diff options
Diffstat (limited to 'drivers/char/ftape/lowlevel/ftape-calibr.c')
-rw-r--r-- | drivers/char/ftape/lowlevel/ftape-calibr.c | 276 |
1 files changed, 276 insertions, 0 deletions
diff --git a/drivers/char/ftape/lowlevel/ftape-calibr.c b/drivers/char/ftape/lowlevel/ftape-calibr.c new file mode 100644 index 000000000000..956b2586e138 --- /dev/null +++ b/drivers/char/ftape/lowlevel/ftape-calibr.c | |||
@@ -0,0 +1,276 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1993-1996 Bas Laarhoven. | ||
3 | |||
4 | This program is free software; you can redistribute it and/or modify | ||
5 | it under the terms of the GNU General Public License as published by | ||
6 | the Free Software Foundation; either version 2, or (at your option) | ||
7 | any later version. | ||
8 | |||
9 | This program is distributed in the hope that it will be useful, | ||
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | GNU General Public License for more details. | ||
13 | |||
14 | You should have received a copy of the GNU General Public License | ||
15 | along with this program; see the file COPYING. If not, write to | ||
16 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | ||
17 | |||
18 | * | ||
19 | * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-calibr.c,v $ | ||
20 | * $Revision: 1.2 $ | ||
21 | * $Date: 1997/10/05 19:18:08 $ | ||
22 | * | ||
23 | * GP calibration routine for processor speed dependent | ||
24 | * functions. | ||
25 | */ | ||
26 | |||
27 | #include <linux/config.h> | ||
28 | #include <linux/errno.h> | ||
29 | #include <linux/jiffies.h> | ||
30 | #include <asm/system.h> | ||
31 | #include <asm/io.h> | ||
32 | #if defined(__alpha__) | ||
33 | # include <asm/hwrpb.h> | ||
34 | #elif defined(__x86_64__) | ||
35 | # include <asm/msr.h> | ||
36 | # include <asm/timex.h> | ||
37 | #elif defined(__i386__) | ||
38 | # include <linux/timex.h> | ||
39 | #endif | ||
40 | #include <linux/ftape.h> | ||
41 | #include "../lowlevel/ftape-tracing.h" | ||
42 | #include "../lowlevel/ftape-calibr.h" | ||
43 | #include "../lowlevel/fdc-io.h" | ||
44 | |||
45 | #undef DEBUG | ||
46 | |||
47 | #if !defined(__alpha__) && !defined(__i386__) && !defined(__x86_64__) | ||
48 | # error Ftape is not implemented for this architecture! | ||
49 | #endif | ||
50 | |||
51 | #if defined(__alpha__) || defined(__x86_64__) | ||
52 | static unsigned long ps_per_cycle = 0; | ||
53 | #endif | ||
54 | |||
55 | static spinlock_t calibr_lock; | ||
56 | |||
57 | /* | ||
58 | * Note: On Intel PCs, the clock ticks at 100 Hz (HZ==100) which is | ||
59 | * too slow for certain timeouts (and that clock doesn't even tick | ||
60 | * when interrupts are disabled). For that reason, the 8254 timer is | ||
61 | * used directly to implement fine-grained timeouts. However, on | ||
62 | * Alpha PCs, the 8254 is *not* used to implement the clock tick | ||
63 | * (which is 1024 Hz, normally) and the 8254 timer runs at some | ||
64 | * "random" frequency (it seems to run at 18Hz, but it's not safe to | ||
65 | * rely on this value). Instead, we use the Alpha's "rpcc" | ||
66 | * instruction to read cycle counts. As this is a 32 bit counter, | ||
67 | * it will overflow only once per 30 seconds (on a 200MHz machine), | ||
68 | * which is plenty. | ||
69 | */ | ||
70 | |||
71 | unsigned int ftape_timestamp(void) | ||
72 | { | ||
73 | #if defined(__alpha__) | ||
74 | unsigned long r; | ||
75 | |||
76 | asm volatile ("rpcc %0" : "=r" (r)); | ||
77 | return r; | ||
78 | #elif defined(__x86_64__) | ||
