diff options
Diffstat (limited to 'drivers/block/as-iosched.c')
-rw-r--r-- | drivers/block/as-iosched.c | 2136 |
1 files changed, 2136 insertions, 0 deletions
diff --git a/drivers/block/as-iosched.c b/drivers/block/as-iosched.c new file mode 100644 index 000000000000..a9575bb58a5e --- /dev/null +++ b/drivers/block/as-iosched.c | |||
@@ -0,0 +1,2136 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/as-iosched.c | ||
3 | * | ||
4 | * Anticipatory & deadline i/o scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2002 Jens Axboe <axboe@suse.de> | ||
7 | * Nick Piggin <piggin@cyberone.com.au> | ||
8 | * | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/fs.h> | ||
12 | #include <linux/blkdev.h> | ||
13 | #include <linux/elevator.h> | ||
14 | #include <linux/bio.h> | ||
15 | #include <linux/config.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/compiler.h> | ||
20 | #include <linux/hash.h> | ||
21 | #include <linux/rbtree.h> | ||
22 | #include <linux/interrupt.h> | ||
23 | |||
24 | #define REQ_SYNC 1 | ||
25 | #define REQ_ASYNC 0 | ||
26 | |||
27 | /* | ||
28 | * See Documentation/block/as-iosched.txt | ||
29 | */ | ||
30 | |||
31 | /* | ||
32 | * max time before a read is submitted. | ||
33 | */ | ||
34 | #define default_read_expire (HZ / 8) | ||
35 | |||
36 | /* | ||
37 | * ditto for writes, these limits are not hard, even | ||
38 | * if the disk is capable of satisfying them. | ||
39 | */ | ||
40 | #define default_write_expire (HZ / 4) | ||
41 | |||
42 | /* | ||
43 | * read_batch_expire describes how long we will allow a stream of reads to | ||
44 | * persist before looking to see whether it is time to switch over to writes. | ||
45 | */ | ||
46 | #define default_read_batch_expire (HZ / 2) | ||
47 | |||
48 | /* | ||
49 | * write_batch_expire describes how long we want a stream of writes to run for. | ||
50 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | ||
51 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | ||
52 | * a short amount of time... | ||
53 | */ | ||
54 | #define default_write_batch_expire (HZ / 8) | ||
55 | |||
56 | /* | ||
57 | * max time we may wait to anticipate a read (default around 6ms) | ||
58 | */ | ||
59 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | ||
60 | |||
61 | /* | ||
62 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | ||
63 | * however huge values tend to interfere and not decay fast enough. A program | ||
64 | * might be in a non-io phase of operation. Waiting on user input for example, | ||
65 | * or doing a lengthy computation. A small penalty can be justified there, and | ||
66 | * will still catch out those processes that constantly have large thinktimes. | ||
67 | */ | ||
68 | #define MAX_THINKTIME (HZ/50UL) | ||
69 | |||
70 | /* Bits in as_io_context.state */ | ||
71 | enum as_io_states { | ||
72 | AS_TASK_RUNNING=0, /* Process has not exitted */ | ||
73 | AS_TASK_IOSTARTED, /* Process has started some IO */ | ||
74 | AS_TASK_IORUNNING, /* Process has completed some IO */ | ||
75 | }; | ||
76 | |||
77 | enum anticipation_status { | ||
78 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | ||
79 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | ||
80 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | ||
81 | last read (which has completed) */ | ||
82 | ANTIC_FINISHED, /* Anticipating but have found a candidate | ||
83 | * or timed out */ | ||
84 | }; | ||
85 | |||
86 | struct as_data { | ||
87 | /* | ||
88 | * run time data | ||
89 | */ | ||
90 | |||
91 | struct request_queue *q; /* the "owner" queue */ | ||
92 | |||
93 | /* | ||
94 | * requests (as_rq s) are present on both sort_list and fifo_list | ||
95 | */ | ||
96 | struct rb_root sort_list[2]; | ||
97 | struct list_head fifo_list[2]; | ||
98 | |||
99 | struct as_rq *next_arq[2]; /* next in sort order */ | ||
