diff options
Diffstat (limited to 'drivers/block/nvme.c')
-rw-r--r-- | drivers/block/nvme.c | 1740 |
1 files changed, 1740 insertions, 0 deletions
diff --git a/drivers/block/nvme.c b/drivers/block/nvme.c new file mode 100644 index 000000000000..38a2d0631882 --- /dev/null +++ b/drivers/block/nvme.c | |||
@@ -0,0 +1,1740 @@ | |||
1 | /* | ||
2 | * NVM Express device driver | ||
3 | * Copyright (c) 2011, Intel Corporation. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License along with | ||
15 | * this program; if not, write to the Free Software Foundation, Inc., | ||
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/nvme.h> | ||
20 | #include <linux/bio.h> | ||
21 | #include <linux/bitops.h> | ||
22 | #include <linux/blkdev.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/errno.h> | ||
25 | #include <linux/fs.h> | ||
26 | #include <linux/genhd.h> | ||
27 | #include <linux/idr.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/io.h> | ||
31 | #include <linux/kdev_t.h> | ||
32 | #include <linux/kthread.h> | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/mm.h> | ||
35 | #include <linux/module.h> | ||
36 | #include <linux/moduleparam.h> | ||
37 | #include <linux/pci.h> | ||
38 | #include <linux/poison.h> | ||
39 | #include <linux/sched.h> | ||
40 | #include <linux/slab.h> | ||
41 | #include <linux/types.h> | ||
42 | |||
43 | #include <asm-generic/io-64-nonatomic-lo-hi.h> | ||
44 | |||
45 | #define NVME_Q_DEPTH 1024 | ||
46 | #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) | ||
47 | #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) | ||
48 | #define NVME_MINORS 64 | ||
49 | #define NVME_IO_TIMEOUT (5 * HZ) | ||
50 | #define ADMIN_TIMEOUT (60 * HZ) | ||
51 | |||
52 | static int nvme_major; | ||
53 | module_param(nvme_major, int, 0); | ||
54 | |||
55 | static int use_threaded_interrupts; | ||
56 | module_param(use_threaded_interrupts, int, 0); | ||
57 | |||
58 | static DEFINE_SPINLOCK(dev_list_lock); | ||
59 | static LIST_HEAD(dev_list); | ||
60 | static struct task_struct *nvme_thread; | ||
61 | |||
62 | /* | ||
63 | * Represents an NVM Express device. Each nvme_dev is a PCI function. | ||
64 | */ | ||
65 | struct nvme_dev { | ||
66 | struct list_head node; | ||
67 | struct nvme_queue **queues; | ||
68 | u32 __iomem *dbs; | ||
69 | struct pci_dev *pci_dev; | ||
70 | struct dma_pool *prp_page_pool; | ||
71 | struct dma_pool *prp_small_pool; | ||
72 | int instance; | ||
73 | int queue_count; | ||
74 | int db_stride; | ||
75 | u32 ctrl_config; | ||
76 | struct msix_entry *entry; | ||
77 | struct nvme_bar __iomem *bar; | ||
78 | struct list_head namespaces; | ||
79 | char serial[20]; | ||
80 | char model[40]; | ||
81 | char firmware_rev[8]; | ||
82 | }; | ||
83 | |||
84 | /* | ||
85 | * An NVM Express namespace is equivalent to a SCSI LUN | ||
86 | */ | ||
87 | struct nvme_ns { | ||
88 | struct list_head list; | ||
89 | |||
90 | struct nvme_dev *dev; | ||
91 | struct request_queue *queue; | ||
92 | struct gendisk *disk; | ||
93 | |||
94 | int ns_id; | ||
95 | int lba_shift; | ||
96 | }; | ||
97 | |||
98 | /* | ||
99 | * An NVM Express queue. Each device has at least two (one for admin | ||
100 | * commands and one for I/O commands). | ||
101 | */ | ||
102 | struct nvme_queue { | ||
103 | struct device *q_dmadev; | ||
104 | struct nvme_dev *dev; | ||
105 | spinlock_t q_lock; | ||
106 | struct nvme_command *sq_cmds; | ||
107 | volatile struct nvme_completion *cqes; | ||
108 | dma_addr_t sq_dma_addr; | ||
109 | dma_addr_t cq_dma_addr; | ||
110 | wait_queue_head_t sq_full; | ||
111 | wait_queue_t sq_cong_wait; | ||
112 | struct bio_list sq_cong; | ||
113 | u32 __iomem *q_db; | ||
114 | u16 q_depth; | ||
115 | u16 cq_vector; | ||
116 | u16 sq_head; | ||
117 | u16 sq_tail; | ||
118 | u16 cq_head; | ||
119 | u16 cq_phase; | ||
120 | unsigned long cmdid_data[]; | ||
121 | }; | ||
122 | |||
123 | /* | ||
124 | * Check we didin't inadvertently grow the command struct | ||
125 | */ | ||
126 | static inline void _nvme_check_size(void) | ||
127 | { | ||
128 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | ||
129 | BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | ||
130 | BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | ||
131 | BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | ||
132 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | ||
133 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | ||
134 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | ||
135 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | ||
136 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | ||
137 | } | ||
138 | |||
139 | typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, | ||
140 | struct nvme_completion *); | ||
141 | |||
142 | struct nvme_cmd_info { | ||
143 | nvme_completion_fn fn; | ||
144 | void *ctx; | ||
145 | unsigned long timeout; | ||
146 | }; | ||
147 | |||
148 | static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) | ||
149 | { | ||
150 | return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; | ||
151 | } | ||
152 | |||
153 | /** | ||
154 | * alloc_cmdid() - Allocate a Command ID | ||
155 | * @nvmeq: The queue that will be used for this command | ||
156 | * @ctx: A pointer that will be passed to the handler | ||
157 | * @handler: The function to call on completion | ||
158 | * | ||
159 | * Allocate a Command ID for a queue. The data passed in will | ||
160 | * be passed to the completion handler. This is implemented by using | ||
161 | * the bottom two bits of the ctx pointer to store the handler ID. | ||
162 | * Passing in a pointer that's not 4-byte aligned will cause a BUG. | ||
163 | * We can change this if it becomes a problem. | ||
164 | * | ||
165 | * May be called with local interrupts disabled and the q_lock held, | ||
166 | * or with interrupts enabled and no locks held. | ||
167 | */ | ||
168 | static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, | ||
169 | nvme_completion_fn handler, unsigned timeout) | ||
170 | { | ||
171 | int depth = nvmeq->q_depth - 1; | ||
172 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | ||
173 | int cmdid; | ||
174 | |||
175 | do { | ||
176 | cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); | ||
177 | if (cmdid >= depth) | ||
178 | return -EBUSY; | ||
179 | } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); | ||
180 | |||
181 | info[cmdid].fn = handler; | ||
182 | info[cmdid].ctx = ctx; | ||
183 | info[cmdid].timeout = jiffies + timeout; | ||
184 | return cmdid; | ||
185 | } | ||
186 | |||
187 | static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, | ||
188 | nvme_completion_fn handler, unsigned timeout) | ||
189 | { | ||
190 | int cmdid; | ||
191 | wait_event_killable(nvmeq->sq_full, | ||
192 | (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); | ||
193 | return (cmdid < 0) ? -EINTR : cmdid; | ||
194 | } | ||
195 | |||
196 | /* Special values must be less than 0x1000 */ | ||
197 | #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) | ||
198 | #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) | ||
199 | #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) | ||
200 | #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) | ||
201 | #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) | ||
202 | |||
203 | static void special_completion(struct nvme_dev *dev, void *ctx, | ||
204 | struct nvme_completion *cqe) | ||
205 | { | ||
206 | if (ctx == CMD_CTX_CANCELLED) | ||
207 | return; | ||
208 | if (ctx == CMD_CTX_FLUSH) | ||
209 | return; | ||
210 | if (ctx == CMD_CTX_COMPLETED) { | ||
