E_INCOMPLETE;
254
255
256 // Now attempt to read the message.
257
258 for (itemp = 0; itemp < sizeof(porStr); itemp++)
259 {
260 // We expect the entire message is ready.
261 if (!I2_HAS_INPUT(pB)) {
262 pB->i2ePomSize = itemp;
263 I2_COMPLETE(pB, I2EE_PORM_SHORT);
264 }
265
266 pB->i2ePom.c[itemp] = c = inb(pB->i2eData);
267
268 // We check the magic numbers as soon as they are supposed to be read
269 // (rather than after) to minimize effect of reading something we
270 // already suspect can't be "us".
271 if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
272 (itemp == POR_2_INDEX && c != POR_MAGIC_2))
273 {
274 pB->i2ePomSize = itemp+1;
275 I2_COMPLETE(pB, I2EE_BADMAGIC);
276 }
277 }
278
279 pB->i2ePomSize = itemp;
280
281 // Ensure that this was all the data...
282 if (I2_HAS_INPUT(pB))
283 I2_COMPLETE(pB, I2EE_PORM_LONG);
284
285 // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
286 // Implying we will not be able to download any code either: That's ok: the
287 // condition is pretty explicit.
288 if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
289 {
290 I2_COMPLETE(pB, I2EE_POSTERR);
291 }
292
293 // Determine anything which must be done differently depending on the family
294 // of boards!
295 switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
296 {
297 case POR_ID_FII: // IntelliPort-II
298
299 pB->i2eFifoStyle = FIFO_II;
300 pB->i2eFifoSize = 512; // 512 bytes, always
301 pB->i2eDataWidth16 = false;
302
303 pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit
304 // slot, we do allow it to be done (documentation!)
305
306 pB->i2eGoodMap[1] =
307 pB->i2eGoodMap[2] =
308 pB->i2eGoodMap[3] =
309 pB->i2eChannelMap[1] =
310 pB->i2eChannelMap[2] =
311 pB->i2eChannelMap[3] = 0;
312
313 switch (pB->i2ePom.e.porID & POR_ID_SIZE)
314 {
315 case POR_ID_II_4:
316 pB->i2eGoodMap[0] =
317 pB->i2eChannelMap[0] = 0x0f; // four-port
318
319 // Since porPorts1 is based on the Hardware ID register, the numbers
320 // should always be consistent for IntelliPort-II. Ditto below...
321 if (pB->i2ePom.e.porPorts1 != 4)
322 {
323 I2_COMPLETE(pB, I2EE_INCONSIST);
324 }
325 break;
326
327 case POR_ID_II_8:
328 case POR_ID_II_8R:
329 pB->i2eGoodMap[0] =
330 pB->i2eChannelMap[0] = 0xff; // Eight port
331 if (pB->i2ePom.e.porPorts1 != 8)
332 {
333 I2_COMPLETE(pB, I2EE_INCONSIST);
334 }
335 break;
336
337 case POR_ID_II_6:
338 pB->i2eGoodMap[0] =
339 pB->i2eChannelMap[0] = 0x3f; // Six Port
340 if (pB->i2ePom.e.porPorts1 != 6)
341 {
342 I2_COMPLETE(pB, I2EE_INCONSIST);
343 }
344 break;
345 }
346
347 // Fix up the "good channel list based on any errors reported.
348 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
349 {
350 pB->i2eGoodMap[0] &= ~0x0f;
351 }
352
353 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
354 {
355 pB->i2eGoodMap[0] &= ~0xf0;
356 }
357
358 break; // POR_ID_FII case
359
360 case POR_ID_FIIEX: // IntelliPort-IIEX
361
362 pB->i2eFifoStyle = FIFO_IIEX;
363
364 itemp = pB->i2ePom.e.porFifoSize;
365
366 // Implicit assumption that fifo would not grow beyond 32k,
367 // nor would ever be less than 256.
368
369 if (itemp < 8 || itemp > 15)
370 {
371 I2_COMPLETE(pB, I2EE_INCONSIST);
372 }
373 pB->i2eFifoSize = (1 << itemp);
374
375 // These are based on what P.O.S.T thinks should be there, based on
376 // box ID registers
377 ilimit = pB->i2ePom.e.porNumBoxes;
378 if (ilimit > ABS_MAX_BOXES)
379 {
380 ilimit = ABS_MAX_BOXES;
381 }
382
383 // For as many boxes as EXIST, gives the type of box.
384 // Added 8/6/93: check for the ISA-4 (asic) which looks like an
385 // expandable but for whom "8 or 16?" is not the right question.
