diff options
Diffstat (limited to 'drivers/char/epca.c')
-rw-r--r-- | drivers/char/epca.c | 2784 |
1 files changed, 0 insertions, 2784 deletions
diff --git a/drivers/char/epca.c b/drivers/char/epca.c deleted file mode 100644 index d9df46aa0fba..000000000000 --- a/drivers/char/epca.c +++ /dev/null | |||
@@ -1,2784 +0,0 @@ | |||
1 | /* | ||
2 | Copyright (C) 1996 Digi International. | ||
3 | |||
4 | For technical support please email digiLinux@dgii.com or | ||
5 | call Digi tech support at (612) 912-3456 | ||
6 | |||
7 | ** This driver is no longer supported by Digi ** | ||
8 | |||
9 | Much of this design and code came from epca.c which was | ||
10 | copyright (C) 1994, 1995 Troy De Jongh, and subsquently | ||
11 | modified by David Nugent, Christoph Lameter, Mike McLagan. | ||
12 | |||
13 | This program is free software; you can redistribute it and/or modify | ||
14 | it under the terms of the GNU General Public License as published by | ||
15 | the Free Software Foundation; either version 2 of the License, or | ||
16 | (at your option) any later version. | ||
17 | |||
18 | This program is distributed in the hope that it will be useful, | ||
19 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
21 | GNU General Public License for more details. | ||
22 | |||
23 | You should have received a copy of the GNU General Public License | ||
24 | along with this program; if not, write to the Free Software | ||
25 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
26 | */ | ||
27 | /* See README.epca for change history --DAT*/ | ||
28 | |||
29 | #include <linux/module.h> | ||
30 | #include <linux/kernel.h> | ||
31 | #include <linux/types.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/sched.h> | ||
34 | #include <linux/serial.h> | ||
35 | #include <linux/delay.h> | ||
36 | #include <linux/ctype.h> | ||
37 | #include <linux/tty.h> | ||
38 | #include <linux/tty_flip.h> | ||
39 | #include <linux/slab.h> | ||
40 | #include <linux/ioport.h> | ||
41 | #include <linux/interrupt.h> | ||
42 | #include <linux/uaccess.h> | ||
43 | #include <linux/io.h> | ||
44 | #include <linux/spinlock.h> | ||
45 | #include <linux/pci.h> | ||
46 | #include "digiPCI.h" | ||
47 | |||
48 | |||
49 | #include "digi1.h" | ||
50 | #include "digiFep1.h" | ||
51 | #include "epca.h" | ||
52 | #include "epcaconfig.h" | ||
53 | |||
54 | #define VERSION "1.3.0.1-LK2.6" | ||
55 | |||
56 | /* This major needs to be submitted to Linux to join the majors list */ | ||
57 | #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */ | ||
58 | |||
59 | |||
60 | #define MAXCARDS 7 | ||
61 | #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg) | ||
62 | |||
63 | #define PFX "epca: " | ||
64 | |||
65 | static int nbdevs, num_cards, liloconfig; | ||
66 | static int digi_poller_inhibited = 1 ; | ||
67 | |||
68 | static int setup_error_code; | ||
69 | static int invalid_lilo_config; | ||
70 | |||
71 | /* | ||
72 | * The ISA boards do window flipping into the same spaces so its only sane with | ||
73 | * a single lock. It's still pretty efficient. This lock guards the hardware | ||
74 | * and the tty_port lock guards the kernel side stuff like use counts. Take | ||
75 | * this lock inside the port lock if you must take both. | ||
76 | */ | ||
77 | static DEFINE_SPINLOCK(epca_lock); | ||
78 | |||
79 | /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted | ||
80 | to 7 below. */ | ||
81 | static struct board_info boards[MAXBOARDS]; | ||
82 | |||
83 | static struct tty_driver *pc_driver; | ||
84 | static struct tty_driver *pc_info; | ||
85 | |||
86 | /* ------------------ Begin Digi specific structures -------------------- */ | ||
87 | |||
88 | /* | ||
89 | * digi_channels represents an array of structures that keep track of each | ||
90 | * channel of the Digi product. Information such as transmit and receive | ||
91 | * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored | ||
92 | * here. This structure is NOT used to overlay the cards physical channel | ||
93 | * structure. | ||
94 | */ | ||
95 | static struct channel digi_channels[MAX_ALLOC]; | ||
96 | |||
97 | /* | ||
98 | * card_ptr is an array used to hold the address of the first channel structure | ||
99 | * of each card. This array will hold the addresses of various channels located | ||
100 | * in digi_channels. | ||
101 | */ | ||
102 | static struct channel *card_ptr[MAXCARDS]; | ||
103 | |||
104 | static struct timer_list epca_timer; | ||
105 | |||
106 | /* | ||
107 | * Begin generic memory functions. These functions will be alias (point at) | ||
108 | * more specific functions dependent on the board being configured. | ||
109 | */ | ||
110 | static void memwinon(struct board_info *b, unsigned int win); | ||
111 | static void memwinoff(struct board_info *b, unsigned int win); | ||
112 | static void globalwinon(struct channel *ch); | ||
113 | static void rxwinon(struct channel *ch); | ||
114 | static void txwinon(struct channel *ch); | ||
115 | static void memoff(struct channel *ch); | ||
116 | static void assertgwinon(struct channel *ch); | ||
117 | static void assertmemoff(struct channel *ch); | ||
118 | |||
119 | /* ---- Begin more 'specific' memory functions for cx_like products --- */ | ||
120 | |||
121 | static void pcxem_memwinon(struct board_info *b, unsigned int win); | ||
122 | static void pcxem_memwinoff(struct board_info *b, unsigned int win); | ||
123 | static void pcxem_globalwinon(struct channel *ch); | ||
124 | static void pcxem_rxwinon(struct channel *ch); | ||
125 | static void pcxem_txwinon(struct channel *ch); | ||
126 | static void pcxem_memoff(struct channel *ch); | ||
127 | |||
128 | /* ------ Begin more 'specific' memory functions for the pcxe ------- */ | ||
129 | |||
130 | static void pcxe_memwinon(struct board_info *b, unsigned int win); | ||
131 | static void pcxe_memwinoff(struct board_info *b, unsigned int win); | ||
132 | static void pcxe_globalwinon(struct channel *ch); | ||
133 | static void pcxe_rxwinon(struct channel *ch); | ||
134 | static void pcxe_txwinon(struct channel *ch); | ||
135 | static void pcxe_memoff(struct channel *ch); | ||
136 | |||
137 | /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */ | ||
138 | /* Note : pc64xe and pcxi share the same windowing routines */ | ||
139 | |||
140 | static void pcxi_memwinon(struct board_info *b, unsigned int win); | ||
141 | static void pcxi_memwinoff(struct board_info *b, unsigned int win); | ||
142 | static void pcxi_globalwinon(struct channel *ch); | ||
143 | static void pcxi_rxwinon(struct channel *ch); | ||
144 | static void pcxi_txwinon(struct channel *ch); | ||
145 | static void pcxi_memoff(struct channel *ch); | ||
146 | |||
147 | /* - Begin 'specific' do nothing memory functions needed for some cards - */ | ||
148 | |||
149 | static void dummy_memwinon(struct board_info *b, unsigned int win); | ||
150 | static void dummy_memwinoff(struct board_info *b, unsigned int win); | ||
151 | static void dummy_globalwinon(struct channel *ch); | ||
152 | static void dummy_rxwinon(struct channel *ch); | ||
153 | static void dummy_txwinon(struct channel *ch); | ||
154 | static void dummy_memoff(struct channel *ch); | ||
155 | static void dummy_assertgwinon(struct channel *ch); | ||
156 | static void dummy_assertmemoff(struct channel *ch); | ||
157 | |||
158 | static struct channel *verifyChannel(struct tty_struct *); | ||
159 | static void pc_sched_event(struct channel *, int); | ||
160 | static void epca_error(int, char *); | ||
161 | static void pc_close(struct tty_struct *, struct file *); | ||
162 | static void shutdown(struct channel *, struct tty_struct *tty); | ||
163 | static void pc_hangup(struct tty_struct *); | ||
164 | static int pc_write_room(struct tty_struct *); | ||
165 | static int pc_chars_in_buffer(struct tty_struct *); | ||
166 | static void pc_flush_buffer(struct tty_struct *); | ||
167 | static void pc_flush_chars(struct tty_struct *); | ||
168 | static int pc_open(struct tty_struct *, struct file *); | ||
169 | static void post_fep_init(unsigned int crd); | ||
170 | static void epcapoll(unsigned long); | ||
171 | static void doevent(int); | ||
172 | static void fepcmd(struct channel *, int, int, int, int, int); | ||
173 | static unsigned termios2digi_h(struct channel *ch, unsigned); | ||
174 | static unsigned termios2digi_i(struct channel *ch, unsigned); | ||
175 | static unsigned termios2digi_c(struct channel *ch, unsigned); | ||
176 | static void epcaparam(struct tty_struct *, struct channel *); | ||
177 | static void receive_data(struct channel *, struct tty_struct *tty); | ||
178 | static int pc_ioctl(struct tty_struct *, struct file *, | ||
179 | unsigned int, unsigned long); | ||
180 | static int info_ioctl(struct tty_struct *, struct file *, | ||
181 | unsigned int, unsigned long); | ||
182 | static void pc_set_termios(struct tty_struct *, struct ktermios *); | ||
183 | static void do_softint(struct work_struct *work); | ||
184 | static void pc_stop(struct tty_struct *); | ||
185 | static void pc_start(struct tty_struct *); | ||
186 | static void pc_throttle(struct tty_struct *tty); | ||
187 | static void pc_unthrottle(struct tty_struct *tty); | ||
188 | static int pc_send_break(struct tty_struct *tty, int msec); | ||
189 | static void setup_empty_event(struct tty_struct *tty, struct channel *ch); | ||
190 | |||
191 | static int pc_write(struct tty_struct *, const unsigned char *, int); | ||
192 | static int pc_init(void); | ||
193 | static int init_PCI(void); | ||
194 | |||
195 | /* | ||
196 | * Table of functions for each board to handle memory. Mantaining parallelism | ||
197 | * is a *very* good idea here. The idea is for the runtime code to blindly call | ||
198 | * these functions, not knowing/caring about the underlying hardware. This | ||
199 | * stuff should contain no conditionals; if more functionality is needed a | ||
200 | * different entry should be established. These calls are the interface calls | ||
201 | * and are the only functions that should be accessed. Anyone caught making | ||
202 | * direct calls deserves what they get. | ||
203 | */ | ||
204 | static void memwinon(struct board_info *b, unsigned int win) | ||
205 | { | ||
206 | b->memwinon(b, win); | ||
207 | } | ||
208 | |||
209 | static void memwinoff(struct board_info *b, unsigned int win) | ||
210 | { | ||
211 | b->memwinoff(b, win); | ||
212 | } | ||
213 | |||
214 | static void globalwinon(struct channel *ch) | ||
215 | { | ||
216 | ch->board->globalwinon(ch); | ||
217 | } | ||
218 | |||
219 | static void rxwinon(struct channel *ch) | ||
220 | { | ||
221 | ch->board->rxwinon(ch); | ||
222 | } | ||
223 | |||
224 | static void txwinon(struct channel *ch) | ||
225 | { | ||
226 | ch->board->txwinon(ch); | ||
227 | } | ||
228 | |||
229 | static void memoff(struct channel *ch) | ||
230 | { | ||
231 | ch->board->memoff(ch); | ||
232 | } | ||
233 | static void assertgwinon(struct channel *ch) | ||
234 | { | ||
235 | ch->board->assertgwinon(ch); | ||
236 | } | ||
237 | |||
238 | static void assertmemoff(struct channel *ch) | ||
239 | { | ||
240 | ch->board->assertmemoff(ch); | ||
241 | } | ||
242 | |||
243 | /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */ | ||
244 | static void pcxem_memwinon(struct board_info *b, unsigned int win) | ||
245 | { | ||
246 | outb_p(FEPWIN | win, b->port + 1); | ||
247 | } | ||
248 | |||
249 | static void pcxem_memwinoff(struct board_info *b, unsigned int win) | ||
250 | { | ||
251 | outb_p(0, b->port + 1); | ||
252 | } | ||
253 | |||
254 | static void pcxem_globalwinon(struct channel *ch) | ||
255 | { | ||
256 | outb_p(FEPWIN, (int)ch->board->port + 1); | ||
257 | } | ||
258 | |||
259 | static void pcxem_rxwinon(struct channel *ch) | ||
260 | { | ||
261 | outb_p(ch->rxwin, (int)ch->board->port + 1); | ||
262 | } | ||
263 | |||
264 | static void pcxem_txwinon(struct channel *ch) | ||
265 | { | ||
266 | outb_p(ch->txwin, (int)ch->board->port + 1); | ||
267 | } | ||
268 | |||
269 | static void pcxem_memoff(struct channel *ch) | ||
270 | { | ||
271 | outb_p(0, (int)ch->board->port + 1); | ||
272 | } | ||
273 | |||
274 | /* ----------------- Begin pcxe memory window stuff ------------------ */ | ||
275 | static void pcxe_memwinon(struct board_info *b, unsigned int win) | ||
276 | { | ||
277 | outb_p(FEPWIN | win, b->port + 1); | ||
278 | } | ||
279 | |||
280 | static void pcxe_memwinoff(struct board_info *b, unsigned int win) | ||
281 | { | ||
282 | outb_p(inb(b->port) & ~FEPMEM, b->port + 1); | ||
283 | outb_p(0, b->port + 1); | ||
284 | } | ||
285 | |||
286 | static void pcxe_globalwinon(struct channel *ch) | ||
287 | { | ||
288 | outb_p(FEPWIN, (int)ch->board->port + 1); | ||
289 | } | ||
290 | |||
291 | static void pcxe_rxwinon(struct channel *ch) | ||
292 | { | ||
293 | outb_p(ch->rxwin, (int)ch->board->port + 1); | ||
294 | } | ||
295 | |||
296 | static void pcxe_txwinon(struct channel *ch) | ||
297 | { | ||
298 | outb_p(ch->txwin, (int)ch->board->port + 1); | ||
299 | } | ||
300 | |||