100 | sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ | ||
101 | struct list_head *dispatch; /* driver dispatch queue */ | ||
102 | struct list_head *hash; /* request hash */ | ||
103 | |||
104 | unsigned long exit_prob; /* probability a task will exit while | ||
105 | being waited on */ | ||
106 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | ||
107 | unsigned long new_ttime_mean; | ||
108 | u64 new_seek_total; /* mean seek on new proc */ | ||
109 | sector_t new_seek_mean; | ||
110 | |||
111 | unsigned long current_batch_expires; | ||
112 | unsigned long last_check_fifo[2]; | ||
113 | int changed_batch; /* 1: waiting for old batch to end */ | ||
114 | int new_batch; /* 1: waiting on first read complete */ | ||
115 | int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ | ||
116 | int write_batch_count; /* max # of reqs in a write batch */ | ||
117 | int current_write_count; /* how many requests left this batch */ | ||
118 | int write_batch_idled; /* has the write batch gone idle? */ | ||
119 | mempool_t *arq_pool; | ||
120 | |||
121 | enum anticipation_status antic_status; | ||
122 | unsigned long antic_start; /* jiffies: when it started */ | ||
123 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | ||
124 | struct work_struct antic_work; /* Deferred unplugging */ | ||
125 | struct io_context *io_context; /* Identify the expected process */ | ||
126 | int ioc_finished; /* IO associated with io_context is finished */ | ||
127 | int nr_dispatched; | ||
128 | |||
129 | /* | ||
130 | * settings that change how the i/o scheduler behaves | ||
131 | */ | ||
132 | unsigned long fifo_expire[2]; | ||
133 | unsigned long batch_expire[2]; | ||
134 | unsigned long antic_expire; | ||
135 | }; | ||
136 | |||
137 | #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) | ||
138 | |||
139 | /* | ||
140 | * per-request data. | ||
141 | */ | ||
142 | enum arq_state { | ||
143 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | ||
144 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | ||
145 | scheduler */ | ||
146 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | ||
147 | driver now */ | ||
148 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | ||
149 | AS_RQ_REMOVED, | ||
150 | AS_RQ_MERGED, | ||
151 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | ||
152 | }; | ||
153 | |||
154 | struct as_rq { | ||
155 | /* | ||
156 | * rbtree index, key is the starting offset | ||
157 | */ | ||
158 | struct rb_node rb_node; | ||
159 | sector_t rb_key; | ||
160 | |||
161 | struct request *request; | ||
162 | |||
163 | struct io_context *io_context; /* The submitting task */ | ||
164 | |||
165 | /* | ||
166 | * request hash, key is the ending offset (for back merge lookup) | ||
167 | */ | ||
168 | struct list_head hash; | ||
169 | unsigned int on_hash; | ||
170 | |||
171 | /* | ||
172 | * expire fifo | ||
173 | */ | ||
174 | struct list_head fifo; | ||
175 | unsigned long expires; | ||
176 | |||
177 | unsigned int is_sync; | ||
178 | enum arq_state state; | ||
179 | }; | ||
180 | |||
181 | #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) | ||
182 | |||
183 | static kmem_cache_t *arq_pool; | ||
184 | |||
185 | /* | ||
186 | * IO Context helper functions | ||
187 | */ | ||
188 | |||
189 | /* Called to deallocate the as_io_context */ | ||
190 | static void free_as_io_context(struct as_io_context *aic) | ||
191 | { | ||
192 | kfree(aic); | ||
193 | } | ||
194 | |||
195 | /* Called when the task exits */ | ||
196 | static void exit_as_io_context(struct as_io_context *aic) | ||
197 | { | ||
198 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | ||
199 | clear_bit(AS_TASK_RUNNING, &aic->state); | ||
200 | } | ||
201 | |||
202 | static struct as_io_context *alloc_as_io_context(void) | ||
203 | { | ||
204 | struct as_io_context *ret; | ||