386
387 utemp = pB->i2ePom.e.porFlags;
388 if (utemp & POR_CEX4)
389 {
390 pB->i2eChannelMap[0] = 0x000f;
391 } else {
392 utemp &= POR_BOXES;
393 for (itemp = 0; itemp < ilimit; itemp++)
394 {
395 pB->i2eChannelMap[itemp] =
396 ((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
397 utemp >>= 1;
398 }
399 }
400
401 // These are based on what P.O.S.T actually found.
402
403 utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
404
405 for (itemp = 0; itemp < ilimit; itemp++)
406 {
407 pB->i2eGoodMap[itemp] = 0;
408 if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
409 if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
410 if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
411 if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
412 utemp >>= 4;
413 }
414
415 // Now determine whether we should transfer in 8 or 16-bit mode.
416 switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
417 {
418 case POR_BUS_SLOT16 | POR_BUS_DIP16:
419 pB->i2eDataWidth16 = true;
420 pB->i2eMaxIrq = 15;
421 break;
422
423 case POR_BUS_SLOT16:
424 pB->i2eDataWidth16 = false;
425 pB->i2eMaxIrq = 15;
426 break;
427
428 case 0:
429 case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care.
430 default:
431 pB->i2eDataWidth16 = false;
432 pB->i2eMaxIrq = 7;
433 break;
434 }
435 break; // POR_ID_FIIEX case
436
437 default: // Unknown type of board
438 I2_COMPLETE(pB, I2EE_BAD_FAMILY);
439 break;
440 } // End the switch based on family
441
442 // Temporarily, claim there is no room in the outbound fifo.
443 // We will maintain this whenever we check for an empty outbound FIFO.
444 pB->i2eFifoRemains = 0;
445
446 // Now, based on the bus type, should we expect to be able to re-configure
447 // interrupts (say, for testing purposes).
448 switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
449 {
450 case POR_BUS_T_ISA:
451 case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok.
452 case POR_BUS_T_MCA:
453 case POR_BUS_T_EISA:
454 break;
455 default:
456 I2_COMPLETE(pB, I2EE_BADBUS);
457 }
458
459 if (pB->i2eDataWidth16)
460 {
461 pB->i2eWriteBuf = iiWriteBuf16;
462 pB->i2eReadBuf = iiReadBuf16;
463 pB->i2eWriteWord = iiWriteWord16;
464 pB->i2eReadWord = iiReadWord16;
465 } else {
466 pB->i2eWriteBuf = iiWriteBuf8;
467 pB->i2eReadBuf = iiReadBuf8;
468 pB->i2eWriteWord = iiWriteWord8;
469 pB->i2eReadWord = iiReadWord8;
470 }
471
472 switch(pB->i2eFifoStyle)
473 {
474 case FIFO_II:
475 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
476 pB->i2eTxMailEmpty = iiTxMailEmptyII;
477 pB->i2eTrySendMail = iiTrySendMailII;
478 pB->i2eGetMail = iiGetMailII;
479 pB->i2eEnableMailIrq = iiEnableMailIrqII;
480 pB->i2eWriteMask = iiWriteMaskII;
481
482 break;
483
484 case FIFO_IIEX:
485 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
486 pB->i2eTxMailEmpty = iiTxMailEmptyIIEX;
487 pB->i2eTrySendMail = iiTrySendMailIIEX;
488 pB->i2eGetMail = iiGetMailIIEX;
489 pB->i2eEnableMailIrq = iiEnableMailIrqIIEX;
490 pB->i2eWriteMask = iiWriteMaskIIEX;
491
492 break;
493
494 default:
495 I2_COMPLETE(pB, I2EE_INCONSIST);
496 }
497
498 // Initialize state information.
499 pB->i2eState = II_STATE_READY; // Ready to load loadware.
500
501 // Some Final cleanup:
502 // For some boards, the bootstrap firmware may perform some sort of test
503 // resulting in a stray character pending in the incoming mailbox. If one is
504 // there, it should be read and discarded, especially since for the standard
505 // firmware, it's the mailbox that interrupts the host.
506
507 pB->i2eStartMail = iiGetMail(pB);
508
509 // Throw it away and clear the mailbox structure element
510 pB->i2eStartMail = NO_MAIL_HERE;
511
512 // Everything is ok now, return with good status/
513
514 pB->i2eValid = I2E_MAGIC;
515 I2_COMPLETE(pB, I2EE_GOOD);
516}
517
518//******************************************************************************
519// Function: ii2DelayTimer(mseconds)
520// Parameters: mseconds - number of milliseconds to delay
521//
522// Returns: Nothing
523//
524// Description:
525//
526// This routine delays for approximately mseconds milliseconds and is intended
527// to be called indirectly through i2Delay field in i2eBordStr. It uses the
528// Linux timer_list mechanism.