211 | dev_warn(&dev->pci_dev->dev, | ||
212 | "completed id %d twice on queue %d\n", | ||
213 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | ||
214 | return; | ||
215 | } | ||
216 | if (ctx == CMD_CTX_INVALID) { | ||
217 | dev_warn(&dev->pci_dev->dev, | ||
218 | "invalid id %d completed on queue %d\n", | ||
219 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | ||
220 | return; | ||
221 | } | ||
222 | |||
223 | dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * Called with local interrupts disabled and the q_lock held. May not sleep. | ||
228 | */ | ||
229 | static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid, | ||
230 | nvme_completion_fn *fn) | ||
231 | { | ||
232 | void *ctx; | ||
233 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | ||
234 | |||
235 | if (cmdid >= nvmeq->q_depth) { | ||
236 | *fn = special_completion; | ||
237 | return CMD_CTX_INVALID; | ||
238 | } | ||
239 | *fn = info[cmdid].fn; | ||
240 | ctx = info[cmdid].ctx; | ||
241 | info[cmdid].fn = special_completion; | ||
242 | info[cmdid].ctx = CMD_CTX_COMPLETED; | ||
243 | clear_bit(cmdid, nvmeq->cmdid_data); | ||
244 | wake_up(&nvmeq->sq_full); | ||
245 | return ctx; | ||
246 | } | ||
247 | |||
248 | static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, | ||
249 | nvme_completion_fn *fn) | ||
250 | { | ||
251 | void *ctx; | ||
252 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | ||
253 | if (fn) | ||
254 | *fn = info[cmdid].fn; | ||
255 | ctx = info[cmdid].ctx; | ||
256 | info[cmdid].fn = special_completion; | ||
257 | info[cmdid].ctx = CMD_CTX_CANCELLED; | ||
258 | return ctx; | ||
259 | } | ||
260 | |||
261 | static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) | ||
262 | { | ||
263 | return dev->queues[get_cpu() + 1]; | ||
264 | } | ||
265 | |||
266 | static void put_nvmeq(struct nvme_queue *nvmeq) | ||
267 | { | ||
268 | put_cpu(); | ||
269 | } | ||
270 | |||
271 | /** | ||
272 | * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell | ||
273 | * @nvmeq: The queue to use | ||
274 | * @cmd: The command to send | ||
275 | * | ||
276 | * Safe to use from interrupt context | ||
277 | */ | ||
278 | static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | ||
279 | { | ||
280 | unsigned long flags; | ||
281 | u16 tail; | ||
282 | spin_lock_irqsave(&nvmeq->q_lock, flags); | ||
283 | tail = nvmeq->sq_tail; | ||
284 | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | ||
285 | if (++tail == nvmeq->q_depth) | ||
286 | tail = 0; | ||
287 | writel(tail, nvmeq->q_db); | ||
288 | nvmeq->sq_tail = tail; | ||
289 | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | ||
290 | |||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * The nvme_iod describes the data in an I/O, including the list of PRP | ||
296 | * entries. You can't see it in this data structure because C doesn't let | ||
297 | * me express that. Use nvme_alloc_iod to ensure there's enough space | ||
298 | * allocated to store the PRP list. | ||
299 | */ | ||
300 | struct nvme_iod { | ||
301 | void *private; /* For the use of the submitter of the I/O */ | ||
302 | int npages; /* In the PRP list. 0 means small pool in use */ | ||
303 | int offset; /* Of PRP list */ | ||
304 | int nents; /* Used in scatterlist */ | ||
305 | int length; /* Of data, in bytes */ | ||
306 | dma_addr_t first_dma; | ||
307 | struct scatterlist sg[0]; | ||
308 | }; | ||
309 | |||
310 | static __le64 **iod_list(struct nvme_iod *iod) | ||
311 | { | ||
312 | return ((void *)iod) + iod->offset; | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * Will slightly overestimate the number of pages needed. This is OK | ||
317 | * as it only leads to a small amount of wasted memory for the lifetime of | ||
318 | * the I/O. | ||
319 | */ | ||
320 | static int nvme_npages(unsigned size) | ||
321 | { | ||
322 | unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE); | ||
323 | return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); | ||
324 | } | ||
325 | |||
326 | static struct nvme_iod * | ||
327 | nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) | ||
328 | { | ||
329 | struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + | ||
330 | sizeof(__le64 *) * nvme_npages(nbytes) + | ||
331 | sizeof(struct scatterlist) * nseg, gfp); | ||
332 | |||
333 | if (iod) { | ||
334 | iod->offset = offsetof(struct nvme_iod, sg[nseg]); | ||
335 | iod->npages = -1; | ||
336 | iod->length = nbytes; | ||
337 | } | ||
338 | |||
339 | return iod; | ||
340 | } | ||
341 | |||
342 | static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) | ||
343 | { | ||
344 | const int last_prp = PAGE_SIZE / 8 - 1; | ||
345 | int i; | ||
346 | __le64 **list = iod_list(iod); | ||
347 | dma_addr_t prp_dma = iod->first_dma; | ||
348 | |||
349 | if (iod->npages == 0) | ||
350 | dma_pool_free(dev->prp_small_pool, list[0], prp_dma); | ||
351 | for (i = 0; i < iod->npages; i++) { | ||
352 | __le64 *prp_list = list[i]; | ||
353 | dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); | ||
354 | dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); | ||
355 | prp_dma = next_prp_dma; | ||
356 | } | ||
357 | kfree(iod); | ||
358 | } | ||
359 | |||
360 | static void requeue_bio(struct nvme_dev *dev, struct bio *bio) | ||
361 | { | ||
362 | struct nvme_queue *nvmeq = get_nvmeq(dev); | ||
363 | if (bio_list_empty(&nvmeq->sq_cong)) | ||
364 | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | ||
365 | bio_list_add(&nvmeq->sq_cong, bio); | ||
366 | put_nvmeq(nvmeq); | ||
367 | wake_up_process(nvme_thread); | ||
368 | } | ||
369 | |||
370 | static void bio_completion(struct nvme_dev *dev, void *ctx, | ||
371 | struct nvme_completion *cqe) | ||
372 | { | ||
373 | struct nvme_iod *iod = ctx; | ||
374 | struct bio *bio = iod->private; | ||
375 | u16 status = le16_to_cpup(&cqe->status) >> 1; | ||
376 | |||
377 | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, | ||
378 | bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | ||
379 | nvme_free_iod(dev, iod); | ||
380 | if (status) { | ||
381 | bio_endio(bio, -EIO); | ||
382 | } else if (bio->bi_vcnt > bio->bi_idx) { | ||
383 | requeue_bio(dev, bio); | ||
384 | } else { | ||
385 | bio_endio(bio, 0); | ||
386 | } | ||
387 | } | ||
388 | |||
389 | /* length is in bytes. gfp flags indicates whether we may sleep. */ | ||
390 | static int nvme_setup_prps(struct nvme_dev *dev, | ||
391 | struct nvme_common_command *cmd, struct nvme_iod *iod, | ||
392 | int total_len, gfp_t gfp) | ||
393 | { | ||
394 | struct dma_pool *pool; | ||
395 | int length = total_len; | ||
396 | struct scatterlist *sg = iod->sg; | ||
397 | int dma_len = sg_dma_len(sg); | ||
398 | u64 dma_addr = sg_dma_address(sg); | ||
399 | int offset = offset_in_page(dma_addr); | ||
400 | __le64 *prp_list; | ||
401 | __le64 **list = iod_list(iod); | ||
402 | dma_addr_t prp_dma; | ||
403 | int nprps, i; | ||
404 | |||
405 | cmd->prp1 = cpu_to_le64(dma_addr); | ||
406 | length -= (PAGE_SIZE - offset); | ||
407 | if (length <= 0) | ||
408 | return total_len; | ||
409 | |||
410 | dma_len -= (PAGE_SIZE - offset); | ||
411 | if (dma_len) { | ||
412 | dma_addr += (PAGE_SIZE - offset); | ||
413 | } else { | ||
414 | sg = sg_next(sg); | ||
415 | dma_addr = sg_dma_address(sg); | ||
416 | dma_len = sg_dma_len(sg); | ||
417 | } | ||
418 | |||
419 | if (length <= PAGE_SIZE) { | ||
420 | cmd->prp2 = cpu_to_le64(dma_addr); | ||
421 | return total_len; | ||
422 | } | ||
423 | |||
424 | nprps = DIV_ROUND_UP(length, PAGE_SIZE); | ||
425 | if (nprps <= (256 / 8)) { | ||
426 | pool = dev->prp_small_pool; | ||