301 | static void pcxe_memoff(struct channel *ch) | ||
302 | { | ||
303 | outb_p(0, (int)ch->board->port); | ||
304 | outb_p(0, (int)ch->board->port + 1); | ||
305 | } | ||
306 | |||
307 | /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */ | ||
308 | static void pcxi_memwinon(struct board_info *b, unsigned int win) | ||
309 | { | ||
310 | outb_p(inb(b->port) | FEPMEM, b->port); | ||
311 | } | ||
312 | |||
313 | static void pcxi_memwinoff(struct board_info *b, unsigned int win) | ||
314 | { | ||
315 | outb_p(inb(b->port) & ~FEPMEM, b->port); | ||
316 | } | ||
317 | |||
318 | static void pcxi_globalwinon(struct channel *ch) | ||
319 | { | ||
320 | outb_p(FEPMEM, ch->board->port); | ||
321 | } | ||
322 | |||
323 | static void pcxi_rxwinon(struct channel *ch) | ||
324 | { | ||
325 | outb_p(FEPMEM, ch->board->port); | ||
326 | } | ||
327 | |||
328 | static void pcxi_txwinon(struct channel *ch) | ||
329 | { | ||
330 | outb_p(FEPMEM, ch->board->port); | ||
331 | } | ||
332 | |||
333 | static void pcxi_memoff(struct channel *ch) | ||
334 | { | ||
335 | outb_p(0, ch->board->port); | ||
336 | } | ||
337 | |||
338 | static void pcxi_assertgwinon(struct channel *ch) | ||
339 | { | ||
340 | epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off"); | ||
341 | } | ||
342 | |||
343 | static void pcxi_assertmemoff(struct channel *ch) | ||
344 | { | ||
345 | epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on"); | ||
346 | } | ||
347 | |||
348 | /* | ||
349 | * Not all of the cards need specific memory windowing routines. Some cards | ||
350 | * (Such as PCI) needs no windowing routines at all. We provide these do | ||
351 | * nothing routines so that the same code base can be used. The driver will | ||
352 | * ALWAYS call a windowing routine if it thinks it needs to; regardless of the | ||
353 | * card. However, dependent on the card the routine may or may not do anything. | ||
354 | */ | ||
355 | static void dummy_memwinon(struct board_info *b, unsigned int win) | ||
356 | { | ||
357 | } | ||
358 | |||
359 | static void dummy_memwinoff(struct board_info *b, unsigned int win) | ||
360 | { | ||
361 | } | ||
362 | |||
363 | static void dummy_globalwinon(struct channel *ch) | ||
364 | { | ||
365 | } | ||
366 | |||
367 | static void dummy_rxwinon(struct channel *ch) | ||
368 | { | ||
369 | } | ||
370 | |||
371 | static void dummy_txwinon(struct channel *ch) | ||
372 | { | ||
373 | } | ||
374 | |||
375 | static void dummy_memoff(struct channel *ch) | ||
376 | { | ||
377 | } | ||
378 | |||
379 | static void dummy_assertgwinon(struct channel *ch) | ||
380 | { | ||
381 | } | ||
382 | |||
383 | static void dummy_assertmemoff(struct channel *ch) | ||
384 | { | ||
385 | } | ||
386 | |||
387 | static struct channel *verifyChannel(struct tty_struct *tty) | ||
388 | { | ||
389 | /* | ||
390 | * This routine basically provides a sanity check. It insures that the | ||
391 | * channel returned is within the proper range of addresses as well as | ||
392 | * properly initialized. If some bogus info gets passed in | ||
393 | * through tty->driver_data this should catch it. | ||
394 | */ | ||
395 | if (tty) { | ||
396 | struct channel *ch = tty->driver_data; | ||
397 | if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) { | ||
398 | if (ch->magic == EPCA_MAGIC) | ||
399 | return ch; | ||
400 | } | ||
401 | } | ||
402 | return NULL; | ||
403 | } | ||
404 | |||
405 | static void pc_sched_event(struct channel *ch, int event) | ||
406 | { | ||
407 | /* | ||
408 | * We call this to schedule interrupt processing on some event. The | ||
409 | * kernel sees our request and calls the related routine in OUR driver. | ||
410 | */ | ||
411 | ch->event |= 1 << event; | ||
412 | schedule_work(&ch->tqueue); | ||
413 | } | ||
414 | |||
415 | static void epca_error(int line, char *msg) | ||
416 | { | ||
417 | printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg); | ||
418 | } | ||
419 | |||
420 | static void pc_close(struct tty_struct *tty, struct file *filp) | ||
421 | { | ||
422 | struct channel *ch; | ||
423 | struct tty_port *port; | ||
424 | /* | ||
425 | * verifyChannel returns the channel from the tty struct if it is | ||
426 | * valid. This serves as a sanity check. | ||
427 | */ | ||
428 | ch = verifyChannel(tty); | ||
429 | if (ch == NULL) | ||
430 | return; | ||
431 | port = &ch->port; | ||
432 | |||
433 | if (tty_port_close_start(port, tty, filp) == 0) | ||
434 | return; | ||
435 | |||
436 | pc_flush_buffer(tty); | ||
437 | shutdown(ch, tty); | ||
438 | |||
439 | tty_port_close_end(port, tty); | ||
440 | ch->event = 0; /* FIXME: review ch->event locking */ | ||
441 | tty_port_tty_set(port, NULL); | ||
442 | } | ||
443 | |||
444 | static void shutdown(struct channel *ch, struct tty_struct *tty) | ||
445 | { | ||
446 | unsigned long flags; | ||
447 | struct board_chan __iomem *bc; | ||
448 | struct tty_port *port = &ch->port; | ||
449 | |||
450 | if (!(port->flags & ASYNC_INITIALIZED)) | ||
451 | return; | ||
452 | |||
453 | spin_lock_irqsave(&epca_lock, flags); | ||
454 | |||
455 | globalwinon(ch); | ||
456 | bc = ch->brdchan; | ||
457 | |||
458 | /* | ||
459 | * In order for an event to be generated on the receipt of data the | ||
460 | * idata flag must be set. Since we are shutting down, this is not | ||
461 | * necessary clear this flag. | ||
462 | */ | ||
463 | if (bc) | ||
464 | writeb(0, &bc->idata); | ||
465 | |||
466 | /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */ | ||
467 | if (tty->termios->c_cflag & HUPCL) { | ||
468 | ch->omodem &= ~(ch->m_rts | ch->m_dtr); | ||
469 | fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1); | ||
470 | } | ||
471 | memoff(ch); | ||
472 | |||
473 | /* | ||
474 | * The channel has officialy been closed. The next time it is opened it | ||
475 | * will have to reinitialized. Set a flag to indicate this. | ||
476 | */ | ||
477 | /* Prevent future Digi programmed interrupts from coming active */ | ||
478 | port->flags &= ~ASYNC_INITIALIZED; | ||
479 | spin_unlock_irqrestore(&epca_lock, flags); | ||
480 | } | ||
481 | |||
482 | static void pc_hangup(struct tty_struct *tty) | ||
483 | { | ||
484 | struct channel *ch; | ||
485 | |||
486 | /* | ||
487 | * verifyChannel returns the channel from the tty struct if it is | ||
488 | * valid. This serves as a sanity check. | ||
489 | */ | ||
490 | ch = verifyChannel(tty); | ||
491 | if (ch != NULL) { | ||
492 | pc_flush_buffer(tty); | ||
493 | tty_ldisc_flush(tty); | ||
494 | shutdown(ch, tty); | ||
495 | |||
496 | ch->event = 0; /* FIXME: review locking of ch->event */ | ||
497 | tty_port_hangup(&ch->port); | ||
498 | } | ||
499 | } | ||
500 | |||
501 | static int pc_write(struct tty_struct *tty, | ||
502 | const unsigned char *buf, int bytesAvailable) | ||
503 | { | ||
504 | unsigned int head, tail; | ||
505 | int dataLen; | ||
506 | int size; | ||
507 | int amountCopied; | ||
508 | struct channel *ch; | ||
509 | unsigned long flags; | ||
510 | int remain; | ||
511 | struct board_chan __iomem *bc; | ||
512 | |||
513 | /* | ||
514 | * pc_write is primarily called directly by the kernel routine | ||
515 | * tty_write (Though it can also be called by put_char) found in | ||
516 | * tty_io.c. pc_write is passed a line discipline buffer where the data | ||
517 | * to be written out is stored. The line discipline implementation | ||
518 | * itself is done at the kernel level and is not brought into the | ||
519 | * driver. | ||
520 | */ | ||
521 | |||
522 | /* | ||
523 | * verifyChannel returns the channel from the tty struct if it is | ||
524 | * valid. This serves as a sanity check. | ||
525 | */ | ||
526 | ch = verifyChannel(tty); | ||
527 | if (ch == NULL) | ||
528 | return 0; | ||
529 | |||
530 | /* Make a pointer to the channel data structure found on the board. */ | ||
531 | bc = ch->brdchan; | ||
532 | size = ch->txbufsize; | ||
533 | amountCopied = 0; | ||
534 | |||
535 | spin_lock_irqsave(&epca_lock, flags); | ||
536 | globalwinon(ch); | ||
537 | |||
538 | head = readw(&bc->tin) & (size - 1); | ||
539 | tail = readw(&bc->tout); | ||
540 | |||
541 | if (tail != readw(&bc->tout)) | ||
542 | tail = readw(&bc->tout); | ||
543 | tail &= (size - 1); | ||
544 | |||
545 | if (head >= tail) { | ||
546 | /* head has not wrapped */ | ||
547 | /* | ||
548 | * remain (much like dataLen above) represents the total amount | ||
549 | * of space available on the card for data. Here dataLen | ||
550 | * represents the space existing between the head pointer and | ||
551 | * the end of buffer. This is important because a memcpy cannot | ||
552 | * be told to automatically wrap around when it hits the buffer | ||
553 | * end. | ||
554 | */ | ||
555 | dataLen = size - head; | ||
556 | remain = size - (head - tail) - 1; | ||
557 | } else { | ||
558 | /* head has wrapped around */ | ||
559 | remain = tail - head - 1; | ||
560 | dataLen = remain; | ||
561 | } | ||
562 | /* | ||
563 | * Check the space on the card. If we have more data than space; reduce | ||
564 | * the amount of data to fit the space. | ||
565 | */ | ||
566 | bytesAvailable = min(remain, bytesAvailable); | ||
567 | txwinon(ch); | ||
568 | while (bytesAvailable > 0) { | ||
569 | /* there is data to copy onto card */ | ||
570 | |||
571 | /* | ||
572 | * If head is not wrapped, the below will make sure the first | ||
573 | * data copy fills to the end of card buffer. | ||
574 | */ | ||
575 | dataLen = min(bytesAvailable, dataLen); | ||
576 | memcpy_toio(ch->txptr + head, buf, dataLen); | ||
577 | buf += dataLen; | ||
578 | head += dataLen; | ||
579 | amountCopied += dataLen; | ||
580 | bytesAvailable -= dataLen; | ||
581 | |||
582 | if (head >= size) { | ||
583 | head = 0; | ||
584 | dataLen = tail; | ||
585 | } | ||
586 | } | ||
587 | ch->statusflags |= TXBUSY; | ||
588 | globalwinon(ch); | ||
589 | writew(head, &bc->tin); | ||
590 | |||
591 | if ((ch->statusflags & LOWWAIT) == 0) { | ||
592 | ch->statusflags |= LOWWAIT; | ||
593 | writeb(1, &bc->ilow); | ||
594 | } | ||
595 | memoff(ch); | ||
596 | spin_unlock_irqrestore(&epca_lock, flags); | ||
597 | return amountCopied; | ||
598 | } | ||
599 | |||
600 | static int pc_write_room(struct tty_struct *tty) | ||
601 | { | ||
602 | int remain = 0; | ||
603 | struct channel *ch; | ||
604 | unsigned long flags; | ||
605 | unsigned int head, tail; | ||
606 | struct board_chan __iomem *bc; | ||
607 | /* | ||
608 | * verifyChannel returns the channel from the tty struct if it is | ||
609 | * valid. This serves as a sanity check. | ||
610 | */ | ||
611 | ch = verifyChannel(tty); | ||
612 | if (ch != NULL) { | ||
613 | spin_lock_irqsave(&epca_lock, flags); | ||
614 | globalwinon(ch); | ||
615 | |||
616 | bc = ch->brdchan; | ||
617 | head = readw(&bc->tin) & (ch->txbufsize - 1); | ||
618 | tail = readw(&bc->tout); | ||
619 | |||
620 | if (tail != readw(&bc->tout)) | ||
621 | tail = readw(&bc->tout); | ||
622 | /* Wrap tail if necessary */ | ||
623 | tail &= (ch->txbufsize - 1); | ||
624 | remain = tail - head - 1; | ||
625 | if (remain < 0) | ||
626 | remain += ch->txbufsize; | ||
627 | |||
628 | if (remain && (ch->statusflags & LOWWAIT) == 0) { | ||
629 | ch->statusflags |= LOWWAIT; | ||
630 | writeb(1, &bc->ilow); | ||
631 | } | ||
632 | memoff(ch); | ||
633 | spin_unlock_irqrestore(&epca_lock, flags); | ||
634 | } | ||
635 | /* Return how much room is left on card */ | ||
636 | return remain; | ||
637 | } | ||
638 | |||
639 | static int pc_chars_in_buffer(struct tty_struct *tty) | ||
640 | { | ||
641 | int chars; | ||
642 | unsigned int ctail, head, tail; | ||
643 | int remain; | ||
644 | unsigned long flags; | ||
645 | struct channel *ch; | ||
646 | struct board_chan __iomem *bc; | ||
647 | /* | ||
648 | * verifyChannel returns the channel from the tty struct if it is | ||
649 | * valid. This serves as a sanity check. | ||
650 | */ | ||
651 | ch = verifyChannel(tty); | ||
652 | if (ch == NULL) | ||
653 | return 0; | ||
654 | |||
655 | spin_lock_irqsave(&epca_lock, flags); | ||
656 | globalwinon(ch); | ||
657 | |||
658 | bc = ch->brdchan; | ||
659 | tail = readw(&bc->tout); | ||
660 | head = readw(&bc->tin); | ||
661 | ctail = readw(&ch->mailbox->cout); | ||
662 | |||
663 | if (tail == head && readw(&ch->mailbox->cin) == ctail && | ||
664 | readb(&bc->tbusy) == 0) | ||
665 | chars = 0; | ||
666 | else { /* Begin if some space on the card has been used */ | ||
667 | head = readw(&bc->tin) & (ch->txbufsize - 1); | ||
668 | tail &= (ch->txbufsize - 1); | ||
669 | /* | ||
670 | * The logic here is basically opposite of the above | ||
671 | * pc_write_room here we are finding the amount of bytes in the | ||
672 | * buffer filled. Not the amount of bytes empty. | ||
673 | */ | ||
674 | remain = tail - head - 1; | ||
675 | if (remain < 0) | ||
676 | remain += ch->txbufsize; | ||
677 | chars = (int)(ch->txbufsize - remain); | ||
678 | /* | ||
679 | * Make it possible to wakeup anything waiting for output in | ||
680 | * tty_ioctl.c, etc. | ||
681 | * | ||