529//
530// The Linux timers use a unit called "jiffies" which are 10mS in the Intel
531// architecture. This function rounds the delay period up to the next "jiffy".
532// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
533// for Alpha platforms at this time.
534//
535//******************************************************************************
536static void
537ii2DelayTimer(unsigned int mseconds)
538{
539 msleep_interruptible(mseconds);
540}
541
542#if 0
543//static void ii2DelayIO(unsigned int);
544//******************************************************************************
545// !!! Not Used, this is DOS crap, some of you young folks may be interested in
546// in how things were done in the stone age of caculating machines !!!
547// Function: ii2DelayIO(mseconds)
548// Parameters: mseconds - number of milliseconds to delay
549//
550// Returns: Nothing
551//
552// Description:
553//
554// This routine delays for approximately mseconds milliseconds and is intended
555// to be called indirectly through i2Delay field in i2eBordStr. It is intended
556// for use where a clock-based function is impossible: for example, DOS drivers.
557//
558// This function uses the IN instruction to place bounds on the timing and
559// assumes that ii2Safe has been set. This is because I/O instructions are not
560// subject to caching and will therefore take a certain minimum time. To ensure
561// the delay is at least long enough on fast machines, it is based on some
562// fastest-case calculations. On slower machines this may cause VERY long
563// delays. (3 x fastest case). In the fastest case, everything is cached except
564// the I/O instruction itself.
565//
566// Timing calculations:
567// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
568// operation in question is a byte operation to an odd address. For 8-bit
569// operations, the architecture generally enforces two wait states. At 10 MHz, a
570// single cycle time is 100nS. A read operation at two wait states takes 6
571// cycles for a total time of 600nS. Therefore approximately 1666 iterations
572// would be required to generate a single millisecond delay. The worst
573// (reasonable) case would be an 8MHz system with no cacheing. In this case, the
574// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
575// fetch of other instructions in the loop would take time (zero wait states,
576// however) and would be hard to estimate. This is minimized by using in-line
577// assembler for the in inner loop of IN instructions. This consists of just a
578// few bytes. So we'll guess about four code fetches per loop. Each code fetch
579// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
580// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
581//
582// So much for theoretical timings: results using 1666 value on some actual
583// machines:
584// IBM 286 6MHz 3.15 mS
585// Zenith 386 33MHz 2.45 mS
586// (brandX) 386 33MHz 1.90 mS (has cache)
587// (brandY) 486 33MHz 2.35 mS
588// NCR 486 ?? 1.65 mS (microchannel)
589//
590// For most machines, it is probably safe to scale this number back (remember,
591// for robust operation use an actual timed delay if possible), so we are using
592// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
593// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
594//
595// 1/29/93:
596// The above timings are too slow. Actual cycle times might be faster. ISA cycle
597// times could approach 500 nS, and ...
598// The IBM model 77 being microchannel has no wait states for 8-bit reads and
599// seems to be accessing the I/O at 440 nS per access (from start of one to
600// start of next). This would imply we need 1000/.440 = 2272 iterations to
601// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
602// fact enough. For diagnostics, we keep the level at 1190, but developers note
603// this needs tuning.
604//
605// Safe assumption: 2270 i/o reads = 1 millisecond
606//
607//******************************************************************************
608
609
610static int ii2DelValue = 1190; // See timing calculations below
611 // 1666 for fastest theoretical machine
612 // 1190 safe for most fast 386 machines
613 // 1000 for fastest machine tested here
614 // 540 (sic) for AT286/6Mhz
615static void
616ii2DelayIO(unsigned int mseconds)
617{
618 if (!ii2Safe)
619 return; /* Do nothing if this variable uninitialized */
620
621 while(mseconds--) {
622 int i = ii2DelValue;
623 while ( i-- ) {
624 inb(ii2Safe);
625 }
626 }
627}
628#endif
629
630//******************************************************************************
631// Function: ii2Nop()
632// Parameters: None
633//
634// Returns: Nothing
635//
636// Description:
637//
638// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
639// saves checking for a NULL pointer at every call.
640//******************************************************************************
641static void
642ii2Nop(void)
643{
644 return; // no mystery here
645}
646
647//=======================================================
648// Routines which are available in 8/16-bit versions, or
649// in different fifo styles. These are ALL called
650// indirectly through the board structure.
651//=======================================================
652
653//******************************************************************************
654// Function: iiWriteBuf16(pB, address, count)
655// Parameters: pB - pointer to board structure
656// address - address of data to write
657// count - number of data bytes to write
658//
659// Returns: True if everything appears copacetic.