427 | iod->npages = 0; | ||
428 | } else { | ||
429 | pool = dev->prp_page_pool; | ||
430 | iod->npages = 1; | ||
431 | } | ||
432 | |||
433 | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); | ||
434 | if (!prp_list) { | ||
435 | cmd->prp2 = cpu_to_le64(dma_addr); | ||
436 | iod->npages = -1; | ||
437 | return (total_len - length) + PAGE_SIZE; | ||
438 | } | ||
439 | list[0] = prp_list; | ||
440 | iod->first_dma = prp_dma; | ||
441 | cmd->prp2 = cpu_to_le64(prp_dma); | ||
442 | i = 0; | ||
443 | for (;;) { | ||
444 | if (i == PAGE_SIZE / 8) { | ||
445 | __le64 *old_prp_list = prp_list; | ||
446 | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); | ||
447 | if (!prp_list) | ||
448 | return total_len - length; | ||
449 | list[iod->npages++] = prp_list; | ||
450 | prp_list[0] = old_prp_list[i - 1]; | ||
451 | old_prp_list[i - 1] = cpu_to_le64(prp_dma); | ||
452 | i = 1; | ||
453 | } | ||
454 | prp_list[i++] = cpu_to_le64(dma_addr); | ||
455 | dma_len -= PAGE_SIZE; | ||
456 | dma_addr += PAGE_SIZE; | ||
457 | length -= PAGE_SIZE; | ||
458 | if (length <= 0) | ||
459 | break; | ||
460 | if (dma_len > 0) | ||
461 | continue; | ||
462 | BUG_ON(dma_len < 0); | ||
463 | sg = sg_next(sg); | ||
464 | dma_addr = sg_dma_address(sg); | ||
465 | dma_len = sg_dma_len(sg); | ||
466 | } | ||
467 | |||
468 | return total_len; | ||
469 | } | ||
470 | |||
471 | /* NVMe scatterlists require no holes in the virtual address */ | ||
472 | #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \ | ||
473 | (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) | ||
474 | |||
475 | static int nvme_map_bio(struct device *dev, struct nvme_iod *iod, | ||
476 | struct bio *bio, enum dma_data_direction dma_dir, int psegs) | ||
477 | { | ||
478 | struct bio_vec *bvec, *bvprv = NULL; | ||
479 | struct scatterlist *sg = NULL; | ||
480 | int i, old_idx, length = 0, nsegs = 0; | ||
481 | |||
482 | sg_init_table(iod->sg, psegs); | ||
483 | old_idx = bio->bi_idx; | ||
484 | bio_for_each_segment(bvec, bio, i) { | ||
485 | if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { | ||
486 | sg->length += bvec->bv_len; | ||
487 | } else { | ||
488 | if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) | ||
489 | break; | ||
490 | sg = sg ? sg + 1 : iod->sg; | ||
491 | sg_set_page(sg, bvec->bv_page, bvec->bv_len, | ||
492 | bvec->bv_offset); | ||
493 | nsegs++; | ||
494 | } | ||
495 | length += bvec->bv_len; | ||
496 | bvprv = bvec; | ||
497 | } | ||
498 | bio->bi_idx = i; | ||
499 | iod->nents = nsegs; | ||
500 | sg_mark_end(sg); | ||
501 | if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) { | ||
502 | bio->bi_idx = old_idx; | ||
503 | return -ENOMEM; | ||
504 | } | ||
505 | return length; | ||
506 | } | ||
507 | |||
508 | static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, | ||
509 | int cmdid) | ||
510 | { | ||
511 | struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | ||
512 | |||
513 | memset(cmnd, 0, sizeof(*cmnd)); | ||
514 | cmnd->common.opcode = nvme_cmd_flush; | ||
515 | cmnd->common.command_id = cmdid; | ||
516 | cmnd->common.nsid = cpu_to_le32(ns->ns_id); | ||
517 | |||
518 | if (++nvmeq->sq_tail == nvmeq->q_depth) | ||
519 | nvmeq->sq_tail = 0; | ||
520 | writel(nvmeq->sq_tail, nvmeq->q_db); | ||
521 | |||
522 | return 0; | ||
523 | } | ||
524 | |||
525 | static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) | ||
526 | { | ||
527 | int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, | ||
528 | special_completion, NVME_IO_TIMEOUT); | ||
529 | if (unlikely(cmdid < 0)) | ||
530 | return cmdid; | ||
531 | |||
532 | return nvme_submit_flush(nvmeq, ns, cmdid); | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * Called with local interrupts disabled and the q_lock held. May not sleep. | ||
537 | */ | ||
538 | static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, | ||
539 | struct bio *bio) | ||
540 | { | ||
541 | struct nvme_command *cmnd; | ||
542 | struct nvme_iod *iod; | ||
543 | enum dma_data_direction dma_dir; | ||
544 | int cmdid, length, result = -ENOMEM; | ||
545 | u16 control; | ||
546 | u32 dsmgmt; | ||
547 | int psegs = bio_phys_segments(ns->queue, bio); | ||
548 | |||
549 | if ((bio->bi_rw & REQ_FLUSH) && psegs) { | ||
550 | result = nvme_submit_flush_data(nvmeq, ns); | ||
551 | if (result) | ||
552 | return result; | ||
553 | } | ||
554 | |||
555 | iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC); | ||
556 | if (!iod) | ||
557 | goto nomem; | ||
558 | iod->private = bio; | ||
559 | |||
560 | result = -EBUSY; | ||
561 | cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); | ||
562 | if (unlikely(cmdid < 0)) | ||
563 | goto free_iod; | ||
564 | |||
565 | if ((bio->bi_rw & REQ_FLUSH) && !psegs) | ||
566 | return nvme_submit_flush(nvmeq, ns, cmdid); | ||
567 | |||
568 | control = 0; | ||
569 | if (bio->bi_rw & REQ_FUA) | ||
570 | control |= NVME_RW_FUA; | ||
571 | if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | ||
572 | control |= NVME_RW_LR; | ||
573 | |||
574 | dsmgmt = 0; | ||
575 | if (bio->bi_rw & REQ_RAHEAD) | ||
576 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | ||
577 | |||
578 | cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | ||
579 | |||
580 | memset(cmnd, 0, sizeof(*cmnd)); | ||
581 | if (bio_data_dir(bio)) { | ||
582 | cmnd->rw.opcode = nvme_cmd_write; | ||
583 | dma_dir = DMA_TO_DEVICE; | ||
584 | } else { | ||
585 | cmnd->rw.opcode = nvme_cmd_read; | ||
586 | dma_dir = DMA_FROM_DEVICE; | ||
587 | } | ||
588 | |||
589 | result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs); | ||
590 | if (result < 0) | ||
591 | goto free_iod; | ||
592 | length = result; | ||
593 | |||
594 | cmnd->rw.command_id = cmdid; | ||
595 | cmnd->rw.nsid = cpu_to_le32(ns->ns_id); | ||
596 | length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, | ||
597 | GFP_ATOMIC); | ||
598 | cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); | ||
599 | cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); | ||
600 | cmnd->rw.control = cpu_to_le16(control); | ||
601 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | ||
602 | |||
603 | bio->bi_sector += length >> 9; | ||
604 | |||
605 | if (++nvmeq->sq_tail == nvmeq->q_depth) | ||
606 | nvmeq->sq_tail = 0; | ||
607 | writel(nvmeq->sq_tail, nvmeq->q_db); | ||
608 | |||
609 | return 0; | ||
610 | |||
611 | free_iod: | ||
612 | nvme_free_iod(nvmeq->dev, iod); | ||
613 | nomem: | ||
614 | return result; | ||
615 | } | ||
616 | |||
617 | static void nvme_make_request(struct request_queue *q, struct bio *bio) | ||
618 | { | ||
619 | struct nvme_ns *ns = q->queuedata; | ||
620 | struct nvme_queue *nvmeq = get_nvmeq(ns->dev); | ||
621 | int result = -EBUSY; | ||
622 | |||
623 | spin_lock_irq(&nvmeq->q_lock); | ||
624 | if (bio_list_empty(&nvmeq->sq_cong)) | ||
625 | result = nvme_submit_bio_queue(nvmeq, ns, bio); | ||
626 | if (unlikely(result)) { | ||
627 | if (bio_list_empty(&nvmeq->sq_cong)) | ||
628 | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | ||
629 | bio_list_add(&nvmeq->sq_cong, bio); | ||
630 | } | ||
631 | |||
632 | spin_unlock_irq(&nvmeq->q_lock); | ||
633 | put_nvmeq(nvmeq); | ||
634 | } | ||
635 | |||
636 | static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) | ||
637 | { | ||
638 | u16 head, phase; | ||
639 | |||
640 | head = nvmeq->cq_head; | ||
641 | phase = nvmeq->cq_phase; | ||
642 | |||
643 | for (;;) { | ||
644 | void *ctx; | ||
645 | nvme_completion_fn fn; | ||
646 | struct nvme_completion cqe = nvmeq->cqes[head]; | ||
647 | if ((le16_to_cpu(cqe.status) & 1) != phase) | ||