205 | |||
206 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | ||
207 | if (ret) { | ||
208 | ret->dtor = free_as_io_context; | ||
209 | ret->exit = exit_as_io_context; | ||
210 | ret->state = 1 << AS_TASK_RUNNING; | ||
211 | atomic_set(&ret->nr_queued, 0); | ||
212 | atomic_set(&ret->nr_dispatched, 0); | ||
213 | spin_lock_init(&ret->lock); | ||
214 | ret->ttime_total = 0; | ||
215 | ret->ttime_samples = 0; | ||
216 | ret->ttime_mean = 0; | ||
217 | ret->seek_total = 0; | ||
218 | ret->seek_samples = 0; | ||
219 | ret->seek_mean = 0; | ||
220 | } | ||
221 | |||
222 | return ret; | ||
223 | } | ||
224 | |||
225 | /* | ||
226 | * If the current task has no AS IO context then create one and initialise it. | ||
227 | * Then take a ref on the task's io context and return it. | ||
228 | */ | ||
229 | static struct io_context *as_get_io_context(void) | ||
230 | { | ||
231 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | ||
232 | if (ioc && !ioc->aic) { | ||
233 | ioc->aic = alloc_as_io_context(); | ||
234 | if (!ioc->aic) { | ||
235 | put_io_context(ioc); | ||
236 | ioc = NULL; | ||
237 | } | ||
238 | } | ||
239 | return ioc; | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * the back merge hash support functions | ||
244 | */ | ||
245 | static const int as_hash_shift = 6; | ||
246 | #define AS_HASH_BLOCK(sec) ((sec) >> 3) | ||
247 | #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) | ||
248 | #define AS_HASH_ENTRIES (1 << as_hash_shift) | ||
249 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
250 | #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) | ||
251 | |||
252 | static inline void __as_del_arq_hash(struct as_rq *arq) | ||
253 | { | ||
254 | arq->on_hash = 0; | ||
255 | list_del_init(&arq->hash); | ||
256 | } | ||
257 | |||
258 | static inline void as_del_arq_hash(struct as_rq *arq) | ||
259 | { | ||
260 | if (arq->on_hash) | ||
261 | __as_del_arq_hash(arq); | ||
262 | } | ||
263 | |||
264 | static void as_remove_merge_hints(request_queue_t *q, struct as_rq *arq) | ||
265 | { | ||
266 | as_del_arq_hash(arq); | ||
267 | |||
268 | if (q->last_merge == arq->request) | ||
269 | q->last_merge = NULL; | ||
270 | } | ||
271 | |||
272 | static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
273 | { | ||
274 | struct request *rq = arq->request; | ||
275 | |||
276 | BUG_ON(arq->on_hash); | ||
277 | |||
278 | arq->on_hash = 1; | ||
279 | list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * move hot entry to front of chain | ||
284 | */ | ||
285 | static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
286 | { | ||
287 | struct request *rq = arq->request; | ||
288 | struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; | ||
289 | |||
290 | if (!arq->on_hash) { | ||
291 | WARN_ON(1); | ||
292 | return; | ||
293 | } | ||
294 | |||
295 | if (arq->hash.prev != head) { | ||
296 | list_del(&arq->hash); | ||
297 | list_add(&arq->hash, head); | ||
298 | } | ||
299 | } | ||
300 | |||
301 | static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) | ||
302 | { | ||
303 | struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; | ||
304 | struct list_head *entry, *next = hash_list->next; | ||
305 | |||
306 | while ((entry = next) != hash_list) { | ||
307 | struct as_rq *arq = list_entry_hash(entry); | ||
308 | struct request *__rq = arq->request; | ||
309 | |||
310 | next = entry->next; | ||
311 | |||
312 | BUG_ON(!arq->on_hash); | ||
313 | |||
314 | if (!rq_mergeable(__rq)) { | ||
315 | as_remove_merge_hints(ad->q, arq); | ||
316 | continue; | ||
317 | } | ||
318 | |||
319 | if (rq_hash_key(__rq) == offset) | ||
320 | return __rq; | ||
321 | } | ||
322 | |||
323 | return NULL; | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * rb tree support functions | ||
328 | */ | ||
329 | #define RB_NONE (2) | ||