660// False if there is any error: the pB->i2eError field has the error
661//
662// Description:
663//
664// Writes 'count' bytes from 'address' to the data fifo specified by the board
665// structure pointer pB. Should count happen to be odd, an extra pad byte is
666// sent (identity unknown...). Uses 16-bit (word) operations. Is called
667// indirectly through pB->i2eWriteBuf.
668//
669//******************************************************************************
670static int
671iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
672{
673 // Rudimentary sanity checking here.
674 if (pB->i2eValid != I2E_MAGIC)
675 I2_COMPLETE(pB, I2EE_INVALID);
676
677 I2_OUTSW(pB->i2eData, address, count);
678
679 I2_COMPLETE(pB, I2EE_GOOD);
680}
681
682//******************************************************************************
683// Function: iiWriteBuf8(pB, address, count)
684// Parameters: pB - pointer to board structure
685// address - address of data to write
686// count - number of data bytes to write
687//
688// Returns: True if everything appears copacetic.
689// False if there is any error: the pB->i2eError field has the error
690//
691// Description:
692//
693// Writes 'count' bytes from 'address' to the data fifo specified by the board
694// structure pointer pB. Should count happen to be odd, an extra pad byte is
695// sent (identity unknown...). This is to be consistent with the 16-bit version.
696// Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
697//
698//******************************************************************************
699static int
700iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
701{
702 /* Rudimentary sanity checking here */
703 if (pB->i2eValid != I2E_MAGIC)
704 I2_COMPLETE(pB, I2EE_INVALID);
705
706 I2_OUTSB(pB->i2eData, address, count);
707
708 I2_COMPLETE(pB, I2EE_GOOD);
709}
710
711//******************************************************************************
712// Function: iiReadBuf16(pB, address, count)
713// Parameters: pB - pointer to board structure
714// address - address to put data read
715// count - number of data bytes to read
716//
717// Returns: True if everything appears copacetic.
718// False if there is any error: the pB->i2eError field has the error
719//
720// Description:
721//
722// Reads 'count' bytes into 'address' from the data fifo specified by the board
723// structure pointer pB. Should count happen to be odd, an extra pad byte is
724// received (identity unknown...). Uses 16-bit (word) operations. Is called
725// indirectly through pB->i2eReadBuf.
726//
727//******************************************************************************
728static int
729iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
730{
731 // Rudimentary sanity checking here.
732 if (pB->i2eValid != I2E_MAGIC)
733 I2_COMPLETE(pB, I2EE_INVALID);
734
735 I2_INSW(pB->i2eData, address, count);
736
737 I2_COMPLETE(pB, I2EE_GOOD);
738}
739
740//******************************************************************************
741// Function: iiReadBuf8(pB, address, count)
742// Parameters: pB - pointer to board structure
743// address - address to put data read
744// count - number of data bytes to read
745//
746// Returns: True if everything appears copacetic.
747// False if there is any error: the pB->i2eError field has the error
748//
749// Description:
750//
751// Reads 'count' bytes into 'address' from the data fifo specified by the board
752// structure pointer pB. Should count happen to be odd, an extra pad byte is
753// received (identity unknown...). This to match the 16-bit behaviour. Uses
754// 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
755//
756//******************************************************************************
757static int
758iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
759{
760 // Rudimentary sanity checking here.
761 if (pB->i2eValid != I2E_MAGIC)
762 I2_COMPLETE(pB, I2EE_INVALID);
763
764 I2_INSB(pB->i2eData, address, count);
765
766 I2_COMPLETE(pB, I2EE_GOOD);
767}
768
769//******************************************************************************
770// Function: iiReadWord16(pB)
771// Parameters: pB - pointer to board structure
772//
773// Returns: True if everything appears copacetic.
774// False if there is any error: the pB->i2eError field has the error
775//
776// Description:
777//
778// Returns the word read from the data fifo specified by the board-structure
779// pointer pB. Uses a 16-bit operation. Is called indirectly through
780// pB->i2eReadWord.
781//
782//******************************************************************************
783static unsigned short
784iiReadWord16(i2eBordStrPtr pB)
785{
786 return inw(pB->i2eData);
787}
788
789//******************************************************************************
790// Function: iiReadWord8(pB)
791// Parameters: pB - pointer to board structure
792//
793// Returns: True if everything appears copacetic.
794// False if there is any error: the pB->i2eError field has the error
795//
796// Description:
797//
798// Returns the word read from the data fifo specified by the board-structure
799// pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
800// called indirectly through pB->i2eReadWord.