648 | break; | ||
649 | nvmeq->sq_head = le16_to_cpu(cqe.sq_head); | ||
650 | if (++head == nvmeq->q_depth) { | ||
651 | head = 0; | ||
652 | phase = !phase; | ||
653 | } | ||
654 | |||
655 | ctx = free_cmdid(nvmeq, cqe.command_id, &fn); | ||
656 | fn(nvmeq->dev, ctx, &cqe); | ||
657 | } | ||
658 | |||
659 | /* If the controller ignores the cq head doorbell and continuously | ||
660 | * writes to the queue, it is theoretically possible to wrap around | ||
661 | * the queue twice and mistakenly return IRQ_NONE. Linux only | ||
662 | * requires that 0.1% of your interrupts are handled, so this isn't | ||
663 | * a big problem. | ||
664 | */ | ||
665 | if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) | ||
666 | return IRQ_NONE; | ||
667 | |||
668 | writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride)); | ||
669 | nvmeq->cq_head = head; | ||
670 | nvmeq->cq_phase = phase; | ||
671 | |||
672 | return IRQ_HANDLED; | ||
673 | } | ||
674 | |||
675 | static irqreturn_t nvme_irq(int irq, void *data) | ||
676 | { | ||
677 | irqreturn_t result; | ||
678 | struct nvme_queue *nvmeq = data; | ||
679 | spin_lock(&nvmeq->q_lock); | ||
680 | result = nvme_process_cq(nvmeq); | ||
681 | spin_unlock(&nvmeq->q_lock); | ||
682 | return result; | ||
683 | } | ||
684 | |||
685 | static irqreturn_t nvme_irq_check(int irq, void *data) | ||
686 | { | ||
687 | struct nvme_queue *nvmeq = data; | ||
688 | struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; | ||
689 | if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) | ||
690 | return IRQ_NONE; | ||
691 | return IRQ_WAKE_THREAD; | ||
692 | } | ||
693 | |||
694 | static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) | ||
695 | { | ||
696 | spin_lock_irq(&nvmeq->q_lock); | ||
697 | cancel_cmdid(nvmeq, cmdid, NULL); | ||
698 | spin_unlock_irq(&nvmeq->q_lock); | ||
699 | } | ||
700 | |||
701 | struct sync_cmd_info { | ||
702 | struct task_struct *task; | ||
703 | u32 result; | ||
704 | int status; | ||
705 | }; | ||
706 | |||
707 | static void sync_completion(struct nvme_dev *dev, void *ctx, | ||
708 | struct nvme_completion *cqe) | ||
709 | { | ||
710 | struct sync_cmd_info *cmdinfo = ctx; | ||
711 | cmdinfo->result = le32_to_cpup(&cqe->result); | ||
712 | cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; | ||
713 | wake_up_process(cmdinfo->task); | ||
714 | } | ||
715 | |||
716 | /* | ||
717 | * Returns 0 on success. If the result is negative, it's a Linux error code; | ||
718 | * if the result is positive, it's an NVM Express status code | ||
719 | */ | ||
720 | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, | ||
721 | struct nvme_command *cmd, u32 *result, unsigned timeout) | ||
722 | { | ||
723 | int cmdid; | ||
724 | struct sync_cmd_info cmdinfo; | ||
725 | |||
726 | cmdinfo.task = current; | ||
727 | cmdinfo.status = -EINTR; | ||
728 | |||
729 | cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, | ||
730 | timeout); | ||
731 | if (cmdid < 0) | ||
732 | return cmdid; | ||
733 | cmd->common.command_id = cmdid; | ||
734 | |||
735 | set_current_state(TASK_KILLABLE); | ||
736 | nvme_submit_cmd(nvmeq, cmd); | ||
737 | schedule(); | ||
738 | |||
739 | if (cmdinfo.status == -EINTR) { | ||
740 | nvme_abort_command(nvmeq, cmdid); | ||
741 | return -EINTR; | ||
742 | } | ||
743 | |||
744 | if (result) | ||
745 | *result = cmdinfo.result; | ||
746 | |||
747 | return cmdinfo.status; | ||
748 | } | ||
749 | |||
750 | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, | ||
751 | u32 *result) | ||
752 | { | ||
753 | return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); | ||
754 | } | ||
755 | |||
756 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | ||
757 | { | ||
758 | int status; | ||
759 | struct nvme_command c; | ||
760 | |||
761 | memset(&c, 0, sizeof(c)); | ||
762 | c.delete_queue.opcode = opcode; | ||
763 | c.delete_queue.qid = cpu_to_le16(id); | ||
764 | |||
765 | status = nvme_submit_admin_cmd(dev, &c, NULL); | ||
766 | if (status) | ||
767 | return -EIO; | ||
768 | return 0; | ||
769 | } | ||
770 | |||
771 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | ||
772 | struct nvme_queue *nvmeq) | ||
773 | { | ||
774 | int status; | ||
775 | struct nvme_command c; | ||
776 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | ||
777 | |||
778 | memset(&c, 0, sizeof(c)); | ||
779 | c.create_cq.opcode = nvme_admin_create_cq; | ||
780 | c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | ||
781 | c.create_cq.cqid = cpu_to_le16(qid); | ||
782 | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | ||
783 | c.create_cq.cq_flags = cpu_to_le16(flags); | ||
784 | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | ||
785 | |||
786 | status = nvme_submit_admin_cmd(dev, &c, NULL); | ||
787 | if (status) | ||
788 | return -EIO; | ||
789 | return 0; | ||
790 | } | ||
791 | |||
792 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | ||
793 | struct nvme_queue *nvmeq) | ||
794 | { | ||
795 | int status; | ||
796 | struct nvme_command c; | ||
797 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | ||
798 | |||
799 | memset(&c, 0, sizeof(c)); | ||
800 | c.create_sq.opcode = nvme_admin_create_sq; | ||
801 | c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | ||
802 | c.create_sq.sqid = cpu_to_le16(qid); | ||
803 | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | ||
804 | c.create_sq.sq_flags = cpu_to_le16(flags); | ||
805 | c.create_sq.cqid = cpu_to_le16(qid); | ||
806 | |||
807 | status = nvme_submit_admin_cmd(dev, &c, NULL); | ||
808 | if (status) | ||
809 | return -EIO; | ||
810 | return 0; | ||
811 | } | ||
812 | |||
813 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | ||
814 | { | ||
815 | return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | ||
816 | } | ||
817 | |||
818 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | ||
819 | { | ||
820 | return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | ||
821 | } | ||
822 | |||
823 | static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, | ||
824 | dma_addr_t dma_addr) | ||
825 | { | ||
826 | struct nvme_command c; | ||
827 | |||
828 | memset(&c, 0, sizeof(c)); | ||
829 | c.identify.opcode = nvme_admin_identify; | ||
830 | c.identify.nsid = cpu_to_le32(nsid); | ||
831 | c.identify.prp1 = cpu_to_le64(dma_addr); | ||
832 | c.identify.cns = cpu_to_le32(cns); | ||
833 | |||
834 | return nvme_submit_admin_cmd(dev, &c, NULL); | ||
835 | } | ||
836 | |||
837 | static int nvme_get_features(struct nvme_dev *dev, unsigned fid, | ||
838 | unsigned dword11, dma_addr_t dma_addr) | ||
839 | { | ||
840 | struct nvme_command c; | ||
841 | |||
842 | memset(&c, 0, sizeof(c)); | ||
843 | c.features.opcode = nvme_admin_get_features; | ||
844 | c.features.prp1 = cpu_to_le64(dma_addr); | ||
845 | c.features.fid = cpu_to_le32(fid); | ||
846 | c.features.dword11 = cpu_to_le32(dword11); | ||
847 | |||
848 | return nvme_submit_admin_cmd(dev, &c, NULL); | ||
849 | } | ||
850 | |||
851 | static int nvme_set_features(struct nvme_dev *dev, unsigned fid, | ||
852 | unsigned dword11, dma_addr_t dma_addr, u32 *result) | ||
853 | { | ||
854 | struct nvme_command c; | ||
855 | |||
856 | memset(&c, 0, sizeof(c)); | ||
857 | c.features.opcode = nvme_admin_set_features; | ||
858 | c.features.prp1 = cpu_to_le64(dma_addr); | ||
859 | c.features.fid = cpu_to_le32(fid); | ||
860 | c.features.dword11 = cpu_to_le32(dword11); | ||
861 | |||
862 | return nvme_submit_admin_cmd(dev, &c, result); | ||
863 | } | ||
864 | |||
865 | static void nvme_free_queue(struct nvme_dev *dev, int qid) | ||