79 | unsigned long r; | ||
80 | rdtscl(r); | ||
81 | return r; | ||
82 | #elif defined(__i386__) | ||
83 | |||
84 | /* | ||
85 | * Note that there is some time between counter underflowing and jiffies | ||
86 | * increasing, so the code below won't always give correct output. | ||
87 | * -Vojtech | ||
88 | */ | ||
89 | |||
90 | unsigned long flags; | ||
91 | __u16 lo; | ||
92 | __u16 hi; | ||
93 | |||
94 | spin_lock_irqsave(&calibr_lock, flags); | ||
95 | outb_p(0x00, 0x43); /* latch the count ASAP */ | ||
96 | lo = inb_p(0x40); /* read the latched count */ | ||
97 | lo |= inb(0x40) << 8; | ||
98 | hi = jiffies; | ||
99 | spin_unlock_irqrestore(&calibr_lock, flags); | ||
100 | return ((hi + 1) * (unsigned int) LATCH) - lo; /* downcounter ! */ | ||
101 | #endif | ||
102 | } | ||
103 | |||
104 | static unsigned int short_ftape_timestamp(void) | ||
105 | { | ||
106 | #if defined(__alpha__) || defined(__x86_64__) | ||
107 | return ftape_timestamp(); | ||
108 | #elif defined(__i386__) | ||
109 | unsigned int count; | ||
110 | unsigned long flags; | ||
111 | |||
112 | spin_lock_irqsave(&calibr_lock, flags); | ||
113 | outb_p(0x00, 0x43); /* latch the count ASAP */ | ||
114 | count = inb_p(0x40); /* read the latched count */ | ||
115 | count |= inb(0x40) << 8; | ||
116 | spin_unlock_irqrestore(&calibr_lock, flags); | ||
117 | return (LATCH - count); /* normal: downcounter */ | ||
118 | #endif | ||
119 | } | ||
120 | |||
121 | static unsigned int diff(unsigned int t0, unsigned int t1) | ||
122 | { | ||
123 | #if defined(__alpha__) || defined(__x86_64__) | ||
124 | return (t1 - t0); | ||
125 | #elif defined(__i386__) | ||
126 | /* | ||
127 | * This is tricky: to work for both short and full ftape_timestamps | ||
128 | * we'll have to discriminate between these. | ||
129 | * If it _looks_ like short stamps with wrapping around we'll | ||
130 | * asume it are. This will generate a small error if it really | ||
131 | * was a (very large) delta from full ftape_timestamps. | ||
132 | */ | ||
133 | return (t1 <= t0 && t0 <= LATCH) ? t1 + LATCH - t0 : t1 - t0; | ||
134 | #endif | ||
135 | } | ||
136 | |||
137 | static unsigned int usecs(unsigned int count) | ||
138 | { | ||
139 | #if defined(__alpha__) || defined(__x86_64__) | ||
140 | return (ps_per_cycle * count) / 1000000UL; | ||
141 | #elif defined(__i386__) | ||
142 | return (10000 * count) / ((CLOCK_TICK_RATE + 50) / 100); | ||
143 | #endif | ||
144 | } | ||
145 | |||
146 | unsigned int ftape_timediff(unsigned int t0, unsigned int t1) | ||
147 | { | ||
148 | /* | ||
149 | * Calculate difference in usec for ftape_timestamp results t0 & t1. | ||
150 | * Note that on the i386 platform with short time-stamps, the | ||
151 | * maximum allowed timespan is 1/HZ or we'll lose ticks! | ||
152 | */ | ||
153 | return usecs(diff(t0, t1)); | ||
154 | } | ||
155 | |||
156 | /* To get an indication of the I/O performance, | ||
157 | * measure the duration of the inb() function. | ||
158 | */ | ||
159 | static void time_inb(void) | ||
160 | { | ||
161 | int i; | ||
162 | int t0, t1; | ||
163 | unsigned long flags; | ||
164 | int status; | ||
165 | TRACE_FUN(ft_t_any); | ||
166 | |||
167 | spin_lock_irqsave(&calibr_lock, flags); | ||
168 | t0 = short_ftape_timestamp(); | ||
169 | for (i = 0; i < 1000; ++i) { | ||
170 | status = inb(fdc.msr); | ||
171 | } | ||
172 | t1 = short_ftape_timestamp(); | ||
173 | spin_unlock_irqrestore(&calibr_lock, flags); | ||
174 | TRACE(ft_t_info, "inb() duration: %d nsec", ftape_timediff(t0, t1)); | ||