801//
802//******************************************************************************
803static unsigned short
804iiReadWord8(i2eBordStrPtr pB)
805{
806 unsigned short urs;
807
808 urs = inb(pB->i2eData);
809
810 return (inb(pB->i2eData) << 8) | urs;
811}
812
813//******************************************************************************
814// Function: iiWriteWord16(pB, value)
815// Parameters: pB - pointer to board structure
816// value - data to write
817//
818// Returns: True if everything appears copacetic.
819// False if there is any error: the pB->i2eError field has the error
820//
821// Description:
822//
823// Writes the word 'value' to the data fifo specified by the board-structure
824// pointer pB. Uses 16-bit operation. Is called indirectly through
825// pB->i2eWriteWord.
826//
827//******************************************************************************
828static void
829iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
830{
831 outw((int)value, pB->i2eData);
832}
833
834//******************************************************************************
835// Function: iiWriteWord8(pB, value)
836// Parameters: pB - pointer to board structure
837// value - data to write
838//
839// Returns: True if everything appears copacetic.
840// False if there is any error: the pB->i2eError field has the error
841//
842// Description:
843//
844// Writes the word 'value' to the data fifo specified by the board-structure
845// pointer pB. Uses two 8-bit operations (writes LSB first). Is called
846// indirectly through pB->i2eWriteWord.
847//
848//******************************************************************************
849static void
850iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
851{
852 outb((char)value, pB->i2eData);
853 outb((char)(value >> 8), pB->i2eData);
854}
855
856//******************************************************************************
857// Function: iiWaitForTxEmptyII(pB, mSdelay)
858// Parameters: pB - pointer to board structure
859// mSdelay - period to wait before returning
860//
861// Returns: True if the FIFO is empty.
862// False if it not empty in the required time: the pB->i2eError
863// field has the error.
864//
865// Description:
866//
867// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
868// not empty by the required time, returns false and error in pB->i2eError,
869// otherwise returns true.
870//
871// mSdelay == 0 is taken to mean must be empty on the first test.
872//
873// This version operates on IntelliPort-II - style FIFO's
874//
875// Note this routine is organized so that if status is ok there is no delay at
876// all called either before or after the test. Is called indirectly through
877// pB->i2eWaitForTxEmpty.
878//
879//******************************************************************************
880static int
881iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
882{
883 unsigned long flags;
884 int itemp;
885
886 for (;;)
887 {
888 // This routine hinges on being able to see the "other" status register
889 // (as seen by the local processor). His incoming fifo is our outgoing
890 // FIFO.
891 //
892 // By the nature of this routine, you would be using this as part of a
893 // larger atomic context: i.e., you would use this routine to ensure the
894 // fifo empty, then act on this information. Between these two halves,
895 // you will generally not want to service interrupts or in any way
896 // disrupt the assumptions implicit in the larger context.
897 //
898 // Even worse, however, this routine "shifts" the status register to
899 // point to the local status register which is not the usual situation.
900 // Therefore for extra safety, we force the critical section to be
901 // completely atomic, and pick up after ourselves before allowing any
902 // interrupts of any kind.
903
904
905 write_lock_irqsave(&Dl_spinlock, flags);
906 outb(SEL_COMMAND, pB->i2ePointer);
907 outb(SEL_CMD_SH, pB->i2ePointer);
908
909 itemp = inb(pB->i2eStatus);
910
911 outb(SEL_COMMAND, pB->i2ePointer);
912 outb(SEL_CMD_UNSH, pB->i2ePointer);
913
914 if (itemp & ST_IN_EMPTY)
915 {
916 I2_UPDATE_FIFO_ROOM(pB);
917 write_unlock_irqrestore(&Dl_spinlock, flags);
918 I2_COMPLETE(pB, I2EE_GOOD);
919 }
920
921 write_unlock_irqrestore(&Dl_spinlock, flags);
922
923 if (mSdelay-- == 0)
924 break;
925
926 iiDelay(pB, 1); /* 1 mS granularity on checking condition */
927 }
928 I2_COMPLETE(pB, I2EE_TXE_TIME);
929}
930
931//******************************************************************************
932// Function: iiWaitForTxEmptyIIEX(pB, mSdelay)
933// Parameters: pB - pointer to board structure
934// mSdelay - period to wait before returning
935//
936// Returns: True if the FIFO is empty.
937// False if it not empty in the required time: the pB->i2eError
938// field has the error.
939//
940// Description:
941//
942// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
943// not empty by the required time, returns false and error in pB->i2eError,
944// otherwise returns true.
945//
946// mSdelay == 0 is taken to mean must be empty on the first test.
947//
948// This version operates on IntelliPort-IIEX - style FIFO's
949//
950// Note this routine is organized so that if status is ok there is no delay at
951// all called either before or after the test. Is called indirectly through
952// pB->i2eWaitForTxEmpty.