682 | * If not already set. Setup an event to indicate when the | ||
683 | * transmit buffer empties. | ||
684 | */ | ||
685 | if (!(ch->statusflags & EMPTYWAIT)) | ||
686 | setup_empty_event(tty, ch); | ||
687 | } /* End if some space on the card has been used */ | ||
688 | memoff(ch); | ||
689 | spin_unlock_irqrestore(&epca_lock, flags); | ||
690 | /* Return number of characters residing on card. */ | ||
691 | return chars; | ||
692 | } | ||
693 | |||
694 | static void pc_flush_buffer(struct tty_struct *tty) | ||
695 | { | ||
696 | unsigned int tail; | ||
697 | unsigned long flags; | ||
698 | struct channel *ch; | ||
699 | struct board_chan __iomem *bc; | ||
700 | /* | ||
701 | * verifyChannel returns the channel from the tty struct if it is | ||
702 | * valid. This serves as a sanity check. | ||
703 | */ | ||
704 | ch = verifyChannel(tty); | ||
705 | if (ch == NULL) | ||
706 | return; | ||
707 | |||
708 | spin_lock_irqsave(&epca_lock, flags); | ||
709 | globalwinon(ch); | ||
710 | bc = ch->brdchan; | ||
711 | tail = readw(&bc->tout); | ||
712 | /* Have FEP move tout pointer; effectively flushing transmit buffer */ | ||
713 | fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0); | ||
714 | memoff(ch); | ||
715 | spin_unlock_irqrestore(&epca_lock, flags); | ||
716 | tty_wakeup(tty); | ||
717 | } | ||
718 | |||
719 | static void pc_flush_chars(struct tty_struct *tty) | ||
720 | { | ||
721 | struct channel *ch; | ||
722 | /* | ||
723 | * verifyChannel returns the channel from the tty struct if it is | ||
724 | * valid. This serves as a sanity check. | ||
725 | */ | ||
726 | ch = verifyChannel(tty); | ||
727 | if (ch != NULL) { | ||
728 | unsigned long flags; | ||
729 | spin_lock_irqsave(&epca_lock, flags); | ||
730 | /* | ||
731 | * If not already set and the transmitter is busy setup an | ||
732 | * event to indicate when the transmit empties. | ||
733 | */ | ||
734 | if ((ch->statusflags & TXBUSY) && | ||
735 | !(ch->statusflags & EMPTYWAIT)) | ||
736 | setup_empty_event(tty, ch); | ||
737 | spin_unlock_irqrestore(&epca_lock, flags); | ||
738 | } | ||
739 | } | ||
740 | |||
741 | static int epca_carrier_raised(struct tty_port *port) | ||
742 | { | ||
743 | struct channel *ch = container_of(port, struct channel, port); | ||
744 | if (ch->imodem & ch->dcd) | ||
745 | return 1; | ||
746 | return 0; | ||
747 | } | ||
748 | |||
749 | static void epca_dtr_rts(struct tty_port *port, int onoff) | ||
750 | { | ||
751 | } | ||
752 | |||
753 | static int pc_open(struct tty_struct *tty, struct file *filp) | ||
754 | { | ||
755 | struct channel *ch; | ||
756 | struct tty_port *port; | ||
757 | unsigned long flags; | ||
758 | int line, retval, boardnum; | ||
759 | struct board_chan __iomem *bc; | ||
760 | unsigned int head; | ||
761 | |||
762 | line = tty->index; | ||
763 | if (line < 0 || line >= nbdevs) | ||
764 | return -ENODEV; | ||
765 | |||
766 | ch = &digi_channels[line]; | ||
767 | port = &ch->port; | ||
768 | boardnum = ch->boardnum; | ||
769 | |||
770 | /* Check status of board configured in system. */ | ||
771 | |||
772 | /* | ||
773 | * I check to see if the epca_setup routine detected a user error. It | ||
774 | * might be better to put this in pc_init, but for the moment it goes | ||
775 | * here. | ||
776 | */ | ||
777 | if (invalid_lilo_config) { | ||
778 | if (setup_error_code & INVALID_BOARD_TYPE) | ||
779 | printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n"); | ||
780 | if (setup_error_code & INVALID_NUM_PORTS) | ||
781 | printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n"); | ||
782 | if (setup_error_code & INVALID_MEM_BASE) | ||
783 | printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n"); | ||
784 | if (setup_error_code & INVALID_PORT_BASE) | ||
785 | printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n"); | ||
786 | if (setup_error_code & INVALID_BOARD_STATUS) | ||
787 | printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n"); | ||
788 | if (setup_error_code & INVALID_ALTPIN) | ||
789 | printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n"); | ||
790 | tty->driver_data = NULL; /* Mark this device as 'down' */ | ||
791 | return -ENODEV; | ||
792 | } | ||
793 | if (boardnum >= num_cards || boards[boardnum].status == DISABLED) { | ||
794 | tty->driver_data = NULL; /* Mark this device as 'down' */ | ||
795 | return(-ENODEV); | ||
796 | } | ||
797 | |||
798 | bc = ch->brdchan; | ||
799 | if (bc == NULL) { | ||
800 | tty->driver_data = NULL; | ||
801 | return -ENODEV; | ||
802 | } | ||
803 | |||
804 | spin_lock_irqsave(&port->lock, flags); | ||
805 | /* | ||
806 | * Every time a channel is opened, increment a counter. This is | ||
807 | * necessary because we do not wish to flush and shutdown the channel | ||
808 | * until the last app holding the channel open, closes it. | ||
809 | */ | ||
810 | port->count++; | ||
811 | /* | ||
812 | * Set a kernel structures pointer to our local channel structure. This | ||
813 | * way we can get to it when passed only a tty struct. | ||
814 | */ | ||
815 | tty->driver_data = ch; | ||
816 | port->tty = tty; | ||
817 | /* | ||
818 | * If this is the first time the channel has been opened, initialize | ||
819 | * the tty->termios struct otherwise let pc_close handle it. | ||
820 | */ | ||
821 | spin_lock(&epca_lock); | ||
822 | globalwinon(ch); | ||
823 | ch->statusflags = 0; | ||
824 | |||
825 | /* Save boards current modem status */ | ||
826 | ch->imodem = readb(&bc->mstat); | ||
827 | |||
828 | /* | ||
829 | * Set receive head and tail ptrs to each other. This indicates no data | ||
830 | * available to read. | ||
831 | */ | ||
832 | head = readw(&bc->rin); | ||
833 | writew(head, &bc->rout); | ||
834 | |||
835 | /* Set the channels associated tty structure */ | ||
836 | |||
837 | /* | ||
838 | * The below routine generally sets up parity, baud, flow control | ||
839 | * issues, etc.... It effect both control flags and input flags. | ||
840 | */ | ||
841 | epcaparam(tty, ch); | ||
842 | memoff(ch); | ||
843 | spin_unlock(&epca_lock); | ||
844 | port->flags |= ASYNC_INITIALIZED; | ||
845 | spin_unlock_irqrestore(&port->lock, flags); | ||
846 | |||
847 | retval = tty_port_block_til_ready(port, tty, filp); | ||
848 | if (retval) | ||
849 | return retval; | ||
850 | /* | ||
851 | * Set this again in case a hangup set it to zero while this open() was | ||
852 | * waiting for the line... | ||
853 | */ | ||
854 | spin_lock_irqsave(&port->lock, flags); | ||
855 | port->tty = tty; | ||
856 | spin_lock(&epca_lock); | ||
857 | globalwinon(ch); | ||
858 | /* Enable Digi Data events */ | ||
859 | writeb(1, &bc->idata); | ||
860 | memoff(ch); | ||
861 | spin_unlock(&epca_lock); | ||
862 | spin_unlock_irqrestore(&port->lock, flags); | ||
863 | return 0; | ||
864 | } | ||
865 | |||
866 | static int __init epca_module_init(void) | ||
867 | { | ||
868 | return pc_init(); | ||
869 | } | ||
870 | module_init(epca_module_init); | ||
871 | |||
872 | static struct pci_driver epca_driver; | ||
873 | |||
874 | static void __exit epca_module_exit(void) | ||
875 | { | ||
876 | int count, crd; | ||
877 | struct board_info *bd; | ||
878 | struct channel *ch; | ||
879 | |||
880 | del_timer_sync(&epca_timer); | ||
881 | |||
882 | if (tty_unregister_driver(pc_driver) || | ||
883 | tty_unregister_driver(pc_info)) { | ||
884 | printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n"); | ||
885 | return; | ||
886 | } | ||
887 | put_tty_driver(pc_driver); | ||
888 | put_tty_driver(pc_info); | ||
889 | |||
890 | for (crd = 0; crd < num_cards; crd++) { | ||
891 | bd = &boards[crd]; | ||
892 | if (!bd) { /* sanity check */ | ||
893 | printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n"); | ||
894 | return; | ||
895 | } | ||
896 | ch = card_ptr[crd]; | ||
897 | for (count = 0; count < bd->numports; count++, ch++) { | ||
898 | struct tty_struct *tty = tty_port_tty_get(&ch->port); | ||
899 | if (tty) { | ||
900 | tty_hangup(tty); | ||
901 | tty_kref_put(tty); | ||
902 | } | ||
903 | } | ||
904 | } | ||
905 | pci_unregister_driver(&epca_driver); | ||
906 | } | ||
907 | module_exit(epca_module_exit); | ||
908 | |||
909 | static const struct tty_operations pc_ops = { | ||
910 | .open = pc_open, | ||
911 | .close = pc_close, | ||
912 | .write = pc_write, | ||
913 | .write_room = pc_write_room, | ||
914 | .flush_buffer = pc_flush_buffer, | ||
915 | .chars_in_buffer = pc_chars_in_buffer, | ||
916 | .flush_chars = pc_flush_chars, | ||
917 | .ioctl = pc_ioctl, | ||
918 | .set_termios = pc_set_termios, | ||
919 | .stop = pc_stop, | ||
920 | .start = pc_start, | ||
921 | .throttle = pc_throttle, | ||
922 | .unthrottle = pc_unthrottle, | ||
923 | .hangup = pc_hangup, | ||
924 | .break_ctl = pc_send_break | ||
925 | }; | ||
926 | |||
927 | static const struct tty_port_operations epca_port_ops = { | ||
928 | .carrier_raised = epca_carrier_raised, | ||
929 | .dtr_rts = epca_dtr_rts, | ||
930 | }; | ||
931 | |||
932 | static int info_open(struct tty_struct *tty, struct file *filp) | ||
933 | { | ||
934 | return 0; | ||
935 | } | ||
936 | |||
937 | static const struct tty_operations info_ops = { | ||
938 | .open = info_open, | ||
939 | .ioctl = info_ioctl, | ||
940 | }; | ||
941 | |||
942 | static int __init pc_init(void) | ||
943 | { | ||
944 | int crd; | ||
945 | struct board_info *bd; | ||
946 | unsigned char board_id = 0; | ||
947 | int err = -ENOMEM; | ||
948 | |||
949 | int pci_boards_found, pci_count; | ||
950 | |||
951 | pci_count = 0; | ||
952 | |||
953 | pc_driver = alloc_tty_driver(MAX_ALLOC); | ||
954 | if (!pc_driver) | ||
955 | goto out1; | ||
956 | |||
957 | pc_info = alloc_tty_driver(MAX_ALLOC); | ||
958 | if (!pc_info) | ||
959 | goto out2; | ||
960 | |||
961 | /* | ||
962 | * If epca_setup has not been ran by LILO set num_cards to defaults; | ||
963 | * copy board structure defined by digiConfig into drivers board | ||
964 | * structure. Note : If LILO has ran epca_setup then epca_setup will | ||
965 | * handle defining num_cards as well as copying the data into the board | ||
966 | * structure. | ||
967 | */ | ||
968 | if (!liloconfig) { | ||
969 | /* driver has been configured via. epcaconfig */ | ||
970 | nbdevs = NBDEVS; | ||
971 | num_cards = NUMCARDS; | ||
972 | memcpy(&boards, &static_boards, | ||
973 | sizeof(struct board_info) * NUMCARDS); | ||
974 | } | ||
975 | |||
976 | /* | ||
977 | * Note : If lilo was used to configure the driver and the ignore | ||
978 | * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards | ||
979 | * will equal 0 at this point. This is okay; PCI cards will still be | ||
980 | * picked up if detected. | ||
981 | */ | ||
982 | |||
983 | /* | ||
984 | * Set up interrupt, we will worry about memory allocation in | ||
985 | * post_fep_init. | ||
986 | */ | ||
987 | printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION); | ||
988 | |||
989 | /* | ||
990 | * NOTE : This code assumes that the number of ports found in the | ||
991 | * boards array is correct. This could be wrong if the card in question | ||
992 | * is PCI (And therefore has no ports entry in the boards structure.) | ||
993 | * The rest of the information will be valid for PCI because the | ||
994 | * beginning of pc_init scans for PCI and determines i/o and base | ||
995 | * memory addresses. I am not sure if it is possible to read the number | ||
996 | * of ports supported by the card prior to it being booted (Since that | ||
997 | * is the state it is in when pc_init is run). Because it is not | ||
998 | * possible to query the number of supported ports until after the card | ||
999 | * has booted; we are required to calculate the card_ptrs as the card | ||
1000 | * is initialized (Inside post_fep_init). The negative thing about this | ||
1001 | * approach is that digiDload's call to GET_INFO will have a bad port | ||
1002 | * value. (Since this is called prior to post_fep_init.) | ||
1003 | */ | ||
1004 | pci_boards_found = 0; | ||
1005 | if (num_cards < MAXBOARDS) | ||
1006 | pci_boards_found += init_PCI(); | ||
1007 | num_cards += pci_boards_found; | ||
1008 | |||
1009 | pc_driver->owner = THIS_MODULE; | ||
1010 | pc_driver->name = "ttyD"; | ||
1011 | pc_driver->major = DIGI_MAJOR; | ||
1012 | pc_driver->minor_start = 0; | ||
1013 | pc_driver->type = TTY_DRIVER_TYPE_SERIAL; | ||
1014 | pc_driver->subtype = SERIAL_TYPE_NORMAL; | ||
1015 | pc_driver->init_termios = tty_std_termios; | ||
1016 | pc_driver->init_termios.c_iflag = 0; | ||
1017 | pc_driver->init_termios.c_oflag = 0; | ||
1018 | pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL; | ||
1019 | pc_driver->init_termios.c_lflag = 0; | ||
1020 | pc_driver->init_termios.c_ispeed = 9600; | ||
1021 | pc_driver->init_termios.c_ospeed = 9600; | ||
1022 | pc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_HARDWARE_BREAK; | ||
1023 | tty_set_operations(pc_driver, &pc_ops); | ||
1024 | |||
1025 | pc_info->owner = THIS_MODULE; | ||
1026 | pc_info->name = "digi_ctl"; | ||
1027 | pc_info->major = DIGIINFOMAJOR; | ||