330 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | ||
331 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | ||
332 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | ||
333 | #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) | ||
334 | #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) | ||
335 | #define rq_rb_key(rq) (rq)->sector | ||
336 | |||
337 | /* | ||
338 | * as_find_first_arq finds the first (lowest sector numbered) request | ||
339 | * for the specified data_dir. Used to sweep back to the start of the disk | ||
340 | * (1-way elevator) after we process the last (highest sector) request. | ||
341 | */ | ||
342 | static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) | ||
343 | { | ||
344 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
345 | |||
346 | if (n == NULL) | ||
347 | return NULL; | ||
348 | |||
349 | for (;;) { | ||
350 | if (n->rb_left == NULL) | ||
351 | return rb_entry_arq(n); | ||
352 | |||
353 | n = n->rb_left; | ||
354 | } | ||
355 | } | ||
356 | |||
357 | /* | ||
358 | * Add the request to the rb tree if it is unique. If there is an alias (an | ||
359 | * existing request against the same sector), which can happen when using | ||
360 | * direct IO, then return the alias. | ||
361 | */ | ||
362 | static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
363 | { | ||
364 | struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; | ||
365 | struct rb_node *parent = NULL; | ||
366 | struct as_rq *__arq; | ||
367 | struct request *rq = arq->request; | ||
368 | |||
369 | arq->rb_key = rq_rb_key(rq); | ||
370 | |||
371 | while (*p) { | ||
372 | parent = *p; | ||
373 | __arq = rb_entry_arq(parent); | ||
374 | |||
375 | if (arq->rb_key < __arq->rb_key) | ||
376 | p = &(*p)->rb_left; | ||
377 | else if (arq->rb_key > __arq->rb_key) | ||
378 | p = &(*p)->rb_right; | ||
379 | else | ||
380 | return __arq; | ||
381 | } | ||
382 | |||
383 | rb_link_node(&arq->rb_node, parent, p); | ||
384 | rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
385 | |||
386 | return NULL; | ||
387 | } | ||
388 | |||
389 | static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
390 | { | ||
391 | if (!ON_RB(&arq->rb_node)) { | ||
392 | WARN_ON(1); | ||
393 | return; | ||
394 | } | ||
395 | |||
396 | rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
397 | RB_CLEAR(&arq->rb_node); | ||
398 | } | ||
399 | |||
400 | static struct request * | ||
401 | as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) | ||
402 | { | ||
403 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
404 | struct as_rq *arq; | ||
405 | |||
406 | while (n) { | ||
407 | arq = rb_entry_arq(n); | ||
408 | |||
409 | if (sector < arq->rb_key) | ||
410 | n = n->rb_left; | ||
411 | else if (sector > arq->rb_key) | ||
412 | n = n->rb_right; | ||
413 | else | ||
414 | return arq->request; | ||
415 | } | ||
416 | |||
417 | return NULL; | ||
418 | } | ||
419 | |||
420 | /* | ||
421 | * IO Scheduler proper | ||
422 | */ | ||
423 | |||
424 | #define MAXBACK (1024 * 1024) /* | ||
425 | * Maximum distance the disk will go backward | ||
426 | * for a request. | ||
427 | */ | ||
428 | |||
429 | #define BACK_PENALTY 2 | ||
430 | |||
431 | /* | ||
432 | * as_choose_req selects the preferred one of two requests of the same data_dir | ||
433 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | ||
434 | */ | ||
435 | static struct as_rq * | ||
436 | as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) | ||
437 | { | ||
438 | int data_dir; | ||
439 | sector_t last, s1, s2, d1, d2; | ||
440 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | ||
441 | const sector_t maxback = MAXBACK; | ||
442 | |||
443 | if (arq1 == NULL || arq1 == arq2) | ||
444 | return arq2; | ||
445 | if (arq2 == NULL) | ||
446 | return arq1; | ||