953//
954//******************************************************************************
955static int
956iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
957{
958 unsigned long flags;
959
960 for (;;)
961 {
962 // By the nature of this routine, you would be using this as part of a
963 // larger atomic context: i.e., you would use this routine to ensure the
964 // fifo empty, then act on this information. Between these two halves,
965 // you will generally not want to service interrupts or in any way
966 // disrupt the assumptions implicit in the larger context.
967
968 write_lock_irqsave(&Dl_spinlock, flags);
969
970 if (inb(pB->i2eStatus) & STE_OUT_MT) {
971 I2_UPDATE_FIFO_ROOM(pB);
972 write_unlock_irqrestore(&Dl_spinlock, flags);
973 I2_COMPLETE(pB, I2EE_GOOD);
974 }
975 write_unlock_irqrestore(&Dl_spinlock, flags);
976
977 if (mSdelay-- == 0)
978 break;
979
980 iiDelay(pB, 1); // 1 mS granularity on checking condition
981 }
982 I2_COMPLETE(pB, I2EE_TXE_TIME);
983}
984
985//******************************************************************************
986// Function: iiTxMailEmptyII(pB)
987// Parameters: pB - pointer to board structure
988//
989// Returns: True if the transmit mailbox is empty.
990// False if it not empty.
991//
992// Description:
993//
994// Returns true or false according to whether the transmit mailbox is empty (and
995// therefore able to accept more mail)
996//
997// This version operates on IntelliPort-II - style FIFO's
998//
999//******************************************************************************
1000static int
1001iiTxMailEmptyII(i2eBordStrPtr pB)
1002{
1003 int port = pB->i2ePointer;
1004 outb(SEL_OUTMAIL, port);
1005 return inb(port) == 0;
1006}
1007
1008//******************************************************************************
1009// Function: iiTxMailEmptyIIEX(pB)
1010// Parameters: pB - pointer to board structure
1011//
1012// Returns: True if the transmit mailbox is empty.
1013// False if it not empty.
1014//
1015// Description:
1016//
1017// Returns true or false according to whether the transmit mailbox is empty (and
1018// therefore able to accept more mail)
1019//
1020// This version operates on IntelliPort-IIEX - style FIFO's
1021//
1022//******************************************************************************
1023static int
1024iiTxMailEmptyIIEX(i2eBordStrPtr pB)
1025{
1026 return !(inb(pB->i2eStatus) & STE_OUT_MAIL);
1027}
1028
1029//******************************************************************************
1030// Function: iiTrySendMailII(pB,mail)
1031// Parameters: pB - pointer to board structure
1032// mail - value to write to mailbox
1033//
1034// Returns: True if the transmit mailbox is empty, and mail is sent.
1035// False if it not empty.
1036//
1037// Description:
1038//
1039// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1040// mailbox is not empty, returns false.
1041//
1042// This version operates on IntelliPort-II - style FIFO's
1043//
1044//******************************************************************************
1045static int
1046iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
1047{
1048 int port = pB->i2ePointer;
1049
1050 outb(SEL_OUTMAIL, port);
1051 if (inb(port) == 0) {
1052 outb(SEL_OUTMAIL, port);
1053 outb(mail, port);
1054 return 1;
1055 }
1056 return 0;
1057}
1058
1059//******************************************************************************
1060// Function: iiTrySendMailIIEX(pB,mail)
1061// Parameters: pB - pointer to board structure
1062// mail - value to write to mailbox
1063//
1064// Returns: True if the transmit mailbox is empty, and mail is sent.
1065// False if it not empty.
1066//
1067// Description:
1068//
1069// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1070// mailbox is not empty, returns false.
1071//
1072// This version operates on IntelliPort-IIEX - style FIFO's
1073//
1074//******************************************************************************
1075static int
1076iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
1077{
1078 if (inb(pB->i2eStatus) & STE_OUT_MAIL)
1079 return 0;
1080 outb(mail, pB->i2eXMail);
1081 return 1;
1082}
1083
1084//******************************************************************************
1085// Function: iiGetMailII(pB,mail)
1086// Parameters: pB - pointer to board structure
1087//
1088// Returns: Mailbox data or NO_MAIL_HERE.
1089//
1090// Description:
1091//
1092// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1093// the mailbox, which is guaranteed != NO_MAIL_HERE.