1028 | pc_info->minor_start = 0; | ||
1029 | pc_info->type = TTY_DRIVER_TYPE_SERIAL; | ||
1030 | pc_info->subtype = SERIAL_TYPE_INFO; | ||
1031 | pc_info->init_termios = tty_std_termios; | ||
1032 | pc_info->init_termios.c_iflag = 0; | ||
1033 | pc_info->init_termios.c_oflag = 0; | ||
1034 | pc_info->init_termios.c_lflag = 0; | ||
1035 | pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL; | ||
1036 | pc_info->init_termios.c_ispeed = 9600; | ||
1037 | pc_info->init_termios.c_ospeed = 9600; | ||
1038 | pc_info->flags = TTY_DRIVER_REAL_RAW; | ||
1039 | tty_set_operations(pc_info, &info_ops); | ||
1040 | |||
1041 | |||
1042 | for (crd = 0; crd < num_cards; crd++) { | ||
1043 | /* | ||
1044 | * This is where the appropriate memory handlers for the | ||
1045 | * hardware is set. Everything at runtime blindly jumps through | ||
1046 | * these vectors. | ||
1047 | */ | ||
1048 | |||
1049 | /* defined in epcaconfig.h */ | ||
1050 | bd = &boards[crd]; | ||
1051 | |||
1052 | switch (bd->type) { | ||
1053 | case PCXEM: | ||
1054 | case EISAXEM: | ||
1055 | bd->memwinon = pcxem_memwinon; | ||
1056 | bd->memwinoff = pcxem_memwinoff; | ||
1057 | bd->globalwinon = pcxem_globalwinon; | ||
1058 | bd->txwinon = pcxem_txwinon; | ||
1059 | bd->rxwinon = pcxem_rxwinon; | ||
1060 | bd->memoff = pcxem_memoff; | ||
1061 | bd->assertgwinon = dummy_assertgwinon; | ||
1062 | bd->assertmemoff = dummy_assertmemoff; | ||
1063 | break; | ||
1064 | |||
1065 | case PCIXEM: | ||
1066 | case PCIXRJ: | ||
1067 | case PCIXR: | ||
1068 | bd->memwinon = dummy_memwinon; | ||
1069 | bd->memwinoff = dummy_memwinoff; | ||
1070 | bd->globalwinon = dummy_globalwinon; | ||
1071 | bd->txwinon = dummy_txwinon; | ||
1072 | bd->rxwinon = dummy_rxwinon; | ||
1073 | bd->memoff = dummy_memoff; | ||
1074 | bd->assertgwinon = dummy_assertgwinon; | ||
1075 | bd->assertmemoff = dummy_assertmemoff; | ||
1076 | break; | ||
1077 | |||
1078 | case PCXE: | ||
1079 | case PCXEVE: | ||
1080 | bd->memwinon = pcxe_memwinon; | ||
1081 | bd->memwinoff = pcxe_memwinoff; | ||
1082 | bd->globalwinon = pcxe_globalwinon; | ||
1083 | bd->txwinon = pcxe_txwinon; | ||
1084 | bd->rxwinon = pcxe_rxwinon; | ||
1085 | bd->memoff = pcxe_memoff; | ||
1086 | bd->assertgwinon = dummy_assertgwinon; | ||
1087 | bd->assertmemoff = dummy_assertmemoff; | ||
1088 | break; | ||
1089 | |||
1090 | case PCXI: | ||
1091 | case PC64XE: | ||
1092 | bd->memwinon = pcxi_memwinon; | ||
1093 | bd->memwinoff = pcxi_memwinoff; | ||
1094 | bd->globalwinon = pcxi_globalwinon; | ||
1095 | bd->txwinon = pcxi_txwinon; | ||
1096 | bd->rxwinon = pcxi_rxwinon; | ||
1097 | bd->memoff = pcxi_memoff; | ||
1098 | bd->assertgwinon = pcxi_assertgwinon; | ||
1099 | bd->assertmemoff = pcxi_assertmemoff; | ||
1100 | break; | ||
1101 | |||
1102 | default: | ||
1103 | break; | ||
1104 | } | ||
1105 | |||
1106 | /* | ||
1107 | * Some cards need a memory segment to be defined for use in | ||
1108 | * transmit and receive windowing operations. These boards are | ||
1109 | * listed in the below switch. In the case of the XI the amount | ||
1110 | * of memory on the board is variable so the memory_seg is also | ||
1111 | * variable. This code determines what they segment should be. | ||
1112 | */ | ||
1113 | switch (bd->type) { | ||
1114 | case PCXE: | ||
1115 | case PCXEVE: | ||
1116 | case PC64XE: | ||
1117 | bd->memory_seg = 0xf000; | ||
1118 | break; | ||
1119 | |||
1120 | case PCXI: | ||
1121 | board_id = inb((int)bd->port); | ||
1122 | if ((board_id & 0x1) == 0x1) { | ||
1123 | /* it's an XI card */ | ||
1124 | /* Is it a 64K board */ | ||
1125 | if ((board_id & 0x30) == 0) | ||
1126 | bd->memory_seg = 0xf000; | ||
1127 | |||
1128 | /* Is it a 128K board */ | ||
1129 | if ((board_id & 0x30) == 0x10) | ||
1130 | bd->memory_seg = 0xe000; | ||
1131 | |||
1132 | /* Is is a 256K board */ | ||
1133 | if ((board_id & 0x30) == 0x20) | ||
1134 | bd->memory_seg = 0xc000; | ||
1135 | |||
1136 | /* Is it a 512K board */ | ||
1137 | if ((board_id & 0x30) == 0x30) | ||
1138 | bd->memory_seg = 0x8000; | ||
1139 | } else | ||
1140 | printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port); | ||
1141 | break; | ||
1142 | } | ||
1143 | } | ||
1144 | |||
1145 | err = tty_register_driver(pc_driver); | ||
1146 | if (err) { | ||
1147 | printk(KERN_ERR "Couldn't register Digi PC/ driver"); | ||
1148 | goto out3; | ||
1149 | } | ||
1150 | |||
1151 | err = tty_register_driver(pc_info); | ||
1152 | if (err) { | ||
1153 | printk(KERN_ERR "Couldn't register Digi PC/ info "); | ||
1154 | goto out4; | ||
1155 | } | ||
1156 | |||
1157 | /* Start up the poller to check for events on all enabled boards */ | ||
1158 | init_timer(&epca_timer); | ||
1159 | epca_timer.function = epcapoll; | ||
1160 | mod_timer(&epca_timer, jiffies + HZ/25); | ||
1161 | return 0; | ||
1162 | |||
1163 | out4: | ||
1164 | tty_unregister_driver(pc_driver); | ||
1165 | out3: | ||
1166 | put_tty_driver(pc_info); | ||
1167 | out2: | ||
1168 | put_tty_driver(pc_driver); | ||
1169 | out1: | ||
1170 | return err; | ||
1171 | } | ||
1172 | |||
1173 | static void post_fep_init(unsigned int crd) | ||
1174 | { | ||
1175 | int i; | ||
1176 | void __iomem *memaddr; | ||
1177 | struct global_data __iomem *gd; | ||
1178 | struct board_info *bd; | ||
1179 | struct board_chan __iomem *bc; | ||
1180 | struct channel *ch; | ||
1181 | int shrinkmem = 0, lowwater; | ||
1182 | |||
1183 | /* | ||
1184 | * This call is made by the user via. the ioctl call DIGI_INIT. It is | ||
1185 | * responsible for setting up all the card specific stuff. | ||
1186 | */ | ||
1187 | bd = &boards[crd]; | ||
1188 | |||
1189 | /* | ||
1190 | * If this is a PCI board, get the port info. Remember PCI cards do not | ||
1191 | * have entries into the epcaconfig.h file, so we can't get the number | ||
1192 | * of ports from it. Unfortunetly, this means that anyone doing a | ||
1193 | * DIGI_GETINFO before the board has booted will get an invalid number | ||
1194 | * of ports returned (It should return 0). Calls to DIGI_GETINFO after | ||
1195 | * DIGI_INIT has been called will return the proper values. | ||
1196 | */ | ||
1197 | if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */ | ||
1198 | /* | ||
1199 | * Below we use XEMPORTS as a memory offset regardless of which | ||
1200 | * PCI card it is. This is because all of the supported PCI | ||
1201 | * cards have the same memory offset for the channel data. This | ||
1202 | * will have to be changed if we ever develop a PCI/XE card. | ||
1203 | * NOTE : The FEP manual states that the port offset is 0xC22 | ||
1204 | * as opposed to 0xC02. This is only true for PC/XE, and PC/XI | ||
1205 | * cards; not for the XEM, or CX series. On the PCI cards the | ||
1206 | * number of ports is determined by reading a ID PROM located | ||
1207 | * in the box attached to the card. The card can then determine | ||
1208 | * the index the id to determine the number of ports available. | ||
1209 | * (FYI - The id should be located at 0x1ac (And may use up to | ||
1210 | * 4 bytes if the box in question is a XEM or CX)). | ||
1211 | */ | ||
1212 | /* PCI cards are already remapped at this point ISA are not */ | ||
1213 | bd->numports = readw(bd->re_map_membase + XEMPORTS); | ||
1214 | epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports"); | ||
1215 | nbdevs += (bd->numports); | ||
1216 | } else { | ||
1217 | /* Fix up the mappings for ISA/EISA etc */ | ||
1218 | /* FIXME: 64K - can we be smarter ? */ | ||
1219 | bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000); | ||
1220 | } | ||
1221 | |||
1222 | if (crd != 0) | ||
1223 | card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports; | ||
1224 | else | ||
1225 | card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */ | ||
1226 | |||
1227 | ch = card_ptr[crd]; | ||
1228 | epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range"); | ||
1229 | |||
1230 | memaddr = bd->re_map_membase; | ||
1231 | |||
1232 | /* | ||
1233 | * The below assignment will set bc to point at the BEGINING of the | ||
1234 | * cards channel structures. For 1 card there will be between 8 and 64 | ||
1235 | * of these structures. | ||
1236 | */ | ||
1237 | bc = memaddr + CHANSTRUCT; | ||
1238 | |||
1239 | /* | ||
1240 | * The below assignment will set gd to point at the BEGINING of global | ||
1241 | * memory address 0xc00. The first data in that global memory actually | ||
1242 | * starts at address 0xc1a. The command in pointer begins at 0xd10. | ||
1243 | */ | ||
1244 | gd = memaddr + GLOBAL; | ||
1245 | |||
1246 | /* | ||
1247 | * XEPORTS (address 0xc22) points at the number of channels the card | ||
1248 | * supports. (For 64XE, XI, XEM, and XR use 0xc02) | ||
1249 | */ | ||
1250 | if ((bd->type == PCXEVE || bd->type == PCXE) && | ||
1251 | (readw(memaddr + XEPORTS) < 3)) | ||
1252 | shrinkmem = 1; | ||
1253 | if (bd->type < PCIXEM) | ||
1254 | if (!request_region((int)bd->port, 4, board_desc[bd->type])) | ||
1255 | return; | ||
1256 | memwinon(bd, 0); | ||
1257 | |||
1258 | /* | ||
1259 | * Remember ch is the main drivers channels structure, while bc is the | ||
1260 | * cards channel structure. | ||
1261 | */ | ||
1262 | for (i = 0; i < bd->numports; i++, ch++, bc++) { | ||
1263 | unsigned long flags; | ||
1264 | u16 tseg, rseg; | ||
1265 | |||
1266 | tty_port_init(&ch->port); | ||
1267 | ch->port.ops = &epca_port_ops; | ||
1268 | ch->brdchan = bc; | ||
1269 | ch->mailbox = gd; | ||
1270 | INIT_WORK(&ch->tqueue, do_softint); | ||
1271 | ch->board = &boards[crd]; | ||
1272 | |||
1273 | spin_lock_irqsave(&epca_lock, flags); | ||
1274 | switch (bd->type) { | ||
1275 | /* | ||
1276 | * Since some of the boards use different bitmaps for | ||
1277 | * their control signals we cannot hard code these | ||
1278 | * values and retain portability. We virtualize this | ||
1279 | * data here. | ||
1280 | */ | ||
1281 | case EISAXEM: | ||
1282 | case PCXEM: | ||
1283 | case PCIXEM: | ||
1284 | case PCIXRJ: | ||
1285 | case PCIXR: | ||
1286 | ch->m_rts = 0x02; | ||
1287 | ch->m_dcd = 0x80; | ||
1288 | ch->m_dsr = 0x20; | ||
1289 | ch->m_cts = 0x10; | ||
1290 | ch->m_ri = 0x40; | ||
1291 | ch->m_dtr = 0x01; | ||
1292 | break; | ||
1293 | |||
1294 | case PCXE: | ||
1295 | case PCXEVE: | ||
1296 | case PCXI: | ||
1297 | case PC64XE: | ||
1298 | ch->m_rts = 0x02; | ||
1299 | ch->m_dcd = 0x08; | ||
1300 | ch->m_dsr = 0x10; | ||
1301 | ch->m_cts = 0x20; | ||
1302 | ch->m_ri = 0x40; | ||
1303 | ch->m_dtr = 0x80; | ||
1304 | break; | ||
1305 | } | ||
1306 | |||
1307 | if (boards[crd].altpin) { | ||
1308 | ch->dsr = ch->m_dcd; | ||
1309 | ch->dcd = ch->m_dsr; | ||
1310 | ch->digiext.digi_flags |= DIGI_ALTPIN; | ||
1311 | } else { | ||
1312 | ch->dcd = ch->m_dcd; | ||
1313 | ch->dsr = ch->m_dsr; | ||
1314 | } | ||
1315 | |||
1316 | ch->boardnum = crd; | ||
1317 | ch->channelnum = i; | ||
1318 | ch->magic = EPCA_MAGIC; | ||
1319 | tty_port_tty_set(&ch->port, NULL); | ||
1320 | |||
1321 | if (shrinkmem) { | ||
1322 | fepcmd(ch, SETBUFFER, 32, 0, 0, 0); | ||
1323 | shrinkmem = 0; | ||
1324 | } | ||
1325 | |||
1326 | tseg = readw(&bc->tseg); | ||
1327 | rseg = readw(&bc->rseg); | ||
1328 | |||
1329 | switch (bd->type) { | ||
1330 | case PCIXEM: | ||
1331 | case PCIXRJ: | ||
1332 | case PCIXR: | ||
1333 | /* Cover all the 2MEG cards */ | ||
1334 | ch->txptr = memaddr + ((tseg << 4) & 0x1fffff); | ||
1335 | ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff); | ||
1336 | ch->txwin = FEPWIN | (tseg >> 11); | ||
1337 | ch->rxwin = FEPWIN | (rseg >> 11); | ||
1338 | break; | ||
1339 | |||
1340 | case PCXEM: | ||
1341 | case EISAXEM: | ||
1342 | /* Cover all the 32K windowed cards */ | ||
1343 | /* Mask equal to window size - 1 */ | ||
1344 | ch->txptr = memaddr + ((tseg << 4) & 0x7fff); | ||
1345 | ch->rxptr = memaddr + ((rseg << 4) & 0x7fff); | ||
1346 | ch->txwin = FEPWIN | (tseg >> 11); | ||
1347 | ch->rxwin = FEPWIN | (rseg >> 11); | ||
1348 | break; | ||
1349 | |||
1350 | case PCXEVE: | ||
1351 | case PCXE: | ||
1352 | ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) | ||
1353 | & 0x1fff); | ||
1354 | ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9); | ||
1355 | ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) | ||
1356 | & 0x1fff); | ||
1357 | ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9); | ||
1358 | break; | ||
1359 | |||
1360 | case PCXI: | ||
1361 | case PC64XE: | ||
1362 | ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4); | ||
1363 | ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4); | ||
1364 | ch->txwin = ch->rxwin = 0; | ||
1365 | break; | ||
1366 | } | ||
1367 | |||
1368 | ch->txbufhead = 0; | ||
1369 | ch->txbufsize = readw(&bc->tmax) + 1; | ||
1370 | |||
1371 | ch->rxbufhead = 0; | ||
1372 | ch->rxbufsize = readw(&bc->rmax) + 1; | ||
1373 | |||
1374 | lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2); | ||
1375 | |||
1376 | /* Set transmitter low water mark */ | ||
1377 | fepcmd(ch, STXLWATER, lowwater, 0, 10, 0); | ||
1378 | |||