866 | { | ||
867 | struct nvme_queue *nvmeq = dev->queues[qid]; | ||
868 | int vector = dev->entry[nvmeq->cq_vector].vector; | ||
869 | |||
870 | irq_set_affinity_hint(vector, NULL); | ||
871 | free_irq(vector, nvmeq); | ||
872 | |||
873 | /* Don't tell the adapter to delete the admin queue */ | ||
874 | if (qid) { | ||
875 | adapter_delete_sq(dev, qid); | ||
876 | adapter_delete_cq(dev, qid); | ||
877 | } | ||
878 | |||
879 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | ||
880 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | ||
881 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | ||
882 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | ||
883 | kfree(nvmeq); | ||
884 | } | ||
885 | |||
886 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | ||
887 | int depth, int vector) | ||
888 | { | ||
889 | struct device *dmadev = &dev->pci_dev->dev; | ||
890 | unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info)); | ||
891 | struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); | ||
892 | if (!nvmeq) | ||
893 | return NULL; | ||
894 | |||
895 | nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), | ||
896 | &nvmeq->cq_dma_addr, GFP_KERNEL); | ||
897 | if (!nvmeq->cqes) | ||
898 | goto free_nvmeq; | ||
899 | memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); | ||
900 | |||
901 | nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), | ||
902 | &nvmeq->sq_dma_addr, GFP_KERNEL); | ||
903 | if (!nvmeq->sq_cmds) | ||
904 | goto free_cqdma; | ||
905 | |||
906 | nvmeq->q_dmadev = dmadev; | ||
907 | nvmeq->dev = dev; | ||
908 | spin_lock_init(&nvmeq->q_lock); | ||
909 | nvmeq->cq_head = 0; | ||
910 | nvmeq->cq_phase = 1; | ||
911 | init_waitqueue_head(&nvmeq->sq_full); | ||
912 | init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); | ||
913 | bio_list_init(&nvmeq->sq_cong); | ||
914 | nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; | ||
915 | nvmeq->q_depth = depth; | ||
916 | nvmeq->cq_vector = vector; | ||
917 | |||
918 | return nvmeq; | ||
919 | |||
920 | free_cqdma: | ||
921 | dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, | ||
922 | nvmeq->cq_dma_addr); | ||
923 | free_nvmeq: | ||
924 | kfree(nvmeq); | ||
925 | return NULL; | ||
926 | } | ||
927 | |||
928 | static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, | ||
929 | const char *name) | ||
930 | { | ||
931 | if (use_threaded_interrupts) | ||
932 | return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, | ||
933 | nvme_irq_check, nvme_irq, | ||
934 | IRQF_DISABLED | IRQF_SHARED, | ||
935 | name, nvmeq); | ||
936 | return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, | ||
937 | IRQF_DISABLED | IRQF_SHARED, name, nvmeq); | ||
938 | } | ||
939 | |||
940 | static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, | ||
941 | int qid, int cq_size, int vector) | ||
942 | { | ||
943 | int result; | ||
944 | struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); | ||
945 | |||
946 | if (!nvmeq) | ||
947 | return ERR_PTR(-ENOMEM); | ||
948 | |||
949 | result = adapter_alloc_cq(dev, qid, nvmeq); | ||
950 | if (result < 0) | ||
951 | goto free_nvmeq; | ||
952 | |||
953 | result = adapter_alloc_sq(dev, qid, nvmeq); | ||
954 | if (result < 0) | ||
955 | goto release_cq; | ||
956 | |||
957 | result = queue_request_irq(dev, nvmeq, "nvme"); | ||
958 | if (result < 0) | ||
959 | goto release_sq; | ||
960 | |||
961 | return nvmeq; | ||
962 | |||
963 | release_sq: | ||
964 | adapter_delete_sq(dev, qid); | ||
965 | release_cq: | ||
966 | adapter_delete_cq(dev, qid); | ||
967 | free_nvmeq: | ||
968 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | ||
969 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | ||
970 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | ||
971 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | ||
972 | kfree(nvmeq); | ||
973 | return ERR_PTR(result); | ||
974 | } | ||
975 | |||
976 | static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) | ||
977 | { | ||
978 | int result; | ||
979 | u32 aqa; | ||
980 | u64 cap; | ||
981 | unsigned long timeout; | ||
982 | struct nvme_queue *nvmeq; | ||
983 | |||
984 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | ||
985 | |||
986 | nvmeq = nvme_alloc_queue(dev, 0, 64, 0); | ||
987 | if (!nvmeq) | ||
988 | return -ENOMEM; | ||
989 | |||
990 | aqa = nvmeq->q_depth - 1; | ||
991 | aqa |= aqa << 16; | ||
992 | |||
993 | dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; | ||
994 | dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; | ||
995 | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; | ||
996 | dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; | ||
997 | |||
998 | writel(0, &dev->bar->cc); | ||
999 | writel(aqa, &dev->bar->aqa); | ||
1000 | writeq(nvmeq->sq_dma_addr, &dev->bar->asq); | ||
1001 | writeq(nvmeq->cq_dma_addr, &dev->bar->acq); | ||
1002 | writel(dev->ctrl_config, &dev->bar->cc); | ||
1003 | |||
1004 | cap = readq(&dev->bar->cap); | ||
1005 | timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; | ||
1006 | dev->db_stride = NVME_CAP_STRIDE(cap); | ||
1007 | |||
1008 | while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { | ||
1009 | msleep(100); | ||
1010 | if (fatal_signal_pending(current)) | ||
1011 | return -EINTR; | ||
1012 | if (time_after(jiffies, timeout)) { | ||
1013 | dev_err(&dev->pci_dev->dev, | ||
1014 | "Device not ready; aborting initialisation\n"); | ||
1015 | return -ENODEV; | ||
1016 | } | ||
1017 | } | ||
1018 | |||
1019 | result = queue_request_irq(dev, nvmeq, "nvme admin"); | ||
1020 | dev->queues[0] = nvmeq; | ||
1021 | return result; | ||
1022 | } | ||
1023 | |||
1024 | static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, | ||
1025 | unsigned long addr, unsigned length) | ||
1026 | { | ||
1027 | int i, err, count, nents, offset; | ||
1028 | struct scatterlist *sg; | ||
1029 | struct page **pages; | ||
1030 | struct nvme_iod *iod; | ||
1031 | |||
1032 | if (addr & 3) | ||
1033 | return ERR_PTR(-EINVAL); | ||
1034 | if (!length) | ||
1035 | return ERR_PTR(-EINVAL); | ||
1036 | |||
1037 | offset = offset_in_page(addr); | ||
1038 | count = DIV_ROUND_UP(offset + length, PAGE_SIZE); | ||
1039 | pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); | ||
1040 | |||
1041 | err = get_user_pages_fast(addr, count, 1, pages); | ||
1042 | if (err < count) { | ||
1043 | count = err; | ||
1044 | err = -EFAULT; | ||
1045 | goto put_pages; | ||
1046 | } | ||
1047 | |||
1048 | iod = nvme_alloc_iod(count, length, GFP_KERNEL); | ||
1049 | sg = iod->sg; | ||
1050 | sg_init_table(sg, count); | ||
1051 | for (i = 0; i < count; i++) { | ||
1052 | sg_set_page(&sg[i], pages[i], | ||
1053 | min_t(int, length, PAGE_SIZE - offset), offset); | ||
1054 | length -= (PAGE_SIZE - offset); | ||
1055 | offset = 0; | ||
1056 | } | ||
1057 | sg_mark_end(&sg[i - 1]); | ||
1058 | iod->nents = count; | ||
1059 | |||
1060 | err = -ENOMEM; | ||
1061 | nents = dma_map_sg(&dev->pci_dev->dev, sg, count, | ||
1062 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | ||
1063 | if (!nents) | ||
1064 | goto free_iod; | ||
1065 | |||
1066 | kfree(pages); | ||
1067 | return iod; | ||
1068 | |||
1069 | free_iod: | ||
1070 | kfree(iod); | ||
1071 | put_pages: | ||
1072 | for (i = 0; i < count; i++) | ||
1073 | put_page(pages[i]); | ||
1074 | kfree(pages); | ||
1075 | return ERR_PTR(err); | ||
1076 | } | ||
1077 | |||
1078 | static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, | ||
1079 | struct nvme_iod *iod) | ||
1080 | { | ||
1081 | int i; | ||
1082 | |||