447 | |||
448 | data_dir = arq1->is_sync; | ||
449 | |||
450 | last = ad->last_sector[data_dir]; | ||
451 | s1 = arq1->request->sector; | ||
452 | s2 = arq2->request->sector; | ||
453 | |||
454 | BUG_ON(data_dir != arq2->is_sync); | ||
455 | |||
456 | /* | ||
457 | * Strict one way elevator _except_ in the case where we allow | ||
458 | * short backward seeks which are biased as twice the cost of a | ||
459 | * similar forward seek. | ||
460 | */ | ||
461 | if (s1 >= last) | ||
462 | d1 = s1 - last; | ||
463 | else if (s1+maxback >= last) | ||
464 | d1 = (last - s1)*BACK_PENALTY; | ||
465 | else { | ||
466 | r1_wrap = 1; | ||
467 | d1 = 0; /* shut up, gcc */ | ||
468 | } | ||
469 | |||
470 | if (s2 >= last) | ||
471 | d2 = s2 - last; | ||
472 | else if (s2+maxback >= last) | ||
473 | d2 = (last - s2)*BACK_PENALTY; | ||
474 | else { | ||
475 | r2_wrap = 1; | ||
476 | d2 = 0; | ||
477 | } | ||
478 | |||
479 | /* Found required data */ | ||
480 | if (!r1_wrap && r2_wrap) | ||
481 | return arq1; | ||
482 | else if (!r2_wrap && r1_wrap) | ||
483 | return arq2; | ||
484 | else if (r1_wrap && r2_wrap) { | ||
485 | /* both behind the head */ | ||
486 | if (s1 <= s2) | ||
487 | return arq1; | ||
488 | else | ||
489 | return arq2; | ||
490 | } | ||
491 | |||
492 | /* Both requests in front of the head */ | ||
493 | if (d1 < d2) | ||
494 | return arq1; | ||
495 | else if (d2 < d1) | ||
496 | return arq2; | ||
497 | else { | ||
498 | if (s1 >= s2) | ||
499 | return arq1; | ||
500 | else | ||
501 | return arq2; | ||
502 | } | ||
503 | } | ||
504 | |||
505 | /* | ||
506 | * as_find_next_arq finds the next request after @prev in elevator order. | ||
507 | * this with as_choose_req form the basis for how the scheduler chooses | ||
508 | * what request to process next. Anticipation works on top of this. | ||
509 | */ | ||
510 | static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) | ||
511 | { | ||
512 | const int data_dir = last->is_sync; | ||
513 | struct as_rq *ret; | ||
514 | struct rb_node *rbnext = rb_next(&last->rb_node); | ||
515 | struct rb_node *rbprev = rb_prev(&last->rb_node); | ||
516 | struct as_rq *arq_next, *arq_prev; | ||
517 | |||
518 | BUG_ON(!ON_RB(&last->rb_node)); | ||
519 | |||
520 | if (rbprev) | ||
521 | arq_prev = rb_entry_arq(rbprev); | ||
522 | else | ||
523 | arq_prev = NULL; | ||
524 | |||
525 | if (rbnext) | ||
526 | arq_next = rb_entry_arq(rbnext); | ||
527 | else { | ||
528 | arq_next = as_find_first_arq(ad, data_dir); | ||
529 | if (arq_next == last) | ||
530 | arq_next = NULL; | ||
531 | } | ||
532 | |||
533 | ret = as_choose_req(ad, arq_next, arq_prev); | ||
534 | |||
535 | return ret; | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * anticipatory scheduling functions follow | ||
540 | */ | ||
541 | |||
542 | /* | ||
543 | * as_antic_expired tells us when we have anticipated too long. | ||
544 | * The funny "absolute difference" math on the elapsed time is to handle | ||
545 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | ||
546 | */ | ||
547 | static int as_antic_expired(struct as_data *ad) | ||
548 | { | ||
549 | long delta_jif; | ||
550 | |||
551 | delta_jif = jiffies - ad->antic_start; | ||
552 | if (unlikely(delta_jif < 0)) | ||
553 | delta_jif = -delta_jif; | ||
554 | if (delta_jif < ad->antic_expire) | ||
555 | return 0; | ||
556 | |||
557 | return 1; | ||
558 | } | ||
559 | |||
560 | /* | ||
561 | * as_antic_waitnext starts anticipating that a nice request will soon be | ||
562 | * submitted. See also as_antic_waitreq | ||
563 | */ | ||
564 | static void as_antic_waitnext(struct as_data *ad) | ||
565 | { | ||
566 | unsigned long timeout; | ||
567 | |||
568 | BUG_ON(ad->antic_status != ANTIC_OFF | ||
569 | && ad->antic_status != ANTIC_WAIT_REQ); | ||
570 | |||
571 | timeout = ad->antic_start + ad->antic_expire; | ||