1379 | /* Set receiver low water mark */ | ||
1380 | fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0); | ||
1381 | |||
1382 | /* Set receiver high water mark */ | ||
1383 | fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0); | ||
1384 | |||
1385 | writew(100, &bc->edelay); | ||
1386 | writeb(1, &bc->idata); | ||
1387 | |||
1388 | ch->startc = readb(&bc->startc); | ||
1389 | ch->stopc = readb(&bc->stopc); | ||
1390 | ch->startca = readb(&bc->startca); | ||
1391 | ch->stopca = readb(&bc->stopca); | ||
1392 | |||
1393 | ch->fepcflag = 0; | ||
1394 | ch->fepiflag = 0; | ||
1395 | ch->fepoflag = 0; | ||
1396 | ch->fepstartc = 0; | ||
1397 | ch->fepstopc = 0; | ||
1398 | ch->fepstartca = 0; | ||
1399 | ch->fepstopca = 0; | ||
1400 | |||
1401 | ch->port.close_delay = 50; | ||
1402 | |||
1403 | spin_unlock_irqrestore(&epca_lock, flags); | ||
1404 | } | ||
1405 | |||
1406 | printk(KERN_INFO | ||
1407 | "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n", | ||
1408 | VERSION, board_desc[bd->type], (long)bd->port, | ||
1409 | (long)bd->membase, bd->numports); | ||
1410 | memwinoff(bd, 0); | ||
1411 | } | ||
1412 | |||
1413 | static void epcapoll(unsigned long ignored) | ||
1414 | { | ||
1415 | unsigned long flags; | ||
1416 | int crd; | ||
1417 | unsigned int head, tail; | ||
1418 | struct channel *ch; | ||
1419 | struct board_info *bd; | ||
1420 | |||
1421 | /* | ||
1422 | * This routine is called upon every timer interrupt. Even though the | ||
1423 | * Digi series cards are capable of generating interrupts this method | ||
1424 | * of non-looping polling is more efficient. This routine checks for | ||
1425 | * card generated events (Such as receive data, are transmit buffer | ||
1426 | * empty) and acts on those events. | ||
1427 | */ | ||
1428 | for (crd = 0; crd < num_cards; crd++) { | ||
1429 | bd = &boards[crd]; | ||
1430 | ch = card_ptr[crd]; | ||
1431 | |||
1432 | if ((bd->status == DISABLED) || digi_poller_inhibited) | ||
1433 | continue; | ||
1434 | |||
1435 | /* | ||
1436 | * assertmemoff is not needed here; indeed it is an empty | ||
1437 | * subroutine. It is being kept because future boards may need | ||
1438 | * this as well as some legacy boards. | ||
1439 | */ | ||
1440 | spin_lock_irqsave(&epca_lock, flags); | ||
1441 | |||
1442 | assertmemoff(ch); | ||
1443 | |||
1444 | globalwinon(ch); | ||
1445 | |||
1446 | /* | ||
1447 | * In this case head and tail actually refer to the event queue | ||
1448 | * not the transmit or receive queue. | ||
1449 | */ | ||
1450 | head = readw(&ch->mailbox->ein); | ||
1451 | tail = readw(&ch->mailbox->eout); | ||
1452 | |||
1453 | /* If head isn't equal to tail we have an event */ | ||
1454 | if (head != tail) | ||
1455 | doevent(crd); | ||
1456 | memoff(ch); | ||
1457 | |||
1458 | spin_unlock_irqrestore(&epca_lock, flags); | ||
1459 | } /* End for each card */ | ||
1460 | mod_timer(&epca_timer, jiffies + (HZ / 25)); | ||
1461 | } | ||
1462 | |||
1463 | static void doevent(int crd) | ||
1464 | { | ||
1465 | void __iomem *eventbuf; | ||
1466 | struct channel *ch, *chan0; | ||
1467 | static struct tty_struct *tty; | ||
1468 | struct board_info *bd; | ||
1469 | struct board_chan __iomem *bc; | ||
1470 | unsigned int tail, head; | ||
1471 | int event, channel; | ||
1472 | int mstat, lstat; | ||
1473 | |||
1474 | /* | ||
1475 | * This subroutine is called by epcapoll when an event is detected | ||
1476 | * in the event queue. This routine responds to those events. | ||
1477 | */ | ||
1478 | bd = &boards[crd]; | ||
1479 | |||
1480 | chan0 = card_ptr[crd]; | ||
1481 | epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range"); | ||
1482 | assertgwinon(chan0); | ||
1483 | while ((tail = readw(&chan0->mailbox->eout)) != | ||
1484 | (head = readw(&chan0->mailbox->ein))) { | ||
1485 | /* Begin while something in event queue */ | ||
1486 | assertgwinon(chan0); | ||
1487 | eventbuf = bd->re_map_membase + tail + ISTART; | ||
1488 | /* Get the channel the event occurred on */ | ||
1489 | channel = readb(eventbuf); | ||
1490 | /* Get the actual event code that occurred */ | ||
1491 | event = readb(eventbuf + 1); | ||
1492 | /* | ||
1493 | * The two assignments below get the current modem status | ||
1494 | * (mstat) and the previous modem status (lstat). These are | ||
1495 | * useful becuase an event could signal a change in modem | ||
1496 | * signals itself. | ||
1497 | */ | ||
1498 | mstat = readb(eventbuf + 2); | ||
1499 | lstat = readb(eventbuf + 3); | ||
1500 | |||
1501 | ch = chan0 + channel; | ||
1502 | if ((unsigned)channel >= bd->numports || !ch) { | ||
1503 | if (channel >= bd->numports) | ||
1504 | ch = chan0; | ||
1505 | bc = ch->brdchan; | ||
1506 | goto next; | ||
1507 | } | ||
1508 | |||
1509 | bc = ch->brdchan; | ||
1510 | if (bc == NULL) | ||
1511 | goto next; | ||
1512 | |||
1513 | tty = tty_port_tty_get(&ch->port); | ||
1514 | if (event & DATA_IND) { /* Begin DATA_IND */ | ||
1515 | receive_data(ch, tty); | ||
1516 | assertgwinon(ch); | ||
1517 | } /* End DATA_IND */ | ||
1518 | /* else *//* Fix for DCD transition missed bug */ | ||
1519 | if (event & MODEMCHG_IND) { | ||
1520 | /* A modem signal change has been indicated */ | ||
1521 | ch->imodem = mstat; | ||
1522 | if (test_bit(ASYNCB_CHECK_CD, &ch->port.flags)) { | ||
1523 | /* We are now receiving dcd */ | ||
1524 | if (mstat & ch->dcd) | ||
1525 | wake_up_interruptible(&ch->port.open_wait); | ||
1526 | else /* No dcd; hangup */ | ||
1527 | pc_sched_event(ch, EPCA_EVENT_HANGUP); | ||
1528 | } | ||
1529 | } | ||
1530 | if (tty) { | ||
1531 | if (event & BREAK_IND) { | ||
1532 | /* A break has been indicated */ | ||
1533 | tty_insert_flip_char(tty, 0, TTY_BREAK); | ||
1534 | tty_schedule_flip(tty); | ||
1535 | } else if (event & LOWTX_IND) { | ||
1536 | if (ch->statusflags & LOWWAIT) { | ||
1537 | ch->statusflags &= ~LOWWAIT; | ||
1538 | tty_wakeup(tty); | ||
1539 | } | ||
1540 | } else if (event & EMPTYTX_IND) { | ||
1541 | /* This event is generated by | ||
1542 | setup_empty_event */ | ||
1543 | ch->statusflags &= ~TXBUSY; | ||
1544 | if (ch->statusflags & EMPTYWAIT) { | ||
1545 | ch->statusflags &= ~EMPTYWAIT; | ||
1546 | tty_wakeup(tty); | ||
1547 | } | ||
1548 | } | ||
1549 | tty_kref_put(tty); | ||
1550 | } | ||
1551 | next: | ||
1552 | globalwinon(ch); | ||
1553 | BUG_ON(!bc); | ||
1554 | writew(1, &bc->idata); | ||
1555 | writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout); | ||
1556 | globalwinon(chan0); | ||
1557 | } /* End while something in event queue */ | ||
1558 | } | ||
1559 | |||
1560 | static void fepcmd(struct channel *ch, int cmd, int word_or_byte, | ||
1561 | int byte2, int ncmds, int bytecmd) | ||
1562 | { | ||
1563 | unchar __iomem *memaddr; | ||
1564 | unsigned int head, cmdTail, cmdStart, cmdMax; | ||
1565 | long count; | ||
1566 | int n; | ||
1567 | |||
1568 | /* This is the routine in which commands may be passed to the card. */ | ||
1569 | |||
1570 | if (ch->board->status == DISABLED) | ||
1571 | return; | ||
1572 | assertgwinon(ch); | ||
1573 | /* Remember head (As well as max) is just an offset not a base addr */ | ||
1574 | head = readw(&ch->mailbox->cin); | ||
1575 | /* cmdStart is a base address */ | ||
1576 | cmdStart = readw(&ch->mailbox->cstart); | ||
1577 | /* | ||
1578 | * We do the addition below because we do not want a max pointer | ||
1579 | * relative to cmdStart. We want a max pointer that points at the | ||
1580 | * physical end of the command queue. | ||
1581 | */ | ||
1582 | cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax)); | ||
1583 | memaddr = ch->board->re_map_membase; | ||
1584 | |||
1585 | if (head >= (cmdMax - cmdStart) || (head & 03)) { | ||
1586 | printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", | ||
1587 | __LINE__, cmd, head); | ||
1588 | printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", | ||
1589 | __LINE__, cmdMax, cmdStart); | ||
1590 | return; | ||
1591 | } | ||
1592 | if (bytecmd) { | ||
1593 | writeb(cmd, memaddr + head + cmdStart + 0); | ||
1594 | writeb(ch->channelnum, memaddr + head + cmdStart + 1); | ||
1595 | /* Below word_or_byte is bits to set */ | ||
1596 | writeb(word_or_byte, memaddr + head + cmdStart + 2); | ||
1597 | /* Below byte2 is bits to reset */ | ||
1598 | writeb(byte2, memaddr + head + cmdStart + 3); | ||
1599 | } else { | ||
1600 | writeb(cmd, memaddr + head + cmdStart + 0); | ||
1601 | writeb(ch->channelnum, memaddr + head + cmdStart + 1); | ||
1602 | writeb(word_or_byte, memaddr + head + cmdStart + 2); | ||
1603 | } | ||
1604 | head = (head + 4) & (cmdMax - cmdStart - 4); | ||
1605 | writew(head, &ch->mailbox->cin); | ||
1606 | count = FEPTIMEOUT; | ||
1607 | |||
1608 | for (;;) { | ||
1609 | count--; | ||
1610 | if (count == 0) { | ||
1611 | printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n"); | ||
1612 | return; | ||
1613 | } | ||
1614 | head = readw(&ch->mailbox->cin); | ||
1615 | cmdTail = readw(&ch->mailbox->cout); | ||
1616 | n = (head - cmdTail) & (cmdMax - cmdStart - 4); | ||
1617 | /* | ||
1618 | * Basically this will break when the FEP acknowledges the | ||
1619 | * command by incrementing cmdTail (Making it equal to head). | ||
1620 | */ | ||
1621 | if (n <= ncmds * (sizeof(short) * 4)) | ||
1622 | break; | ||
1623 | } | ||
1624 | } | ||
1625 | |||
1626 | /* | ||
1627 | * Digi products use fields in their channels structures that are very similar | ||
1628 | * to the c_cflag and c_iflag fields typically found in UNIX termios | ||
1629 | * structures. The below three routines allow mappings between these hardware | ||
1630 | * "flags" and their respective Linux flags. | ||
1631 | */ | ||
1632 | static unsigned termios2digi_h(struct channel *ch, unsigned cflag) | ||
1633 | { | ||
1634 | unsigned res = 0; | ||
1635 | |||
1636 | if (cflag & CRTSCTS) { | ||
1637 | ch->digiext.digi_flags |= (RTSPACE | CTSPACE); | ||
1638 | res |= ((ch->m_cts) | (ch->m_rts)); | ||
1639 | } | ||
1640 | |||
1641 | if (ch->digiext.digi_flags & RTSPACE) | ||
1642 | res |= ch->m_rts; | ||
1643 | |||
1644 | if (ch->digiext.digi_flags & DTRPACE) | ||
1645 | res |= ch->m_dtr; | ||
1646 | |||
1647 | if (ch->digiext.digi_flags & CTSPACE) | ||
1648 | res |= ch->m_cts; | ||
1649 | |||
1650 | if (ch->digiext.digi_flags & DSRPACE) | ||
1651 | res |= ch->dsr; | ||
1652 | |||
1653 | if (ch->digiext.digi_flags & DCDPACE) | ||
1654 | res |= ch->dcd; | ||
1655 | |||
1656 | if (res & (ch->m_rts)) | ||
1657 | ch->digiext.digi_flags |= RTSPACE; | ||
1658 | |||
1659 | if (res & (ch->m_cts)) | ||
1660 | ch->digiext.digi_flags |= CTSPACE; | ||
1661 | |||
1662 | return res; | ||
1663 | } | ||
1664 | |||
1665 | static unsigned termios2digi_i(struct channel *ch, unsigned iflag) | ||
1666 | { | ||
1667 | unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK | | ||
1668 | INPCK | ISTRIP | IXON | IXANY | IXOFF); | ||
1669 | if (ch->digiext.digi_flags & DIGI_AIXON) | ||
1670 | res |= IAIXON; | ||
1671 | return res; | ||
1672 | } | ||
1673 | |||
1674 | static unsigned termios2digi_c(struct channel *ch, unsigned cflag) | ||
1675 | { | ||
1676 | unsigned res = 0; | ||
1677 | if (cflag & CBAUDEX) { | ||
1678 | ch->digiext.digi_flags |= DIGI_FAST; | ||
1679 | /* | ||
1680 | * HUPCL bit is used by FEP to indicate fast baud table is to | ||
1681 | * be used. | ||
1682 | */ | ||
1683 | res |= FEP_HUPCL; | ||
1684 | } else | ||
1685 | ch->digiext.digi_flags &= ~DIGI_FAST; | ||
1686 | /* | ||
1687 | * CBAUD has bit position 0x1000 set these days to indicate Linux | ||
1688 | * baud rate remap. Digi hardware can't handle the bit assignment. | ||
1689 | * (We use a different bit assignment for high speed.). Clear this | ||
1690 | * bit out. | ||
1691 | */ | ||
1692 | res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE); | ||
1693 | /* | ||
1694 | * This gets a little confusing. The Digi cards have their own | ||
1695 | * representation of c_cflags controlling baud rate. For the most part | ||
1696 | * this is identical to the Linux implementation. However; Digi | ||
1697 | * supports one rate (76800) that Linux doesn't. This means that the | ||
1698 | * c_cflag entry that would normally mean 76800 for Digi actually means | ||
1699 | * 115200 under Linux. Without the below mapping, a stty 115200 would | ||
1700 | * only drive the board at 76800. Since the rate 230400 is also found | ||
1701 | * after 76800, the same problem afflicts us when we choose a rate of | ||
1702 | * 230400. Without the below modificiation stty 230400 would actually | ||
1703 | * give us 115200. | ||
1704 | * | ||
1705 | * There are two additional differences. The Linux value for CLOCAL | ||
1706 | * (0x800; 0004000) has no meaning to the Digi hardware. Also in later | ||
1707 | * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000) | ||
1708 | * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be | ||
1709 | * checked for a screened out prior to termios2digi_c returning. Since | ||
1710 | * CLOCAL isn't used by the board this can be ignored as long as the | ||