1083 | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, | ||
1084 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | ||
1085 | |||
1086 | for (i = 0; i < iod->nents; i++) | ||
1087 | put_page(sg_page(&iod->sg[i])); | ||
1088 | } | ||
1089 | |||
1090 | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) | ||
1091 | { | ||
1092 | struct nvme_dev *dev = ns->dev; | ||
1093 | struct nvme_queue *nvmeq; | ||
1094 | struct nvme_user_io io; | ||
1095 | struct nvme_command c; | ||
1096 | unsigned length; | ||
1097 | int status; | ||
1098 | struct nvme_iod *iod; | ||
1099 | |||
1100 | if (copy_from_user(&io, uio, sizeof(io))) | ||
1101 | return -EFAULT; | ||
1102 | length = (io.nblocks + 1) << ns->lba_shift; | ||
1103 | |||
1104 | switch (io.opcode) { | ||
1105 | case nvme_cmd_write: | ||
1106 | case nvme_cmd_read: | ||
1107 | case nvme_cmd_compare: | ||
1108 | iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length); | ||
1109 | break; | ||
1110 | default: | ||
1111 | return -EINVAL; | ||
1112 | } | ||
1113 | |||
1114 | if (IS_ERR(iod)) | ||
1115 | return PTR_ERR(iod); | ||
1116 | |||
1117 | memset(&c, 0, sizeof(c)); | ||
1118 | c.rw.opcode = io.opcode; | ||
1119 | c.rw.flags = io.flags; | ||
1120 | c.rw.nsid = cpu_to_le32(ns->ns_id); | ||
1121 | c.rw.slba = cpu_to_le64(io.slba); | ||
1122 | c.rw.length = cpu_to_le16(io.nblocks); | ||
1123 | c.rw.control = cpu_to_le16(io.control); | ||
1124 | c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); | ||
1125 | c.rw.reftag = io.reftag; | ||
1126 | c.rw.apptag = io.apptag; | ||
1127 | c.rw.appmask = io.appmask; | ||
1128 | /* XXX: metadata */ | ||
1129 | length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); | ||
1130 | |||
1131 | nvmeq = get_nvmeq(dev); | ||
1132 | /* | ||
1133 | * Since nvme_submit_sync_cmd sleeps, we can't keep preemption | ||
1134 | * disabled. We may be preempted at any point, and be rescheduled | ||
1135 | * to a different CPU. That will cause cacheline bouncing, but no | ||
1136 | * additional races since q_lock already protects against other CPUs. | ||
1137 | */ | ||
1138 | put_nvmeq(nvmeq); | ||
1139 | if (length != (io.nblocks + 1) << ns->lba_shift) | ||
1140 | status = -ENOMEM; | ||
1141 | else | ||
1142 | status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); | ||
1143 | |||
1144 | nvme_unmap_user_pages(dev, io.opcode & 1, iod); | ||
1145 | nvme_free_iod(dev, iod); | ||
1146 | return status; | ||
1147 | } | ||
1148 | |||
1149 | static int nvme_user_admin_cmd(struct nvme_ns *ns, | ||
1150 | struct nvme_admin_cmd __user *ucmd) | ||
1151 | { | ||
1152 | struct nvme_dev *dev = ns->dev; | ||
1153 | struct nvme_admin_cmd cmd; | ||
1154 | struct nvme_command c; | ||
1155 | int status, length; | ||
1156 | struct nvme_iod *iod; | ||
1157 | |||
1158 | if (!capable(CAP_SYS_ADMIN)) | ||
1159 | return -EACCES; | ||
1160 | if (copy_from_user(&cmd, ucmd, sizeof(cmd))) | ||
1161 | return -EFAULT; | ||
1162 | |||
1163 | memset(&c, 0, sizeof(c)); | ||
1164 | c.common.opcode = cmd.opcode; | ||
1165 | c.common.flags = cmd.flags; | ||
1166 | c.common.nsid = cpu_to_le32(cmd.nsid); | ||
1167 | c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); | ||
1168 | c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); | ||
1169 | c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); | ||
1170 | c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); | ||
1171 | c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); | ||
1172 | c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); | ||
1173 | c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); | ||
1174 | c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); | ||
1175 | |||
1176 | length = cmd.data_len; | ||
1177 | if (cmd.data_len) { | ||
1178 | iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr, | ||
1179 | length); | ||
1180 | if (IS_ERR(iod)) | ||
1181 | return PTR_ERR(iod); | ||
1182 | length = nvme_setup_prps(dev, &c.common, iod, length, | ||
1183 | GFP_KERNEL); | ||
1184 | } | ||
1185 | |||
1186 | if (length != cmd.data_len) | ||
1187 | status = -ENOMEM; | ||
1188 | else | ||
1189 | status = nvme_submit_admin_cmd(dev, &c, NULL); | ||
1190 | |||
1191 | if (cmd.data_len) { | ||
1192 | nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); | ||
1193 | nvme_free_iod(dev, iod); | ||
1194 | } | ||
1195 | return status; | ||
1196 | } | ||
1197 | |||
1198 | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, | ||
1199 | unsigned long arg) | ||
1200 | { | ||
1201 | struct nvme_ns *ns = bdev->bd_disk->private_data; | ||
1202 | |||
1203 | switch (cmd) { | ||
1204 | case NVME_IOCTL_ID: | ||
1205 | return ns->ns_id; | ||
1206 | case NVME_IOCTL_ADMIN_CMD: | ||
1207 | return nvme_user_admin_cmd(ns, (void __user *)arg); | ||
1208 | case NVME_IOCTL_SUBMIT_IO: | ||
1209 | return nvme_submit_io(ns, (void __user *)arg); | ||
1210 | default: | ||
1211 | return -ENOTTY; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | static const struct block_device_operations nvme_fops = { | ||
1216 | .owner = THIS_MODULE, | ||
1217 | .ioctl = nvme_ioctl, | ||
1218 | .compat_ioctl = nvme_ioctl, | ||
1219 | }; | ||
1220 | |||
1221 | static void nvme_timeout_ios(struct nvme_queue *nvmeq) | ||
1222 | { | ||
1223 | int depth = nvmeq->q_depth - 1; | ||
1224 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | ||
1225 | unsigned long now = jiffies; | ||
1226 | int cmdid; | ||
1227 | |||
1228 | for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { | ||
1229 | void *ctx; | ||
1230 | nvme_completion_fn fn; | ||
1231 | static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, }; | ||
1232 | |||
1233 | if (!time_after(now, info[cmdid].timeout)) | ||
1234 | continue; | ||
1235 | dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid); | ||
1236 | ctx = cancel_cmdid(nvmeq, cmdid, &fn); | ||
1237 | fn(nvmeq->dev, ctx, &cqe); | ||
1238 | } | ||
1239 | } | ||
1240 | |||
1241 | static void nvme_resubmit_bios(struct nvme_queue *nvmeq) | ||
1242 | { | ||
1243 | while (bio_list_peek(&nvmeq->sq_cong)) { | ||
1244 | struct bio *bio = bio_list_pop(&nvmeq->sq_cong); | ||
1245 | struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; | ||
1246 | if (nvme_submit_bio_queue(nvmeq, ns, bio)) { | ||
1247 | bio_list_add_head(&nvmeq->sq_cong, bio); | ||
1248 | break; | ||
1249 | } | ||
1250 | if (bio_list_empty(&nvmeq->sq_cong)) | ||
1251 | remove_wait_queue(&nvmeq->sq_full, | ||
1252 | &nvmeq->sq_cong_wait); | ||
1253 | } | ||
1254 | } | ||
1255 | |||
1256 | static int nvme_kthread(void *data) | ||
1257 | { | ||
1258 | struct nvme_dev *dev; | ||
1259 | |||
1260 | while (!kthread_should_stop()) { | ||
1261 | __set_current_state(TASK_RUNNING); | ||
1262 | spin_lock(&dev_list_lock); | ||
1263 | list_for_each_entry(dev, &dev_list, node) { | ||
1264 | int i; | ||
1265 | for (i = 0; i < dev->queue_count; i++) { | ||
1266 | struct nvme_queue *nvmeq = dev->queues[i]; | ||
1267 | if (!nvmeq) | ||
1268 | continue; | ||
1269 | spin_lock_irq(&nvmeq->q_lock); | ||
1270 | if (nvme_process_cq(nvmeq)) | ||
1271 | printk("process_cq did something\n"); | ||
1272 | nvme_timeout_ios(nvmeq); | ||
1273 | nvme_resubmit_bios(nvmeq); | ||
1274 | spin_unlock_irq(&nvmeq->q_lock); | ||
1275 | } | ||
1276 | } | ||
1277 | spin_unlock(&dev_list_lock); | ||
1278 | set_current_state(TASK_INTERRUPTIBLE); | ||
1279 | schedule_timeout(HZ); | ||
1280 | } | ||
1281 | return 0; | ||
1282 | } | ||
1283 | |||
1284 | static DEFINE_IDA(nvme_index_ida); | ||
1285 | |||
1286 | static int nvme_get_ns_idx(void) | ||
1287 | { | ||
1288 | int index, error; | ||