572 | |||
573 | mod_timer(&ad->antic_timer, timeout); | ||
574 | |||
575 | ad->antic_status = ANTIC_WAIT_NEXT; | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | ||
580 | * until the request that we're anticipating on has finished. This means we | ||
581 | * are timing from when the candidate process wakes up hopefully. | ||
582 | */ | ||
583 | static void as_antic_waitreq(struct as_data *ad) | ||
584 | { | ||
585 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | ||
586 | if (ad->antic_status == ANTIC_OFF) { | ||
587 | if (!ad->io_context || ad->ioc_finished) | ||
588 | as_antic_waitnext(ad); | ||
589 | else | ||
590 | ad->antic_status = ANTIC_WAIT_REQ; | ||
591 | } | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | * This is called directly by the functions in this file to stop anticipation. | ||
596 | * We kill the timer and schedule a call to the request_fn asap. | ||
597 | */ | ||
598 | static void as_antic_stop(struct as_data *ad) | ||
599 | { | ||
600 | int status = ad->antic_status; | ||
601 | |||
602 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | ||
603 | if (status == ANTIC_WAIT_NEXT) | ||
604 | del_timer(&ad->antic_timer); | ||
605 | ad->antic_status = ANTIC_FINISHED; | ||
606 | /* see as_work_handler */ | ||
607 | kblockd_schedule_work(&ad->antic_work); | ||
608 | } | ||
609 | } | ||
610 | |||
611 | /* | ||
612 | * as_antic_timeout is the timer function set by as_antic_waitnext. | ||
613 | */ | ||
614 | static void as_antic_timeout(unsigned long data) | ||
615 | { | ||
616 | struct request_queue *q = (struct request_queue *)data; | ||
617 | struct as_data *ad = q->elevator->elevator_data; | ||
618 | unsigned long flags; | ||
619 | |||
620 | spin_lock_irqsave(q->queue_lock, flags); | ||
621 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
622 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
623 | struct as_io_context *aic = ad->io_context->aic; | ||
624 | |||
625 | ad->antic_status = ANTIC_FINISHED; | ||
626 | kblockd_schedule_work(&ad->antic_work); | ||
627 | |||
628 | if (aic->ttime_samples == 0) { | ||
629 | /* process anticipated on has exitted or timed out*/ | ||
630 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
631 | } | ||
632 | } | ||
633 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * as_close_req decides if one request is considered "close" to the | ||
638 | * previous one issued. | ||
639 | */ | ||
640 | static int as_close_req(struct as_data *ad, struct as_rq *arq) | ||
641 | { | ||
642 | unsigned long delay; /* milliseconds */ | ||
643 | sector_t last = ad->last_sector[ad->batch_data_dir]; | ||
644 | sector_t next = arq->request->sector; | ||
645 | sector_t delta; /* acceptable close offset (in sectors) */ | ||
646 | |||
647 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | ||
648 | delay = 0; | ||
649 | else | ||
650 | delay = ((jiffies - ad->antic_start) * 1000) / HZ; | ||
651 | |||
652 | if (delay <= 1) | ||
653 | delta = 64; | ||
654 | else if (delay <= 20 && delay <= ad->antic_expire) | ||
655 | delta = 64 << (delay-1); | ||
656 | else | ||
657 | return 1; | ||
658 | |||
659 | return (last - (delta>>1) <= next) && (next <= last + delta); | ||
660 | } | ||
661 | |||
662 | /* | ||
663 | * as_can_break_anticipation returns true if we have been anticipating this | ||
664 | * request. | ||
665 | * | ||
666 | * It also returns true if the process against which we are anticipating | ||
667 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | ||
668 | * dispatch it ASAP, because we know that application will not be submitting | ||
669 | * any new reads. | ||
670 | * | ||
671 | * If the task which has submitted the request has exitted, break anticipation. | ||
672 | * | ||
673 | * If this task has queued some other IO, do not enter enticipation. | ||
674 | */ | ||