1711 | * returned value is used only by Digi hardware. | ||
1712 | */ | ||
1713 | if (cflag & CBAUDEX) { | ||
1714 | /* | ||
1715 | * The below code is trying to guarantee that only baud rates | ||
1716 | * 115200 and 230400 are remapped. We use exclusive or because | ||
1717 | * the various baud rates share common bit positions and | ||
1718 | * therefore can't be tested for easily. | ||
1719 | */ | ||
1720 | if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) || | ||
1721 | (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX)))) | ||
1722 | res += 1; | ||
1723 | } | ||
1724 | return res; | ||
1725 | } | ||
1726 | |||
1727 | /* Caller must hold the locks */ | ||
1728 | static void epcaparam(struct tty_struct *tty, struct channel *ch) | ||
1729 | { | ||
1730 | unsigned int cmdHead; | ||
1731 | struct ktermios *ts; | ||
1732 | struct board_chan __iomem *bc; | ||
1733 | unsigned mval, hflow, cflag, iflag; | ||
1734 | |||
1735 | bc = ch->brdchan; | ||
1736 | epcaassert(bc != NULL, "bc out of range"); | ||
1737 | |||
1738 | assertgwinon(ch); | ||
1739 | ts = tty->termios; | ||
1740 | if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */ | ||
1741 | cmdHead = readw(&bc->rin); | ||
1742 | writew(cmdHead, &bc->rout); | ||
1743 | cmdHead = readw(&bc->tin); | ||
1744 | /* Changing baud in mid-stream transmission can be wonderful */ | ||
1745 | /* | ||
1746 | * Flush current transmit buffer by setting cmdTail pointer | ||
1747 | * (tout) to cmdHead pointer (tin). Hopefully the transmit | ||
1748 | * buffer is empty. | ||
1749 | */ | ||
1750 | fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0); | ||
1751 | mval = 0; | ||
1752 | } else { /* Begin CBAUD not detected */ | ||
1753 | /* | ||
1754 | * c_cflags have changed but that change had nothing to do with | ||
1755 | * BAUD. Propagate the change to the card. | ||
1756 | */ | ||
1757 | cflag = termios2digi_c(ch, ts->c_cflag); | ||
1758 | if (cflag != ch->fepcflag) { | ||
1759 | ch->fepcflag = cflag; | ||
1760 | /* Set baud rate, char size, stop bits, parity */ | ||
1761 | fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0); | ||
1762 | } | ||
1763 | /* | ||
1764 | * If the user has not forced CLOCAL and if the device is not a | ||
1765 | * CALLOUT device (Which is always CLOCAL) we set flags such | ||
1766 | * that the driver will wait on carrier detect. | ||
1767 | */ | ||
1768 | if (ts->c_cflag & CLOCAL) | ||
1769 | clear_bit(ASYNCB_CHECK_CD, &ch->port.flags); | ||
1770 | else | ||
1771 | set_bit(ASYNCB_CHECK_CD, &ch->port.flags); | ||
1772 | mval = ch->m_dtr | ch->m_rts; | ||
1773 | } /* End CBAUD not detected */ | ||
1774 | iflag = termios2digi_i(ch, ts->c_iflag); | ||
1775 | /* Check input mode flags */ | ||
1776 | if (iflag != ch->fepiflag) { | ||
1777 | ch->fepiflag = iflag; | ||
1778 | /* | ||
1779 | * Command sets channels iflag structure on the board. Such | ||
1780 | * things as input soft flow control, handling of parity | ||
1781 | * errors, and break handling are all set here. | ||
1782 | * | ||
1783 | * break handling, parity handling, input stripping, | ||
1784 | * flow control chars | ||
1785 | */ | ||
1786 | fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0); | ||
1787 | } | ||
1788 | /* | ||
1789 | * Set the board mint value for this channel. This will cause hardware | ||
1790 | * events to be generated each time the DCD signal (Described in mint) | ||
1791 | * changes. | ||
1792 | */ | ||
1793 | writeb(ch->dcd, &bc->mint); | ||
1794 | if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD)) | ||
1795 | if (ch->digiext.digi_flags & DIGI_FORCEDCD) | ||
1796 | writeb(0, &bc->mint); | ||
1797 | ch->imodem = readb(&bc->mstat); | ||
1798 | hflow = termios2digi_h(ch, ts->c_cflag); | ||
1799 | if (hflow != ch->hflow) { | ||
1800 | ch->hflow = hflow; | ||
1801 | /* | ||
1802 | * Hard flow control has been selected but the board is not | ||
1803 | * using it. Activate hard flow control now. | ||
1804 | */ | ||
1805 | fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1); | ||
1806 | } | ||
1807 | mval ^= ch->modemfake & (mval ^ ch->modem); | ||
1808 | |||
1809 | if (ch->omodem ^ mval) { | ||
1810 | ch->omodem = mval; | ||
1811 | /* | ||
1812 | * The below command sets the DTR and RTS mstat structure. If | ||
1813 | * hard flow control is NOT active these changes will drive the | ||
1814 | * output of the actual DTR and RTS lines. If hard flow control | ||
1815 | * is active, the changes will be saved in the mstat structure | ||
1816 | * and only asserted when hard flow control is turned off. | ||
1817 | */ | ||
1818 | |||
1819 | /* First reset DTR & RTS; then set them */ | ||
1820 | fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1); | ||
1821 | fepcmd(ch, SETMODEM, mval, 0, 0, 1); | ||
1822 | } | ||
1823 | if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) { | ||
1824 | ch->fepstartc = ch->startc; | ||
1825 | ch->fepstopc = ch->stopc; | ||
1826 | /* | ||
1827 | * The XON / XOFF characters have changed; propagate these | ||
1828 | * changes to the card. | ||
1829 | */ | ||
1830 | fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); | ||
1831 | } | ||
1832 | if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) { | ||
1833 | ch->fepstartca = ch->startca; | ||
1834 | ch->fepstopca = ch->stopca; | ||
1835 | /* | ||
1836 | * Similar to the above, this time the auxilarly XON / XOFF | ||
1837 | * characters have changed; propagate these changes to the card. | ||
1838 | */ | ||
1839 | fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); | ||
1840 | } | ||
1841 | } | ||
1842 | |||
1843 | /* Caller holds lock */ | ||
1844 | static void receive_data(struct channel *ch, struct tty_struct *tty) | ||
1845 | { | ||
1846 | unchar *rptr; | ||
1847 | struct ktermios *ts = NULL; | ||
1848 | struct board_chan __iomem *bc; | ||
1849 | int dataToRead, wrapgap, bytesAvailable; | ||
1850 | unsigned int tail, head; | ||
1851 | unsigned int wrapmask; | ||
1852 | |||
1853 | /* | ||
1854 | * This routine is called by doint when a receive data event has taken | ||
1855 | * place. | ||
1856 | */ | ||
1857 | globalwinon(ch); | ||
1858 | if (ch->statusflags & RXSTOPPED) | ||
1859 | return; | ||
1860 | if (tty) | ||
1861 | ts = tty->termios; | ||
1862 | bc = ch->brdchan; | ||
1863 | BUG_ON(!bc); | ||
1864 | wrapmask = ch->rxbufsize - 1; | ||
1865 | |||
1866 | /* | ||
1867 | * Get the head and tail pointers to the receiver queue. Wrap the head | ||
1868 | * pointer if it has reached the end of the buffer. | ||
1869 | */ | ||
1870 | head = readw(&bc->rin); | ||
1871 | head &= wrapmask; | ||
1872 | tail = readw(&bc->rout) & wrapmask; | ||
1873 | |||
1874 | bytesAvailable = (head - tail) & wrapmask; | ||
1875 | if (bytesAvailable == 0) | ||
1876 | return; | ||
1877 | |||
1878 | /* If CREAD bit is off or device not open, set TX tail to head */ | ||
1879 | if (!tty || !ts || !(ts->c_cflag & CREAD)) { | ||
1880 | writew(head, &bc->rout); | ||
1881 | return; | ||
1882 | } | ||
1883 | |||
1884 | if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0) | ||
1885 | return; | ||
1886 | |||
1887 | if (readb(&bc->orun)) { | ||
1888 | writeb(0, &bc->orun); | ||
1889 | printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n", | ||
1890 | tty->name); | ||
1891 | tty_insert_flip_char(tty, 0, TTY_OVERRUN); | ||
1892 | } | ||
1893 | rxwinon(ch); | ||
1894 | while (bytesAvailable > 0) { | ||
1895 | /* Begin while there is data on the card */ | ||
1896 | wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail; | ||
1897 | /* | ||
1898 | * Even if head has wrapped around only report the amount of | ||
1899 | * data to be equal to the size - tail. Remember memcpy can't | ||
1900 | * automaticly wrap around the receive buffer. | ||
1901 | */ | ||
1902 | dataToRead = (wrapgap < bytesAvailable) ? wrapgap | ||
1903 | : bytesAvailable; | ||
1904 | /* Make sure we don't overflow the buffer */ | ||
1905 | dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead); | ||
1906 | if (dataToRead == 0) | ||
1907 | break; | ||
1908 | /* | ||
1909 | * Move data read from our card into the line disciplines | ||
1910 | * buffer for translation if necessary. | ||
1911 | */ | ||
1912 | memcpy_fromio(rptr, ch->rxptr + tail, dataToRead); | ||
1913 | tail = (tail + dataToRead) & wrapmask; | ||
1914 | bytesAvailable -= dataToRead; | ||
1915 | } /* End while there is data on the card */ | ||
1916 | globalwinon(ch); | ||
1917 | writew(tail, &bc->rout); | ||
1918 | /* Must be called with global data */ | ||
1919 | tty_schedule_flip(tty); | ||
1920 | } | ||
1921 | |||
1922 | static int info_ioctl(struct tty_struct *tty, struct file *file, | ||
1923 | unsigned int cmd, unsigned long arg) | ||
1924 | { | ||
1925 | switch (cmd) { | ||
1926 | case DIGI_GETINFO: | ||
1927 | { | ||
1928 | struct digi_info di; | ||
1929 | int brd; | ||
1930 | |||
1931 | if (get_user(brd, (unsigned int __user *)arg)) | ||
1932 | return -EFAULT; | ||
1933 | if (brd < 0 || brd >= num_cards || num_cards == 0) | ||
1934 | return -ENODEV; | ||
1935 | |||
1936 | memset(&di, 0, sizeof(di)); | ||
1937 | |||
1938 | di.board = brd; | ||
1939 | di.status = boards[brd].status; | ||
1940 | di.type = boards[brd].type ; | ||
1941 | di.numports = boards[brd].numports ; | ||
1942 | /* Legacy fixups - just move along nothing to see */ | ||
1943 | di.port = (unsigned char *)boards[brd].port ; | ||
1944 | di.membase = (unsigned char *)boards[brd].membase ; | ||
1945 | |||
1946 | if (copy_to_user((void __user *)arg, &di, sizeof(di))) | ||
1947 | return -EFAULT; | ||
1948 | break; | ||
1949 | |||
1950 | } | ||
1951 | |||
1952 | case DIGI_POLLER: | ||
1953 | { | ||
1954 | int brd = arg & 0xff000000 >> 16; | ||
1955 | unsigned char state = arg & 0xff; | ||
1956 | |||
1957 | if (brd < 0 || brd >= num_cards) { | ||
1958 | printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n"); | ||
1959 | return -ENODEV; | ||
1960 | } | ||
1961 | digi_poller_inhibited = state; | ||
1962 | break; | ||
1963 | } | ||
1964 | |||
1965 | case DIGI_INIT: | ||
1966 | { | ||
1967 | /* | ||
1968 | * This call is made by the apps to complete the | ||
1969 | * initialization of the board(s). This routine is | ||
1970 | * responsible for setting the card to its initial | ||
1971 | * state and setting the drivers control fields to the | ||
1972 | * sutianle settings for the card in question. | ||
1973 | */ | ||
1974 | int crd; | ||
1975 | for (crd = 0; crd < num_cards; crd++) | ||
1976 | post_fep_init(crd); | ||
1977 | break; | ||
1978 | } | ||
1979 | default: | ||
1980 | return -ENOTTY; | ||
1981 | } | ||
1982 | return 0; | ||
1983 | } | ||
1984 | |||
1985 | static int pc_tiocmget(struct tty_struct *tty, struct file *file) | ||
1986 | { | ||
1987 | struct channel *ch = tty->driver_data; | ||
1988 | struct board_chan __iomem *bc; | ||
1989 | unsigned int mstat, mflag = 0; | ||
1990 | unsigned long flags; | ||
1991 | |||
1992 | if (ch) | ||
1993 | bc = ch->brdchan; | ||
1994 | else | ||
1995 | return -EINVAL; | ||
1996 | |||
1997 | spin_lock_irqsave(&epca_lock, flags); | ||
1998 | globalwinon(ch); | ||
1999 | mstat = readb(&bc->mstat); | ||
2000 | memoff(ch); | ||
2001 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2002 | |||
2003 | if (mstat & ch->m_dtr) | ||
2004 | mflag |= TIOCM_DTR; | ||
2005 | if (mstat & ch->m_rts) | ||
2006 | mflag |= TIOCM_RTS; | ||
2007 | if (mstat & ch->m_cts) | ||
2008 | mflag |= TIOCM_CTS; | ||
2009 | if (mstat & ch->dsr) | ||
2010 | mflag |= TIOCM_DSR; | ||
2011 | if (mstat & ch->m_ri) | ||
2012 | mflag |= TIOCM_RI; | ||
2013 | if (mstat & ch->dcd) | ||
2014 | mflag |= TIOCM_CD; | ||
2015 | return mflag; | ||
2016 | } | ||
2017 | |||
2018 | static int pc_tiocmset(struct tty_struct *tty, struct file *file, | ||
2019 | unsigned int set, unsigned int clear) | ||
2020 | { | ||
2021 | struct channel *ch = tty->driver_data; | ||
2022 | unsigned long flags; | ||
2023 | |||
2024 | if (!ch) | ||
2025 | return -EINVAL; | ||
2026 | |||
2027 | spin_lock_irqsave(&epca_lock, flags); | ||
2028 | /* | ||
2029 | * I think this modemfake stuff is broken. It doesn't correctly reflect | ||
2030 | * the behaviour desired by the TIOCM* ioctls. Therefore this is | ||
2031 | * probably broken. | ||
2032 | */ | ||
2033 | if (set & TIOCM_RTS) { | ||
2034 | ch->modemfake |= ch->m_rts; | ||
2035 | ch->modem |= ch->m_rts; | ||
2036 | } | ||
2037 | if (set & TIOCM_DTR) { | ||
2038 | ch->modemfake |= ch->m_dtr; | ||
2039 | ch->modem |= ch->m_dtr; | ||
2040 | } | ||
2041 | if (clear & TIOCM_RTS) { | ||
2042 | ch->modemfake |= ch->m_rts; | ||
2043 | ch->modem &= ~ch->m_rts; | ||
2044 | } | ||
2045 | if (clear & TIOCM_DTR) { | ||
2046 | ch->modemfake |= ch->m_dtr; | ||
2047 | ch->modem &= ~ch->m_dtr; | ||
2048 | } | ||
2049 | globalwinon(ch); | ||
2050 | /* | ||
2051 | * The below routine generally sets up parity, baud, flow control | ||
2052 | * issues, etc.... It effect both control flags and input flags. | ||
2053 | */ | ||
2054 | epcaparam(tty, ch); | ||