175 | TRACE_EXIT; | ||
176 | } | ||
177 | |||
178 | static void init_clock(void) | ||
179 | { | ||
180 | TRACE_FUN(ft_t_any); | ||
181 | |||
182 | #if defined(__x86_64__) | ||
183 | ps_per_cycle = 1000000000UL / cpu_khz; | ||
184 | #elif defined(__alpha__) | ||
185 | extern struct hwrpb_struct *hwrpb; | ||
186 | ps_per_cycle = (1000*1000*1000*1000UL) / hwrpb->cycle_freq; | ||
187 | #endif | ||
188 | TRACE_EXIT; | ||
189 | } | ||
190 | |||
191 | /* | ||
192 | * Input: function taking int count as parameter. | ||
193 | * pointers to calculated calibration variables. | ||
194 | */ | ||
195 | void ftape_calibrate(char *name, | ||
196 | void (*fun) (unsigned int), | ||
197 | unsigned int *calibr_count, | ||
198 | unsigned int *calibr_time) | ||
199 | { | ||
200 | static int first_time = 1; | ||
201 | int i; | ||
202 | unsigned int tc = 0; | ||
203 | unsigned int count; | ||
204 | unsigned int time; | ||
205 | #if defined(__i386__) | ||
206 | unsigned int old_tc = 0; | ||
207 | unsigned int old_count = 1; | ||
208 | unsigned int old_time = 1; | ||
209 | #endif | ||
210 | TRACE_FUN(ft_t_flow); | ||
211 | |||
212 | if (first_time) { /* get idea of I/O performance */ | ||
213 | init_clock(); | ||
214 | time_inb(); | ||
215 | first_time = 0; | ||
216 | } | ||
217 | /* value of timeout must be set so that on very slow systems | ||
218 | * it will give a time less than one jiffy, and on | ||
219 | * very fast systems it'll give reasonable precision. | ||
220 | */ | ||
221 | |||
222 | count = 40; | ||
223 | for (i = 0; i < 15; ++i) { | ||
224 | unsigned int t0; | ||
225 | unsigned int t1; | ||
226 | unsigned int once; | ||
227 | unsigned int multiple; | ||
228 | unsigned long flags; | ||
229 | |||
230 | *calibr_count = | ||
231 | *calibr_time = count; /* set TC to 1 */ | ||
232 | spin_lock_irqsave(&calibr_lock, flags); | ||
233 | fun(0); /* dummy, get code into cache */ | ||
234 | t0 = short_ftape_timestamp(); | ||
235 | fun(0); /* overhead + one test */ | ||
236 | t1 = short_ftape_timestamp(); | ||
237 | once = diff(t0, t1); | ||
238 | t0 = short_ftape_timestamp(); | ||
239 | fun(count); /* overhead + count tests */ | ||
240 | t1 = short_ftape_timestamp(); | ||
241 | multiple = diff(t0, t1); | ||
242 | spin_unlock_irqrestore(&calibr_lock, flags); | ||
243 | time = ftape_timediff(0, multiple - once); | ||
244 | tc = (1000 * time) / (count - 1); | ||
245 | TRACE(ft_t_any, "once:%3d us,%6d times:%6d us, TC:%5d ns", | ||
246 | usecs(once), count - 1, usecs(multiple), tc); | ||
247 | #if defined(__alpha__) || defined(__x86_64__) | ||
248 | /* | ||
249 | * Increase the calibration count exponentially until the | ||
250 | * calibration time exceeds 100 ms. | ||
251 | */ | ||
252 | if (time >= 100*1000) { | ||
253 | break; | ||
254 | } | ||
255 | #elif defined(__i386__) | ||
256 | /* | ||
257 | * increase the count until the resulting time nears 2/HZ, | ||
258 | * then the tc will drop sharply because we lose LATCH counts. | ||
259 | */ | ||
260 | if (tc <= old_tc / 2) { | ||
261 | time = old_time; | ||
262 | count = old_count; | ||
263 | break; | ||
264 | } | ||
265 | old_tc = tc; | ||
266 | old_count = count; | ||
267 | old_time = time; | ||
268 | #endif | ||
269 | count *= 2; | ||
270 | } | ||
271 | *calibr_count = count - 1; | ||
272 | *calibr_time = time; | ||
273 | TRACE(ft_t_info, "TC for `%s()' = %d nsec (at %d counts)", | ||
274 | name, (1000 * *calibr_time) / *calibr_count, *calibr_count); | ||
275 | TRACE_EXIT; | ||
276 | } | ||