1094//
1095// This version operates on IntelliPort-II - style FIFO's
1096//
1097//******************************************************************************
1098static unsigned short
1099iiGetMailII(i2eBordStrPtr pB)
1100{
1101 if (I2_HAS_MAIL(pB)) {
1102 outb(SEL_INMAIL, pB->i2ePointer);
1103 return inb(pB->i2ePointer);
1104 } else {
1105 return NO_MAIL_HERE;
1106 }
1107}
1108
1109//******************************************************************************
1110// Function: iiGetMailIIEX(pB,mail)
1111// Parameters: pB - pointer to board structure
1112//
1113// Returns: Mailbox data or NO_MAIL_HERE.
1114//
1115// Description:
1116//
1117// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1118// the mailbox, which is guaranteed != NO_MAIL_HERE.
1119//
1120// This version operates on IntelliPort-IIEX - style FIFO's
1121//
1122//******************************************************************************
1123static unsigned short
1124iiGetMailIIEX(i2eBordStrPtr pB)
1125{
1126 if (I2_HAS_MAIL(pB))
1127 return inb(pB->i2eXMail);
1128 else
1129 return NO_MAIL_HERE;
1130}
1131
1132//******************************************************************************
1133// Function: iiEnableMailIrqII(pB)
1134// Parameters: pB - pointer to board structure
1135//
1136// Returns: Nothing
1137//
1138// Description:
1139//
1140// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1141//
1142// This version operates on IntelliPort-II - style FIFO's
1143//
1144//******************************************************************************
1145static void
1146iiEnableMailIrqII(i2eBordStrPtr pB)
1147{
1148 outb(SEL_MASK, pB->i2ePointer);
1149 outb(ST_IN_MAIL, pB->i2ePointer);
1150}
1151
1152//******************************************************************************
1153// Function: iiEnableMailIrqIIEX(pB)
1154// Parameters: pB - pointer to board structure
1155//
1156// Returns: Nothing
1157//
1158// Description:
1159//
1160// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1161//
1162// This version operates on IntelliPort-IIEX - style FIFO's
1163//
1164//******************************************************************************
1165static void
1166iiEnableMailIrqIIEX(i2eBordStrPtr pB)
1167{
1168 outb(MX_IN_MAIL, pB->i2eXMask);
1169}
1170
1171//******************************************************************************
1172// Function: iiWriteMaskII(pB)
1173// Parameters: pB - pointer to board structure
1174//
1175// Returns: Nothing
1176//
1177// Description:
1178//
1179// Writes arbitrary value to the mask register.
1180//
1181// This version operates on IntelliPort-II - style FIFO's
1182//
1183//******************************************************************************
1184static void
1185iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
1186{
1187 outb(SEL_MASK, pB->i2ePointer);
1188 outb(value, pB->i2ePointer);
1189}
1190
1191//******************************************************************************
1192// Function: iiWriteMaskIIEX(pB)
1193// Parameters: pB - pointer to board structure
1194//
1195// Returns: Nothing
1196//
1197// Description:
1198//
1199// Writes arbitrary value to the mask register.
1200//
1201// This version operates on IntelliPort-IIEX - style FIFO's
1202//
1203//******************************************************************************
1204static void
1205iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
1206{
1207 outb(value, pB->i2eXMask);
1208}
1209
1210//******************************************************************************
1211// Function: iiDownloadBlock(pB, pSource, isStandard)
1212// Parameters: pB - pointer to board structure
1213// pSource - loadware block to download
1214// isStandard - True if "standard" loadware, else false.
1215//
1216// Returns: Success or Failure
1217//
1218// Description:
1219//
1220// Downloads a single block (at pSource)to the board referenced by pB. Caller
1221// sets isStandard to true/false according to whether the "standard" loadware is
1222// what's being loaded. The normal process, then, is to perform an iiInitialize
1223// to the board, then perform some number of iiDownloadBlocks using the returned
1224// state to determine when download is complete.
1225//
1226// Possible return values: (see I2ELLIS.H)
1227// II_DOWN_BADVALID
1228// II_DOWN_BADFILE
1229// II_DOWN_CONTINUING
1230// II_DOWN_GOOD
1231// II_DOWN_BAD
1232// II_DOWN_BADSTATE
1233// II_DOWN_TIMEOUT
1234//
1235// Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
1236// determine whether this is the first block, whether to check for magic
1237// numbers, how many blocks there are to go...
1238//
1239//******************************************************************************
1240static int
1241iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
1242{
1243 int itemp;
1244 int loadedFirst;
1245
1246 if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
1247
1248 switch(pB->i2eState)
1249 {
1250 case II_STATE_READY:
1251
1252 // Loading the first block after reset. Must check the magic number of the
1253 // loadfile, store the number of blocks we expect to load.
1254 if (pSource->e.loadMagic != MAGIC_LOADFILE)
1255 {
1256 return II_DOWN_BADFILE;
1257 }
1258
1259 // Next we store the total number of blocks to load, including this one.