2055 | memoff(ch); | ||
2056 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2057 | return 0; | ||
2058 | } | ||
2059 | |||
2060 | static int pc_ioctl(struct tty_struct *tty, struct file *file, | ||
2061 | unsigned int cmd, unsigned long arg) | ||
2062 | { | ||
2063 | digiflow_t dflow; | ||
2064 | unsigned long flags; | ||
2065 | unsigned int mflag, mstat; | ||
2066 | unsigned char startc, stopc; | ||
2067 | struct board_chan __iomem *bc; | ||
2068 | struct channel *ch = tty->driver_data; | ||
2069 | void __user *argp = (void __user *)arg; | ||
2070 | |||
2071 | if (ch) | ||
2072 | bc = ch->brdchan; | ||
2073 | else | ||
2074 | return -EINVAL; | ||
2075 | switch (cmd) { | ||
2076 | case TIOCMODG: | ||
2077 | mflag = pc_tiocmget(tty, file); | ||
2078 | if (put_user(mflag, (unsigned long __user *)argp)) | ||
2079 | return -EFAULT; | ||
2080 | break; | ||
2081 | case TIOCMODS: | ||
2082 | if (get_user(mstat, (unsigned __user *)argp)) | ||
2083 | return -EFAULT; | ||
2084 | return pc_tiocmset(tty, file, mstat, ~mstat); | ||
2085 | case TIOCSDTR: | ||
2086 | spin_lock_irqsave(&epca_lock, flags); | ||
2087 | ch->omodem |= ch->m_dtr; | ||
2088 | globalwinon(ch); | ||
2089 | fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1); | ||
2090 | memoff(ch); | ||
2091 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2092 | break; | ||
2093 | |||
2094 | case TIOCCDTR: | ||
2095 | spin_lock_irqsave(&epca_lock, flags); | ||
2096 | ch->omodem &= ~ch->m_dtr; | ||
2097 | globalwinon(ch); | ||
2098 | fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1); | ||
2099 | memoff(ch); | ||
2100 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2101 | break; | ||
2102 | case DIGI_GETA: | ||
2103 | if (copy_to_user(argp, &ch->digiext, sizeof(digi_t))) | ||
2104 | return -EFAULT; | ||
2105 | break; | ||
2106 | case DIGI_SETAW: | ||
2107 | case DIGI_SETAF: | ||
2108 | if (cmd == DIGI_SETAW) { | ||
2109 | /* Setup an event to indicate when the transmit | ||
2110 | buffer empties */ | ||
2111 | spin_lock_irqsave(&epca_lock, flags); | ||
2112 | setup_empty_event(tty, ch); | ||
2113 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2114 | tty_wait_until_sent(tty, 0); | ||
2115 | } else { | ||
2116 | /* ldisc lock already held in ioctl */ | ||
2117 | if (tty->ldisc->ops->flush_buffer) | ||
2118 | tty->ldisc->ops->flush_buffer(tty); | ||
2119 | } | ||
2120 | /* Fall Thru */ | ||
2121 | case DIGI_SETA: | ||
2122 | if (copy_from_user(&ch->digiext, argp, sizeof(digi_t))) | ||
2123 | return -EFAULT; | ||
2124 | |||
2125 | if (ch->digiext.digi_flags & DIGI_ALTPIN) { | ||
2126 | ch->dcd = ch->m_dsr; | ||
2127 | ch->dsr = ch->m_dcd; | ||
2128 | } else { | ||
2129 | ch->dcd = ch->m_dcd; | ||
2130 | ch->dsr = ch->m_dsr; | ||
2131 | } | ||
2132 | |||
2133 | spin_lock_irqsave(&epca_lock, flags); | ||
2134 | globalwinon(ch); | ||
2135 | |||
2136 | /* | ||
2137 | * The below routine generally sets up parity, baud, flow | ||
2138 | * control issues, etc.... It effect both control flags and | ||
2139 | * input flags. | ||
2140 | */ | ||
2141 | epcaparam(tty, ch); | ||
2142 | memoff(ch); | ||
2143 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2144 | break; | ||
2145 | |||
2146 | case DIGI_GETFLOW: | ||
2147 | case DIGI_GETAFLOW: | ||
2148 | spin_lock_irqsave(&epca_lock, flags); | ||
2149 | globalwinon(ch); | ||
2150 | if (cmd == DIGI_GETFLOW) { | ||
2151 | dflow.startc = readb(&bc->startc); | ||
2152 | dflow.stopc = readb(&bc->stopc); | ||
2153 | } else { | ||
2154 | dflow.startc = readb(&bc->startca); | ||
2155 | dflow.stopc = readb(&bc->stopca); | ||
2156 | } | ||
2157 | memoff(ch); | ||
2158 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2159 | |||
2160 | if (copy_to_user(argp, &dflow, sizeof(dflow))) | ||
2161 | return -EFAULT; | ||
2162 | break; | ||
2163 | |||
2164 | case DIGI_SETAFLOW: | ||
2165 | case DIGI_SETFLOW: | ||
2166 | if (cmd == DIGI_SETFLOW) { | ||
2167 | startc = ch->startc; | ||
2168 | stopc = ch->stopc; | ||
2169 | } else { | ||
2170 | startc = ch->startca; | ||
2171 | stopc = ch->stopca; | ||
2172 | } | ||
2173 | |||
2174 | if (copy_from_user(&dflow, argp, sizeof(dflow))) | ||
2175 | return -EFAULT; | ||
2176 | |||
2177 | if (dflow.startc != startc || dflow.stopc != stopc) { | ||
2178 | /* Begin if setflow toggled */ | ||
2179 | spin_lock_irqsave(&epca_lock, flags); | ||
2180 | globalwinon(ch); | ||
2181 | |||
2182 | if (cmd == DIGI_SETFLOW) { | ||
2183 | ch->fepstartc = ch->startc = dflow.startc; | ||
2184 | ch->fepstopc = ch->stopc = dflow.stopc; | ||
2185 | fepcmd(ch, SONOFFC, ch->fepstartc, | ||
2186 | ch->fepstopc, 0, 1); | ||
2187 | } else { | ||
2188 | ch->fepstartca = ch->startca = dflow.startc; | ||
2189 | ch->fepstopca = ch->stopca = dflow.stopc; | ||
2190 | fepcmd(ch, SAUXONOFFC, ch->fepstartca, | ||
2191 | ch->fepstopca, 0, 1); | ||
2192 | } | ||
2193 | |||
2194 | if (ch->statusflags & TXSTOPPED) | ||
2195 | pc_start(tty); | ||
2196 | |||
2197 | memoff(ch); | ||
2198 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2199 | } /* End if setflow toggled */ | ||
2200 | break; | ||
2201 | default: | ||
2202 | return -ENOIOCTLCMD; | ||
2203 | } | ||
2204 | return 0; | ||
2205 | } | ||
2206 | |||
2207 | static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios) | ||
2208 | { | ||
2209 | struct channel *ch; | ||
2210 | unsigned long flags; | ||
2211 | /* | ||
2212 | * verifyChannel returns the channel from the tty struct if it is | ||
2213 | * valid. This serves as a sanity check. | ||
2214 | */ | ||
2215 | ch = verifyChannel(tty); | ||
2216 | |||
2217 | if (ch != NULL) { /* Begin if channel valid */ | ||
2218 | spin_lock_irqsave(&epca_lock, flags); | ||
2219 | globalwinon(ch); | ||
2220 | epcaparam(tty, ch); | ||
2221 | memoff(ch); | ||
2222 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2223 | |||
2224 | if ((old_termios->c_cflag & CRTSCTS) && | ||
2225 | ((tty->termios->c_cflag & CRTSCTS) == 0)) | ||
2226 | tty->hw_stopped = 0; | ||
2227 | |||
2228 | if (!(old_termios->c_cflag & CLOCAL) && | ||
2229 | (tty->termios->c_cflag & CLOCAL)) | ||
2230 | wake_up_interruptible(&ch->port.open_wait); | ||
2231 | |||
2232 | } /* End if channel valid */ | ||
2233 | } | ||
2234 | |||
2235 | static void do_softint(struct work_struct *work) | ||
2236 | { | ||
2237 | struct channel *ch = container_of(work, struct channel, tqueue); | ||
2238 | /* Called in response to a modem change event */ | ||
2239 | if (ch && ch->magic == EPCA_MAGIC) { | ||
2240 | struct tty_struct *tty = tty_port_tty_get(&ch->port); | ||
2241 | |||
2242 | if (tty && tty->driver_data) { | ||
2243 | if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { | ||
2244 | tty_hangup(tty); | ||
2245 | wake_up_interruptible(&ch->port.open_wait); | ||
2246 | clear_bit(ASYNCB_NORMAL_ACTIVE, | ||
2247 | &ch->port.flags); | ||
2248 | } | ||
2249 | } | ||
2250 | tty_kref_put(tty); | ||
2251 | } | ||
2252 | } | ||
2253 | |||
2254 | /* | ||
2255 | * pc_stop and pc_start provide software flow control to the routine and the | ||
2256 | * pc_ioctl routine. | ||
2257 | */ | ||
2258 | static void pc_stop(struct tty_struct *tty) | ||
2259 | { | ||
2260 | struct channel *ch; | ||
2261 | unsigned long flags; | ||
2262 | /* | ||
2263 | * verifyChannel returns the channel from the tty struct if it is | ||
2264 | * valid. This serves as a sanity check. | ||
2265 | */ | ||
2266 | ch = verifyChannel(tty); | ||
2267 | if (ch != NULL) { | ||
2268 | spin_lock_irqsave(&epca_lock, flags); | ||
2269 | if ((ch->statusflags & TXSTOPPED) == 0) { | ||
2270 | /* Begin if transmit stop requested */ | ||
2271 | globalwinon(ch); | ||
2272 | /* STOP transmitting now !! */ | ||
2273 | fepcmd(ch, PAUSETX, 0, 0, 0, 0); | ||
2274 | ch->statusflags |= TXSTOPPED; | ||
2275 | memoff(ch); | ||
2276 | } /* End if transmit stop requested */ | ||
2277 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2278 | } | ||
2279 | } | ||
2280 | |||
2281 | static void pc_start(struct tty_struct *tty) | ||
2282 | { | ||
2283 | struct channel *ch; | ||
2284 | /* | ||
2285 | * verifyChannel returns the channel from the tty struct if it is | ||
2286 | * valid. This serves as a sanity check. | ||
2287 | */ | ||
2288 | ch = verifyChannel(tty); | ||
2289 | if (ch != NULL) { | ||
2290 | unsigned long flags; | ||
2291 | spin_lock_irqsave(&epca_lock, flags); | ||
2292 | /* Just in case output was resumed because of a change | ||
2293 | in Digi-flow */ | ||
2294 | if (ch->statusflags & TXSTOPPED) { | ||
2295 | /* Begin transmit resume requested */ | ||
2296 | struct board_chan __iomem *bc; | ||
2297 | globalwinon(ch); | ||
2298 | bc = ch->brdchan; | ||
2299 | if (ch->statusflags & LOWWAIT) | ||
2300 | writeb(1, &bc->ilow); | ||
2301 | /* Okay, you can start transmitting again... */ | ||
2302 | fepcmd(ch, RESUMETX, 0, 0, 0, 0); | ||
2303 | ch->statusflags &= ~TXSTOPPED; | ||
2304 | memoff(ch); | ||
2305 | } /* End transmit resume requested */ | ||
2306 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2307 | } | ||
2308 | } | ||
2309 | |||
2310 | /* | ||
2311 | * The below routines pc_throttle and pc_unthrottle are used to slow (And | ||
2312 | * resume) the receipt of data into the kernels receive buffers. The exact | ||
2313 | * occurrence of this depends on the size of the kernels receive buffer and | ||
2314 | * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for | ||
2315 | * more details. | ||
2316 | */ | ||
2317 | static void pc_throttle(struct tty_struct *tty) | ||
2318 | { | ||
2319 | struct channel *ch; | ||
2320 | unsigned long flags; | ||
2321 | /* | ||
2322 | * verifyChannel returns the channel from the tty struct if it is | ||
2323 | * valid. This serves as a sanity check. | ||
2324 | */ | ||
2325 | ch = verifyChannel(tty); | ||
2326 | if (ch != NULL) { | ||
2327 | spin_lock_irqsave(&epca_lock, flags); | ||
2328 | if ((ch->statusflags & RXSTOPPED) == 0) { | ||
2329 | globalwinon(ch); | ||
2330 | fepcmd(ch, PAUSERX, 0, 0, 0, 0); | ||
2331 | ch->statusflags |= RXSTOPPED; | ||
2332 | memoff(ch); | ||
2333 | } | ||
2334 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2335 | } | ||
2336 | } | ||
2337 | |||
2338 | static void pc_unthrottle(struct tty_struct *tty) | ||
2339 | { | ||
2340 | struct channel *ch; | ||
2341 | unsigned long flags; | ||
2342 | /* | ||
2343 | * verifyChannel returns the channel from the tty struct if it is | ||
2344 | * valid. This serves as a sanity check. | ||
2345 | */ | ||
2346 | ch = verifyChannel(tty); | ||
2347 | if (ch != NULL) { | ||
2348 | /* Just in case output was resumed because of a change | ||
2349 | in Digi-flow */ | ||
2350 | spin_lock_irqsave(&epca_lock, flags); | ||
2351 | if (ch->statusflags & RXSTOPPED) { | ||
2352 | globalwinon(ch); | ||
2353 | fepcmd(ch, RESUMERX, 0, 0, 0, 0); | ||
2354 | ch->statusflags &= ~RXSTOPPED; | ||
2355 | memoff(ch); | ||
2356 | } | ||
2357 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2358 | } | ||
2359 | } | ||
2360 | |||
2361 | static int pc_send_break(struct tty_struct *tty, int msec) | ||
2362 | { | ||
2363 | struct channel *ch = tty->driver_data; | ||
2364 | unsigned long flags; | ||
2365 | |||
2366 | if (msec == -1) | ||
2367 | msec = 0xFFFF; | ||
2368 | else if (msec > 0xFFFE) | ||
2369 | msec = 0xFFFE; | ||
2370 | else if (msec < 1) | ||
2371 | msec = 1; | ||
2372 | |||
2373 | spin_lock_irqsave(&epca_lock, flags); | ||
2374 | globalwinon(ch); | ||
2375 | /* | ||
2376 | * Maybe I should send an infinite break here, schedule() for msec | ||
2377 | * amount of time, and then stop the break. This way, the user can't | ||
2378 | * screw up the FEP by causing digi_send_break() to be called (i.e. via | ||
2379 | * an ioctl()) more than once in msec amount of time. | ||
2380 | * Try this for now... | ||
2381 | */ | ||
2382 | fepcmd(ch, SENDBREAK, msec, 0, 10, 0); | ||
2383 | memoff(ch); | ||
2384 | spin_unlock_irqrestore(&epca_lock, flags); | ||
2385 | return 0; | ||
2386 | } | ||
2387 | |||
2388 | /* Caller MUST hold the lock */ | ||
2389 | static void setup_empty_event(struct tty_struct *tty, struct channel *ch) | ||
2390 | { | ||
2391 | struct board_chan __iomem *bc = ch->brdchan; | ||
2392 | |||
2393 | globalwinon(ch); | ||
2394 | ch->statusflags |= EMPTYWAIT; | ||
2395 | /* | ||
2396 | * When set the iempty flag request a event to be generated when the | ||
2397 | * transmit buffer is empty (If there is no BREAK in progress). | ||
2398 | */ | ||
2399 | writeb(1, &bc->iempty); | ||
2400 | memoff(ch); | ||
2401 | } | ||
2402 | |||
2403 | #ifndef MODULE | ||
2404 | static void __init epca_setup(char *str, int *ints) | ||
2405 | { | ||
2406 | struct board_info board; | ||
2407 | int index, loop, last; | ||
2408 | char *temp, *t2; | ||
2409 | unsigned len; | ||
2410 | |||
2411 | /* | ||
2412 | * If this routine looks a little strange it is because it is only | ||
2413 | * called if a LILO append command is given to boot the kernel with | ||
2414 | * parameters. In this way, we can provide the user a method of | ||