1289 | |||
1290 | do { | ||
1291 | if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) | ||
1292 | return -1; | ||
1293 | |||
1294 | spin_lock(&dev_list_lock); | ||
1295 | error = ida_get_new(&nvme_index_ida, &index); | ||
1296 | spin_unlock(&dev_list_lock); | ||
1297 | } while (error == -EAGAIN); | ||
1298 | |||
1299 | if (error) | ||
1300 | index = -1; | ||
1301 | return index; | ||
1302 | } | ||
1303 | |||
1304 | static void nvme_put_ns_idx(int index) | ||
1305 | { | ||
1306 | spin_lock(&dev_list_lock); | ||
1307 | ida_remove(&nvme_index_ida, index); | ||
1308 | spin_unlock(&dev_list_lock); | ||
1309 | } | ||
1310 | |||
1311 | static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid, | ||
1312 | struct nvme_id_ns *id, struct nvme_lba_range_type *rt) | ||
1313 | { | ||
1314 | struct nvme_ns *ns; | ||
1315 | struct gendisk *disk; | ||
1316 | int lbaf; | ||
1317 | |||
1318 | if (rt->attributes & NVME_LBART_ATTRIB_HIDE) | ||
1319 | return NULL; | ||
1320 | |||
1321 | ns = kzalloc(sizeof(*ns), GFP_KERNEL); | ||
1322 | if (!ns) | ||
1323 | return NULL; | ||
1324 | ns->queue = blk_alloc_queue(GFP_KERNEL); | ||
1325 | if (!ns->queue) | ||
1326 | goto out_free_ns; | ||
1327 | ns->queue->queue_flags = QUEUE_FLAG_DEFAULT; | ||
1328 | queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); | ||
1329 | queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); | ||
1330 | /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */ | ||
1331 | blk_queue_make_request(ns->queue, nvme_make_request); | ||
1332 | ns->dev = dev; | ||
1333 | ns->queue->queuedata = ns; | ||
1334 | |||
1335 | disk = alloc_disk(NVME_MINORS); | ||
1336 | if (!disk) | ||
1337 | goto out_free_queue; | ||
1338 | ns->ns_id = nsid; | ||
1339 | ns->disk = disk; | ||
1340 | lbaf = id->flbas & 0xf; | ||
1341 | ns->lba_shift = id->lbaf[lbaf].ds; | ||
1342 | |||
1343 | disk->major = nvme_major; | ||
1344 | disk->minors = NVME_MINORS; | ||
1345 | disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); | ||
1346 | disk->fops = &nvme_fops; | ||
1347 | disk->private_data = ns; | ||
1348 | disk->queue = ns->queue; | ||
1349 | disk->driverfs_dev = &dev->pci_dev->dev; | ||
1350 | sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); | ||
1351 | set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); | ||
1352 | |||
1353 | return ns; | ||
1354 | |||
1355 | out_free_queue: | ||
1356 | blk_cleanup_queue(ns->queue); | ||
1357 | out_free_ns: | ||
1358 | kfree(ns); | ||
1359 | return NULL; | ||
1360 | } | ||
1361 | |||
1362 | static void nvme_ns_free(struct nvme_ns *ns) | ||
1363 | { | ||
1364 | int index = ns->disk->first_minor / NVME_MINORS; | ||
1365 | put_disk(ns->disk); | ||
1366 | nvme_put_ns_idx(index); | ||
1367 | blk_cleanup_queue(ns->queue); | ||
1368 | kfree(ns); | ||
1369 | } | ||
1370 | |||
1371 | static int set_queue_count(struct nvme_dev *dev, int count) | ||
1372 | { | ||
1373 | int status; | ||
1374 | u32 result; | ||
1375 | u32 q_count = (count - 1) | ((count - 1) << 16); | ||
1376 | |||
1377 | status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, | ||
1378 | &result); | ||
1379 | if (status) | ||
1380 | return -EIO; | ||
1381 | return min(result & 0xffff, result >> 16) + 1; | ||
1382 | } | ||
1383 | |||
1384 | static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) | ||
1385 | { | ||
1386 | int result, cpu, i, nr_io_queues, db_bar_size; | ||
1387 | |||
1388 | nr_io_queues = num_online_cpus(); | ||
1389 | result = set_queue_count(dev, nr_io_queues); | ||
1390 | if (result < 0) | ||
1391 | return result; | ||
1392 | if (result < nr_io_queues) | ||
1393 | nr_io_queues = result; | ||
1394 | |||
1395 | /* Deregister the admin queue's interrupt */ | ||
1396 | free_irq(dev->entry[0].vector, dev->queues[0]); | ||
1397 | |||
1398 | db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3)); | ||
1399 | if (db_bar_size > 8192) { | ||
1400 | iounmap(dev->bar); | ||
1401 | dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0), | ||
1402 | db_bar_size); | ||
1403 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | ||
1404 | dev->queues[0]->q_db = dev->dbs; | ||
1405 | } | ||
1406 | |||
1407 | for (i = 0; i < nr_io_queues; i++) | ||
1408 | dev->entry[i].entry = i; | ||
1409 | for (;;) { | ||
1410 | result = pci_enable_msix(dev->pci_dev, dev->entry, | ||
1411 | nr_io_queues); | ||
1412 | if (result == 0) { | ||
1413 | break; | ||
1414 | } else if (result > 0) { | ||
1415 | nr_io_queues = result; | ||
1416 | continue; | ||
1417 | } else { | ||
1418 | nr_io_queues = 1; | ||
1419 | break; | ||
1420 | } | ||
1421 | } | ||
1422 | |||
1423 | result = queue_request_irq(dev, dev->queues[0], "nvme admin"); | ||
1424 | /* XXX: handle failure here */ | ||
1425 | |||
1426 | cpu = cpumask_first(cpu_online_mask); | ||
1427 | for (i = 0; i < nr_io_queues; i++) { | ||
1428 | irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); | ||
1429 | cpu = cpumask_next(cpu, cpu_online_mask); | ||
1430 | } | ||
1431 | |||
1432 | for (i = 0; i < nr_io_queues; i++) { | ||
1433 | dev->queues[i + 1] = nvme_create_queue(dev, i + 1, | ||
1434 | NVME_Q_DEPTH, i); | ||
1435 | if (IS_ERR(dev->queues[i + 1])) | ||
1436 | return PTR_ERR(dev->queues[i + 1]); | ||
1437 | dev->queue_count++; | ||
1438 | } | ||
1439 | |||
1440 | for (; i < num_possible_cpus(); i++) { | ||
1441 | int target = i % rounddown_pow_of_two(dev->queue_count - 1); | ||
1442 | dev->queues[i + 1] = dev->queues[target + 1]; | ||
1443 | } | ||
1444 | |||
1445 | return 0; | ||
1446 | } | ||
1447 | |||
1448 | static void nvme_free_queues(struct nvme_dev *dev) | ||
1449 | { | ||
1450 | int i; | ||
1451 | |||
1452 | for (i = dev->queue_count - 1; i >= 0; i--) | ||
1453 | nvme_free_queue(dev, i); | ||
1454 | } | ||
1455 | |||
1456 | static int __devinit nvme_dev_add(struct nvme_dev *dev) | ||
1457 | { | ||
1458 | int res, nn, i; | ||
1459 | struct nvme_ns *ns, *next; | ||
1460 | struct nvme_id_ctrl *ctrl; | ||
1461 | struct nvme_id_ns *id_ns; | ||
1462 | void *mem; | ||
1463 | dma_addr_t dma_addr; | ||
1464 | |||
1465 | res = nvme_setup_io_queues(dev); | ||
1466 | if (res) | ||
1467 | return res; | ||
1468 | |||
1469 | mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, | ||
1470 | GFP_KERNEL); | ||
1471 | |||
1472 | res = nvme_identify(dev, 0, 1, dma_addr); | ||
1473 | if (res) { | ||
1474 | res = -EIO; | ||
1475 | goto out_free; | ||
1476 | } | ||
1477 | |||
1478 | ctrl = mem; | ||
1479 | nn = le32_to_cpup(&ctrl->nn); | ||
1480 | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); | ||
1481 | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); | ||
1482 | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); | ||
1483 | |||
1484 | id_ns = mem; | ||
1485 | for (i = 1; i <= nn; i++) { | ||
1486 | res = nvme_identify(dev, i, 0, dma_addr); | ||
1487 | if (res) | ||
1488 | continue; | ||
1489 | |||
1490 | if (id_ns->ncap == 0) | ||
1491 | continue; | ||
1492 | |||
1493 | res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i, | ||
1494 | dma_addr + 4096); | ||
1495 | if (res) | ||
1496 | continue; | ||
1497 | |||
1498 | ns = nvme_alloc_ns(dev, i, mem, mem + 4096); | ||
1499 | if (ns) | ||
1500 | list_add_tail(&ns->list, &dev->namespaces); | ||
1501 | } | ||
1502 | list_for_each_entry(ns, &dev->namespaces, list) | ||
1503 | add_disk(ns->disk); | ||
1504 | |||
1505 | goto out; | ||
1506 | |||
1507 | out_free: | ||
1508 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | ||
1509 | list_del(&ns->list); | ||
1510 | nvme_ns_free(ns); | ||
1511 | } | ||
1512 | |||
1513 | out: | ||