675 | static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) | ||
676 | { | ||
677 | struct io_context *ioc; | ||
678 | struct as_io_context *aic; | ||
679 | sector_t s; | ||
680 | |||
681 | ioc = ad->io_context; | ||
682 | BUG_ON(!ioc); | ||
683 | |||
684 | if (arq && ioc == arq->io_context) { | ||
685 | /* request from same process */ | ||
686 | return 1; | ||
687 | } | ||
688 | |||
689 | if (ad->ioc_finished && as_antic_expired(ad)) { | ||
690 | /* | ||
691 | * In this situation status should really be FINISHED, | ||
692 | * however the timer hasn't had the chance to run yet. | ||
693 | */ | ||
694 | return 1; | ||
695 | } | ||
696 | |||
697 | aic = ioc->aic; | ||
698 | if (!aic) | ||
699 | return 0; | ||
700 | |||
701 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
702 | /* process anticipated on has exitted */ | ||
703 | if (aic->ttime_samples == 0) | ||
704 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
705 | return 1; | ||
706 | } | ||
707 | |||
708 | if (atomic_read(&aic->nr_queued) > 0) { | ||
709 | /* process has more requests queued */ | ||
710 | return 1; | ||
711 | } | ||
712 | |||
713 | if (atomic_read(&aic->nr_dispatched) > 0) { | ||
714 | /* process has more requests dispatched */ | ||
715 | return 1; | ||
716 | } | ||
717 | |||
718 | if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) { | ||
719 | /* | ||
720 | * Found a close request that is not one of ours. | ||
721 | * | ||
722 | * This makes close requests from another process reset | ||
723 | * our thinktime delay. Is generally useful when there are | ||
724 | * two or more cooperating processes working in the same | ||
725 | * area. | ||
726 | */ | ||
727 | spin_lock(&aic->lock); | ||
728 | aic->last_end_request = jiffies; | ||
729 | spin_unlock(&aic->lock); | ||
730 | return 1; | ||
731 | } | ||
732 | |||
733 | |||
734 | if (aic->ttime_samples == 0) { | ||
735 | if (ad->new_ttime_mean > ad->antic_expire) | ||
736 | return 1; | ||
737 | if (ad->exit_prob > 128) | ||
738 | return 1; | ||
739 | } else if (aic->ttime_mean > ad->antic_expire) { | ||
740 | /* the process thinks too much between requests */ | ||
741 | return 1; | ||
742 | } | ||
743 | |||
744 | if (!arq) | ||
745 | return 0; | ||
746 | |||
747 | if (ad->last_sector[REQ_SYNC] < arq->request->sector) | ||
748 | s = arq->request->sector - ad->last_sector[REQ_SYNC]; | ||
749 | else | ||
750 | s = ad->last_sector[REQ_SYNC] - arq->request->sector; | ||
751 | |||
752 | if (aic->seek_samples == 0) { | ||
753 | /* | ||
754 | * Process has just started IO. Use past statistics to | ||
755 | * guage success possibility | ||
756 | */ | ||
757 | if (ad->new_seek_mean > s) { | ||
758 | /* this request is better than what we're expecting */ | ||
759 | return 1; | ||
760 | } | ||
761 | |||
762 | } else { | ||
763 | if (aic->seek_mean > s) { | ||
764 | /* this request is better than what we're expecting */ | ||
765 | return 1; | ||
766 | } | ||
767 | } | ||
768 | |||
769 | return 0; | ||
770 | } | ||
771 | |||
772 | /* | ||
773 | * as_can_anticipate indicates weather we should either run arq | ||
774 | * or keep anticipating a better request. | ||
775 | */ | ||
776 | static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) | ||
777 | { | ||
778 | if (!ad->io_context) | ||
779 | /* | ||
780 | * Last request submitted was a write | ||
781 | */ | ||
782 | return 0; | ||
783 | |||
784 | if (ad->antic_status == ANTIC_FINISHED) | ||
785 | /* | ||
786 | * Don't restart if we have just finished. Run the next request | ||
787 | */ | ||
788 | return 0; | ||
789 | |||
790 | if (as_can_break_anticipation(ad, arq)) | ||
791 | /* | ||
792 | * This request is a good candidate. Don't keep anticipating, | ||
793 | * run it. | ||
794 | */ | ||
795 | return 0; | ||
796 | |||
797 | /* | ||