2415 | * changing his board configuration without rebuilding the kernel. | ||
2416 | */ | ||
2417 | if (!liloconfig) | ||
2418 | liloconfig = 1; | ||
2419 | |||
2420 | memset(&board, 0, sizeof(board)); | ||
2421 | |||
2422 | /* Assume the data is int first, later we can change it */ | ||
2423 | /* I think that array position 0 of ints holds the number of args */ | ||
2424 | for (last = 0, index = 1; index <= ints[0]; index++) | ||
2425 | switch (index) { /* Begin parse switch */ | ||
2426 | case 1: | ||
2427 | board.status = ints[index]; | ||
2428 | /* | ||
2429 | * We check for 2 (As opposed to 1; because 2 is a flag | ||
2430 | * instructing the driver to ignore epcaconfig.) For | ||
2431 | * this reason we check for 2. | ||
2432 | */ | ||
2433 | if (board.status == 2) { | ||
2434 | /* Begin ignore epcaconfig as well as lilo cmd line */ | ||
2435 | nbdevs = 0; | ||
2436 | num_cards = 0; | ||
2437 | return; | ||
2438 | } /* End ignore epcaconfig as well as lilo cmd line */ | ||
2439 | |||
2440 | if (board.status > 2) { | ||
2441 | printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", | ||
2442 | board.status); | ||
2443 | invalid_lilo_config = 1; | ||
2444 | setup_error_code |= INVALID_BOARD_STATUS; | ||
2445 | return; | ||
2446 | } | ||
2447 | last = index; | ||
2448 | break; | ||
2449 | case 2: | ||
2450 | board.type = ints[index]; | ||
2451 | if (board.type >= PCIXEM) { | ||
2452 | printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type); | ||
2453 | invalid_lilo_config = 1; | ||
2454 | setup_error_code |= INVALID_BOARD_TYPE; | ||
2455 | return; | ||
2456 | } | ||
2457 | last = index; | ||
2458 | break; | ||
2459 | case 3: | ||
2460 | board.altpin = ints[index]; | ||
2461 | if (board.altpin > 1) { | ||
2462 | printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin); | ||
2463 | invalid_lilo_config = 1; | ||
2464 | setup_error_code |= INVALID_ALTPIN; | ||
2465 | return; | ||
2466 | } | ||
2467 | last = index; | ||
2468 | break; | ||
2469 | |||
2470 | case 4: | ||
2471 | board.numports = ints[index]; | ||
2472 | if (board.numports < 2 || board.numports > 256) { | ||
2473 | printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports); | ||
2474 | invalid_lilo_config = 1; | ||
2475 | setup_error_code |= INVALID_NUM_PORTS; | ||
2476 | return; | ||
2477 | } | ||
2478 | nbdevs += board.numports; | ||
2479 | last = index; | ||
2480 | break; | ||
2481 | |||
2482 | case 5: | ||
2483 | board.port = ints[index]; | ||
2484 | if (ints[index] <= 0) { | ||
2485 | printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port); | ||
2486 | invalid_lilo_config = 1; | ||
2487 | setup_error_code |= INVALID_PORT_BASE; | ||
2488 | return; | ||
2489 | } | ||
2490 | last = index; | ||
2491 | break; | ||
2492 | |||
2493 | case 6: | ||
2494 | board.membase = ints[index]; | ||
2495 | if (ints[index] <= 0) { | ||
2496 | printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n", | ||
2497 | (unsigned int)board.membase); | ||
2498 | invalid_lilo_config = 1; | ||
2499 | setup_error_code |= INVALID_MEM_BASE; | ||
2500 | return; | ||
2501 | } | ||
2502 | last = index; | ||
2503 | break; | ||
2504 | |||
2505 | default: | ||
2506 | printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n"); | ||
2507 | return; | ||
2508 | |||
2509 | } /* End parse switch */ | ||
2510 | |||
2511 | while (str && *str) { /* Begin while there is a string arg */ | ||
2512 | /* find the next comma or terminator */ | ||
2513 | temp = str; | ||
2514 | /* While string is not null, and a comma hasn't been found */ | ||
2515 | while (*temp && (*temp != ',')) | ||
2516 | temp++; | ||
2517 | if (!*temp) | ||
2518 | temp = NULL; | ||
2519 | else | ||
2520 | *temp++ = 0; | ||
2521 | /* Set index to the number of args + 1 */ | ||
2522 | index = last + 1; | ||
2523 | |||
2524 | switch (index) { | ||
2525 | case 1: | ||
2526 | len = strlen(str); | ||
2527 | if (strncmp("Disable", str, len) == 0) | ||
2528 | board.status = 0; | ||
2529 | else if (strncmp("Enable", str, len) == 0) | ||
2530 | board.status = 1; | ||
2531 | else { | ||
2532 | printk(KERN_ERR "epca_setup: Invalid status %s\n", str); | ||
2533 | invalid_lilo_config = 1; | ||
2534 | setup_error_code |= INVALID_BOARD_STATUS; | ||
2535 | return; | ||
2536 | } | ||
2537 | last = index; | ||
2538 | break; | ||
2539 | |||
2540 | case 2: | ||
2541 | for (loop = 0; loop < EPCA_NUM_TYPES; loop++) | ||
2542 | if (strcmp(board_desc[loop], str) == 0) | ||
2543 | break; | ||
2544 | /* | ||
2545 | * If the index incremented above refers to a | ||
2546 | * legitamate board type set it here. | ||
2547 | */ | ||
2548 | if (index < EPCA_NUM_TYPES) | ||
2549 | board.type = loop; | ||
2550 | else { | ||
2551 | printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str); | ||
2552 | invalid_lilo_config = 1; | ||
2553 | setup_error_code |= INVALID_BOARD_TYPE; | ||
2554 | return; | ||
2555 | } | ||
2556 | last = index; | ||
2557 | break; | ||
2558 | |||
2559 | case 3: | ||
2560 | len = strlen(str); | ||
2561 | if (strncmp("Disable", str, len) == 0) | ||
2562 | board.altpin = 0; | ||
2563 | else if (strncmp("Enable", str, len) == 0) | ||
2564 | board.altpin = 1; | ||
2565 | else { | ||
2566 | printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str); | ||
2567 | invalid_lilo_config = 1; | ||
2568 | setup_error_code |= INVALID_ALTPIN; | ||
2569 | return; | ||
2570 | } | ||
2571 | last = index; | ||
2572 | break; | ||
2573 | |||
2574 | case 4: | ||
2575 | t2 = str; | ||
2576 | while (isdigit(*t2)) | ||
2577 | t2++; | ||
2578 | |||
2579 | if (*t2) { | ||
2580 | printk(KERN_ERR "epca_setup: Invalid port count %s\n", str); | ||
2581 | invalid_lilo_config = 1; | ||
2582 | setup_error_code |= INVALID_NUM_PORTS; | ||
2583 | return; | ||
2584 | } | ||
2585 | |||
2586 | /* | ||
2587 | * There is not a man page for simple_strtoul but the | ||
2588 | * code can be found in vsprintf.c. The first argument | ||
2589 | * is the string to translate (To an unsigned long | ||
2590 | * obviously), the second argument can be the address | ||
2591 | * of any character variable or a NULL. If a variable | ||
2592 | * is given, the end pointer of the string will be | ||
2593 | * stored in that variable; if a NULL is given the end | ||
2594 | * pointer will not be returned. The last argument is | ||
2595 | * the base to use. If a 0 is indicated, the routine | ||
2596 | * will attempt to determine the proper base by looking | ||
2597 | * at the values prefix (A '0' for octal, a 'x' for | ||
2598 | * hex, etc ... If a value is given it will use that | ||
2599 | * value as the base. | ||
2600 | */ | ||
2601 | board.numports = simple_strtoul(str, NULL, 0); | ||
2602 | nbdevs += board.numports; | ||
2603 | last = index; | ||
2604 | break; | ||
2605 | |||
2606 | case 5: | ||
2607 | t2 = str; | ||
2608 | while (isxdigit(*t2)) | ||
2609 | t2++; | ||
2610 | |||
2611 | if (*t2) { | ||
2612 | printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str); | ||
2613 | invalid_lilo_config = 1; | ||
2614 | setup_error_code |= INVALID_PORT_BASE; | ||
2615 | return; | ||
2616 | } | ||
2617 | |||
2618 | board.port = simple_strtoul(str, NULL, 16); | ||
2619 | last = index; | ||
2620 | break; | ||
2621 | |||
2622 | case 6: | ||
2623 | t2 = str; | ||
2624 | while (isxdigit(*t2)) | ||
2625 | t2++; | ||
2626 | |||
2627 | if (*t2) { | ||
2628 | printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str); | ||
2629 | invalid_lilo_config = 1; | ||
2630 | setup_error_code |= INVALID_MEM_BASE; | ||
2631 | return; | ||
2632 | } | ||
2633 | board.membase = simple_strtoul(str, NULL, 16); | ||
2634 | last = index; | ||
2635 | break; | ||
2636 | default: | ||
2637 | printk(KERN_ERR "epca: Too many string parms\n"); | ||
2638 | return; | ||
2639 | } | ||
2640 | str = temp; | ||
2641 | } /* End while there is a string arg */ | ||
2642 | |||
2643 | if (last < 6) { | ||
2644 | printk(KERN_ERR "epca: Insufficient parms specified\n"); | ||
2645 | return; | ||
2646 | } | ||
2647 | |||
2648 | /* I should REALLY validate the stuff here */ | ||
2649 | /* Copies our local copy of board into boards */ | ||
2650 | memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board)); | ||
2651 | /* Does this get called once per lilo arg are what ? */ | ||
2652 | printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n", | ||
2653 | num_cards, board_desc[board.type], | ||
2654 | board.numports, (int)board.port, (unsigned int) board.membase); | ||
2655 | num_cards++; | ||
2656 | } | ||
2657 | |||
2658 | static int __init epca_real_setup(char *str) | ||
2659 | { | ||
2660 | int ints[11]; | ||
2661 | |||
2662 | epca_setup(get_options(str, 11, ints), ints); | ||
2663 | return 1; | ||
2664 | } | ||
2665 | |||
2666 | __setup("digiepca", epca_real_setup); | ||
2667 | #endif | ||
2668 | |||
2669 | enum epic_board_types { | ||
2670 | brd_xr = 0, | ||
2671 | brd_xem, | ||
2672 | brd_cx, | ||
2673 | brd_xrj, | ||
2674 | }; | ||
2675 | |||
2676 | /* indexed directly by epic_board_types enum */ | ||
2677 | static struct { | ||
2678 | unsigned char board_type; | ||
2679 | unsigned bar_idx; /* PCI base address region */ | ||
2680 | } epca_info_tbl[] = { | ||
2681 | { PCIXR, 0, }, | ||
2682 | { PCIXEM, 0, }, | ||
2683 | { PCICX, 0, }, | ||
2684 | { PCIXRJ, 2, }, | ||
2685 | }; | ||
2686 | |||
2687 | static int __devinit epca_init_one(struct pci_dev *pdev, | ||
2688 | const struct pci_device_id *ent) | ||
2689 | { | ||
2690 | static int board_num = -1; | ||
2691 | int board_idx, info_idx = ent->driver_data; | ||
2692 | unsigned long addr; | ||
2693 | |||
2694 | if (pci_enable_device(pdev)) | ||
2695 | return -EIO; | ||
2696 | |||
2697 | board_num++; | ||
2698 | board_idx = board_num + num_cards; | ||
2699 | if (board_idx >= MAXBOARDS) | ||
2700 | goto err_out; | ||
2701 | |||
2702 | addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx); | ||
2703 | if (!addr) { | ||
2704 | printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n", | ||
2705 | epca_info_tbl[info_idx].bar_idx); | ||
2706 | goto err_out; | ||
2707 | } | ||
2708 | |||
2709 | boards[board_idx].status = ENABLED; | ||
2710 | boards[board_idx].type = epca_info_tbl[info_idx].board_type; | ||
2711 | boards[board_idx].numports = 0x0; | ||
2712 | boards[board_idx].port = addr + PCI_IO_OFFSET; | ||
2713 | boards[board_idx].membase = addr; | ||
2714 | |||
2715 | if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) { | ||
2716 | printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", | ||
2717 | 0x200000, addr + PCI_IO_OFFSET); | ||
2718 | goto err_out; | ||
2719 | } | ||
2720 | |||
2721 | boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET, | ||
2722 | 0x200000); | ||
2723 | if (!boards[board_idx].re_map_port) { | ||
2724 | printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", | ||
2725 | 0x200000, addr + PCI_IO_OFFSET); | ||
2726 | goto err_out_free_pciio; | ||
2727 | } | ||
2728 | |||
2729 | if (!request_mem_region(addr, 0x200000, "epca")) { | ||
2730 | printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", | ||
2731 | 0x200000, addr); | ||
2732 | goto err_out_free_iounmap; | ||
2733 | } | ||
2734 | |||
2735 | boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000); | ||
2736 | if (!boards[board_idx].re_map_membase) { | ||
2737 | printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", | ||
2738 | 0x200000, addr + PCI_IO_OFFSET); | ||
2739 | goto err_out_free_memregion; | ||
2740 | } | ||
2741 | |||
2742 | /* | ||
2743 | * I don't know what the below does, but the hardware guys say its | ||
2744 | * required on everything except PLX (In this case XRJ). | ||
2745 | */ | ||
2746 | if (info_idx != brd_xrj) { | ||
2747 | pci_write_config_byte(pdev, 0x40, 0); | ||
2748 | pci_write_config_byte(pdev, 0x46, 0); | ||
2749 | } | ||
2750 | |||
2751 | return 0; | ||
2752 | |||
2753 | err_out_free_memregion: | ||
2754 | release_mem_region(addr, 0x200000); | ||
2755 | err_out_free_iounmap: | ||
2756 | iounmap(boards[board_idx].re_map_port); | ||
2757 | err_out_free_pciio: | ||
2758 | release_mem_region(addr + PCI_IO_OFFSET, 0x200000); | ||
2759 | err_out: | ||
2760 | return -ENODEV; | ||
2761 | } | ||
2762 | |||
2763 | |||
2764 | static struct pci_device_id epca_pci_tbl[] = { | ||
2765 | { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr }, | ||
2766 | { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem }, | ||
2767 | { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx }, | ||
2768 | { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj }, | ||
2769 | { 0, } | ||
2770 | }; | ||
2771 | |||
2772 | MODULE_DEVICE_TABLE(pci, epca_pci_tbl); | ||
2773 | |||
2774 | static int __init init_PCI(void) | ||
2775 | { | ||
2776 | memset(&epca_driver, 0, sizeof(epca_driver)); | ||
2777 | epca_driver.name = "epca"; | ||
2778 | epca_driver.id_table = epca_pci_tbl; | ||
2779 | epca_driver.probe = epca_init_one; | ||
2780 | |||
2781 | return pci_register_driver(&epca_driver); | ||
2782 | } | ||
2783 | |||
2784 | MODULE_LICENSE("GPL"); | ||