1514 | dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr); | ||
1515 | return res; | ||
1516 | } | ||
1517 | |||
1518 | static int nvme_dev_remove(struct nvme_dev *dev) | ||
1519 | { | ||
1520 | struct nvme_ns *ns, *next; | ||
1521 | |||
1522 | spin_lock(&dev_list_lock); | ||
1523 | list_del(&dev->node); | ||
1524 | spin_unlock(&dev_list_lock); | ||
1525 | |||
1526 | /* TODO: wait all I/O finished or cancel them */ | ||
1527 | |||
1528 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | ||
1529 | list_del(&ns->list); | ||
1530 | del_gendisk(ns->disk); | ||
1531 | nvme_ns_free(ns); | ||
1532 | } | ||
1533 | |||
1534 | nvme_free_queues(dev); | ||
1535 | |||
1536 | return 0; | ||
1537 | } | ||
1538 | |||
1539 | static int nvme_setup_prp_pools(struct nvme_dev *dev) | ||
1540 | { | ||
1541 | struct device *dmadev = &dev->pci_dev->dev; | ||
1542 | dev->prp_page_pool = dma_pool_create("prp list page", dmadev, | ||
1543 | PAGE_SIZE, PAGE_SIZE, 0); | ||
1544 | if (!dev->prp_page_pool) | ||
1545 | return -ENOMEM; | ||
1546 | |||
1547 | /* Optimisation for I/Os between 4k and 128k */ | ||
1548 | dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, | ||
1549 | 256, 256, 0); | ||
1550 | if (!dev->prp_small_pool) { | ||
1551 | dma_pool_destroy(dev->prp_page_pool); | ||
1552 | return -ENOMEM; | ||
1553 | } | ||
1554 | return 0; | ||
1555 | } | ||
1556 | |||
1557 | static void nvme_release_prp_pools(struct nvme_dev *dev) | ||
1558 | { | ||
1559 | dma_pool_destroy(dev->prp_page_pool); | ||
1560 | dma_pool_destroy(dev->prp_small_pool); | ||
1561 | } | ||
1562 | |||
1563 | /* XXX: Use an ida or something to let remove / add work correctly */ | ||
1564 | static void nvme_set_instance(struct nvme_dev *dev) | ||
1565 | { | ||
1566 | static int instance; | ||
1567 | dev->instance = instance++; | ||
1568 | } | ||
1569 | |||
1570 | static void nvme_release_instance(struct nvme_dev *dev) | ||
1571 | { | ||
1572 | } | ||
1573 | |||
1574 | static int __devinit nvme_probe(struct pci_dev *pdev, | ||
1575 | const struct pci_device_id *id) | ||
1576 | { | ||
1577 | int bars, result = -ENOMEM; | ||
1578 | struct nvme_dev *dev; | ||
1579 | |||
1580 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | ||
1581 | if (!dev) | ||
1582 | return -ENOMEM; | ||
1583 | dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), | ||
1584 | GFP_KERNEL); | ||
1585 | if (!dev->entry) | ||
1586 | goto free; | ||
1587 | dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), | ||
1588 | GFP_KERNEL); | ||
1589 | if (!dev->queues) | ||
1590 | goto free; | ||
1591 | |||
1592 | if (pci_enable_device_mem(pdev)) | ||
1593 | goto free; | ||
1594 | pci_set_master(pdev); | ||
1595 | bars = pci_select_bars(pdev, IORESOURCE_MEM); | ||
1596 | if (pci_request_selected_regions(pdev, bars, "nvme")) | ||
1597 | goto disable; | ||
1598 | |||
1599 | INIT_LIST_HEAD(&dev->namespaces); | ||
1600 | dev->pci_dev = pdev; | ||
1601 | pci_set_drvdata(pdev, dev); | ||
1602 | dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1603 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1604 | nvme_set_instance(dev); | ||
1605 | dev->entry[0].vector = pdev->irq; | ||
1606 | |||
1607 | result = nvme_setup_prp_pools(dev); | ||
1608 | if (result) | ||
1609 | goto disable_msix; | ||
1610 | |||
1611 | dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); | ||
1612 | if (!dev->bar) { | ||
1613 | result = -ENOMEM; | ||
1614 | goto disable_msix; | ||
1615 | } | ||
1616 | |||
1617 | result = nvme_configure_admin_queue(dev); | ||
1618 | if (result) | ||
1619 | goto unmap; | ||
1620 | dev->queue_count++; | ||
1621 | |||
1622 | spin_lock(&dev_list_lock); | ||
1623 | list_add(&dev->node, &dev_list); | ||
1624 | spin_unlock(&dev_list_lock); | ||
1625 | |||
1626 | result = nvme_dev_add(dev); | ||
1627 | if (result) | ||
1628 | goto delete; | ||
1629 | |||
1630 | return 0; | ||
1631 | |||
1632 | delete: | ||
1633 | spin_lock(&dev_list_lock); | ||
1634 | list_del(&dev->node); | ||
1635 | spin_unlock(&dev_list_lock); | ||
1636 | |||
1637 | nvme_free_queues(dev); | ||
1638 | unmap: | ||
1639 | iounmap(dev->bar); | ||
1640 | disable_msix: | ||
1641 | pci_disable_msix(pdev); | ||
1642 | nvme_release_instance(dev); | ||
1643 | nvme_release_prp_pools(dev); | ||
1644 | disable: | ||
1645 | pci_disable_device(pdev); | ||
1646 | pci_release_regions(pdev); | ||
1647 | free: | ||
1648 | kfree(dev->queues); | ||
1649 | kfree(dev->entry); | ||
1650 | kfree(dev); | ||
1651 | return result; | ||
1652 | } | ||
1653 | |||
1654 | static void __devexit nvme_remove(struct pci_dev *pdev) | ||
1655 | { | ||
1656 | struct nvme_dev *dev = pci_get_drvdata(pdev); | ||
1657 | nvme_dev_remove(dev); | ||
1658 | pci_disable_msix(pdev); | ||
1659 | iounmap(dev->bar); | ||
1660 | nvme_release_instance(dev); | ||
1661 | nvme_release_prp_pools(dev); | ||
1662 | pci_disable_device(pdev); | ||
1663 | pci_release_regions(pdev); | ||
1664 | kfree(dev->queues); | ||
1665 | kfree(dev->entry); | ||
1666 | kfree(dev); | ||
1667 | } | ||
1668 | |||
1669 | /* These functions are yet to be implemented */ | ||
1670 | #define nvme_error_detected NULL | ||
1671 | #define nvme_dump_registers NULL | ||
1672 | #define nvme_link_reset NULL | ||
1673 | #define nvme_slot_reset NULL | ||
1674 | #define nvme_error_resume NULL | ||
1675 | #define nvme_suspend NULL | ||
1676 | #define nvme_resume NULL | ||
1677 | |||
1678 | static struct pci_error_handlers nvme_err_handler = { | ||
1679 | .error_detected = nvme_error_detected, | ||
1680 | .mmio_enabled = nvme_dump_registers, | ||
1681 | .link_reset = nvme_link_reset, | ||
1682 | .slot_reset = nvme_slot_reset, | ||
1683 | .resume = nvme_error_resume, | ||
1684 | }; | ||
1685 | |||
1686 | /* Move to pci_ids.h later */ | ||
1687 | #define PCI_CLASS_STORAGE_EXPRESS 0x010802 | ||
1688 | |||
1689 | static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { | ||
1690 | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | ||
1691 | { 0, } | ||
1692 | }; | ||
1693 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | ||
1694 | |||
1695 | static struct pci_driver nvme_driver = { | ||
1696 | .name = "nvme", | ||
1697 | .id_table = nvme_id_table, | ||
1698 | .probe = nvme_probe, | ||
1699 | .remove = __devexit_p(nvme_remove), | ||
1700 | .suspend = nvme_suspend, | ||
1701 | .resume = nvme_resume, | ||
1702 | .err_handler = &nvme_err_handler, | ||
1703 | }; | ||
1704 | |||
1705 | static int __init nvme_init(void) | ||
1706 | { | ||
1707 | int result = -EBUSY; | ||
1708 | |||
1709 | nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); | ||
1710 | if (IS_ERR(nvme_thread)) | ||
1711 | return PTR_ERR(nvme_thread); | ||
1712 | |||
1713 | nvme_major = register_blkdev(nvme_major, "nvme"); | ||
1714 | if (nvme_major <= 0) | ||
1715 | goto kill_kthread; | ||
1716 | |||
1717 | result = pci_register_driver(&nvme_driver); | ||
1718 | if (result) | ||
1719 | goto unregister_blkdev; | ||
1720 | return 0; | ||
1721 | |||
1722 | unregister_blkdev: | ||
1723 | unregister_blkdev(nvme_major, "nvme"); | ||
1724 | kill_kthread: | ||
1725 | kthread_stop(nvme_thread); | ||
1726 | return result; | ||
1727 | } | ||
1728 | |||
1729 | static void __exit nvme_exit(void) | ||
1730 | { | ||
1731 | pci_unregister_driver(&nvme_driver); | ||
1732 | unregister_blkdev(nvme_major, "nvme"); | ||
1733 | kthread_stop(nvme_thread); | ||
1734 | } | ||
1735 | |||
1736 | MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); | ||
1737 | MODULE_LICENSE("GPL"); | ||
1738 | MODULE_VERSION("0.8"); | ||
1739 | module_init(nvme_init); | ||
1740 | module_exit(nvme_exit); | ||