1260 pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
1261
1262 // Set the state, store the version numbers. ('Cause this may have come
1263 // from a file - we might want to report these versions and revisions in
1264 // case of an error!
1265 pB->i2eState = II_STATE_LOADING;
1266 pB->i2eLVersion = pSource->e.loadVersion;
1267 pB->i2eLRevision = pSource->e.loadRevision;
1268 pB->i2eLSub = pSource->e.loadSubRevision;
1269
1270 // The time and date of compilation is also available but don't bother
1271 // storing it for normal purposes.
1272 loadedFirst = 1;
1273 break;
1274
1275 case II_STATE_LOADING:
1276 loadedFirst = 0;
1277 break;
1278
1279 default:
1280 return II_DOWN_BADSTATE;
1281 }
1282
1283 // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
1284 // must be positive still, because otherwise we would have cleaned up last
1285 // time and set the state to II_STATE_LOADED.
1286 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1287 return II_DOWN_TIMEOUT;
1288 }
1289
1290 if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
1291 return II_DOWN_BADVALID;
1292 }
1293
1294 // If we just loaded the first block, wait for the fifo to empty an extra
1295 // long time to allow for any special startup code in the firmware, like
1296 // sending status messages to the LCD's.
1297
1298 if (loadedFirst) {
1299 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
1300 return II_DOWN_TIMEOUT;
1301 }
1302 }
1303
1304 // Determine whether this was our last block!
1305 if (--(pB->i2eToLoad)) {
1306 return II_DOWN_CONTINUING; // more to come...
1307 }
1308
1309 // It WAS our last block: Clean up operations...
1310 // ...Wait for last buffer to drain from the board...
1311 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1312 return II_DOWN_TIMEOUT;
1313 }
1314 // If there were only a single block written, this would come back
1315 // immediately and be harmless, though not strictly necessary.
1316 itemp = MAX_DLOAD_ACK_TIME/10;
1317 while (--itemp) {
1318 if (I2_HAS_INPUT(pB)) {
1319 switch (inb(pB->i2eData)) {
1320 case LOADWARE_OK:
1321 pB->i2eState =
1322 isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
1323
1324 // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
1325 // will, // if there is a debug port attached, require some
1326 // time to send information to the debug port now. It will do
1327 // this before // executing any of the code we just downloaded.
1328 // It may take up to 700 milliseconds.
1329 if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
1330 iiDelay(pB, 700);
1331 }
1332
1333 return II_DOWN_GOOD;
1334
1335 case LOADWARE_BAD:
1336 default:
1337 return II_DOWN_BAD;
1338 }
1339 }
1340
1341 iiDelay(pB, 10); // 10 mS granularity on checking condition
1342 }
1343
1344 // Drop-through --> timed out waiting for firmware confirmation
1345
1346 pB->i2eState = II_STATE_BADLOAD;
1347 return II_DOWN_TIMEOUT;
1348}
1349
1350//******************************************************************************
1351// Function: iiDownloadAll(pB, pSource, isStandard, size)
1352// Parameters: pB - pointer to board structure
1353// pSource - loadware block to download
1354// isStandard - True if "standard" loadware, else false.
1355// size - size of data to download (in bytes)
1356//
1357// Returns: Success or Failure
1358//
1359// Description:
1360//
1361// Given a pointer to a board structure, a pointer to the beginning of some
1362// loadware, whether it is considered the "standard loadware", and the size of
1363// the array in bytes loads the entire array to the board as loadware.
1364//
1365// Assumes the board has been freshly reset and the power-up reset message read.
1366// (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
1367// too much or too little data to load, or if iiDownloadBlock complains.
1368//******************************************************************************
1369static int
1370iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
1371{
1372 int status;
1373
1374 // We know (from context) board should be ready for the first block of
1375 // download. Complain if not.
1376 if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
1377
1378 while (size > 0) {
1379 size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to
1380 // load after the following operation ?
1381
1382 // Note we just bump pSource by "one", because its size is actually that
1383 // of an entire block, same as LOADWARE_BLOCK_SIZE.
1384 status = iiDownloadBlock(pB, pSource++, isStandard);
1385
1386 switch(status)
1387 {
1388 case II_DOWN_GOOD:
1389 return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
1390
1391 case II_DOWN_CONTINUING:
1392 break;
1393
1394 default:
1395 return status;
1396 }
1397 }
1398
1399 // We shouldn't drop out: it means "while" caught us with nothing left to
1400 // download, yet the previous DownloadBlock did not return complete. Ergo,
1401 // not enough data to match the size byte in the header.
1402 return II_DOWN_UNDER;
1403}