798 | * OK from here, we haven't finished, and don't have a decent request! | ||
799 | * Status is either ANTIC_OFF so start waiting, | ||
800 | * ANTIC_WAIT_REQ so continue waiting for request to finish | ||
801 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | ||
802 | * | ||
803 | */ | ||
804 | |||
805 | return 1; | ||
806 | } | ||
807 | |||
808 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) | ||
809 | { | ||
810 | /* fixed point: 1.0 == 1<<8 */ | ||
811 | if (aic->ttime_samples == 0) { | ||
812 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | ||
813 | ad->new_ttime_mean = ad->new_ttime_total / 256; | ||
814 | |||
815 | ad->exit_prob = (7*ad->exit_prob)/8; | ||
816 | } | ||
817 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | ||
818 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | ||
819 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | ||
820 | } | ||
821 | |||
822 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) | ||
823 | { | ||
824 | u64 total; | ||
825 | |||
826 | if (aic->seek_samples == 0) { | ||
827 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | ||
828 | ad->new_seek_mean = ad->new_seek_total / 256; | ||
829 | } | ||
830 | |||
831 | /* | ||
832 | * Don't allow the seek distance to get too large from the | ||
833 | * odd fragment, pagein, etc | ||
834 | */ | ||
835 | if (aic->seek_samples <= 60) /* second&third seek */ | ||
836 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | ||
837 | else | ||
838 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | ||
839 | |||
840 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | ||
841 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | ||
842 | total = aic->seek_total + (aic->seek_samples/2); | ||
843 | do_div(total, aic->seek_samples); | ||
844 | aic->seek_mean = (sector_t)total; | ||
845 | } | ||
846 | |||
847 | /* | ||
848 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | ||
849 | * updates @aic->ttime_mean based on that. It is called when a new | ||
850 | * request is queued. | ||
851 | */ | ||
852 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) | ||
853 | { | ||
854 | struct as_rq *arq = RQ_DATA(rq); | ||
855 | int data_dir = arq->is_sync; | ||
856 | unsigned long thinktime; | ||
857 | sector_t seek_dist; | ||
858 | |||
859 | if (aic == NULL) | ||
860 | return; | ||
861 | |||
862 | if (data_dir == REQ_SYNC) { | ||
863 | unsigned long in_flight = atomic_read(&aic->nr_queued) | ||
864 | + atomic_read(&aic->nr_dispatched); | ||
865 | spin_lock(&aic->lock); | ||
866 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | ||
867 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | ||
868 | /* Calculate read -> read thinktime */ | ||
869 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | ||
870 | && in_flight == 0) { | ||
871 | thinktime = jiffies - aic->last_end_request; | ||
872 | thinktime = min(thinktime, MAX_THINKTIME-1); | ||
873 | } else | ||
874 | thinktime = 0; | ||
875 | as_update_thinktime(ad, aic, thinktime); | ||
876 | |||
877 | /* Calculate read -> read seek distance */ | ||
878 | if (aic->last_request_pos < rq->sector) | ||
879 | seek_dist = rq->sector - aic->last_request_pos; | ||
880 | else | ||
881 | seek_dist = aic->last_request_pos - rq->sector; | ||
882 | as_update_seekdist(ad, aic, seek_dist); | ||
883 | } | ||
884 | aic->last_request_pos = rq->sector + rq->nr_sectors; | ||
885 | set_bit(AS_TASK_IOSTARTED, &aic->state); | ||
886 | spin_unlock(&aic->lock); | ||
887 | } | ||
888 | } | ||
889 | |||
890 | /* | ||
891 | * as_update_arq must be called whenever a request (arq) is added to | ||
892 | * the sort_list. This function keeps caches up to date, and checks if the | ||
893 | * request might be one we are "anticipating" | ||
894 | */ | ||
895 | static void as_update_arq(struct as_data *ad, struct as_rq *arq) | ||
896 | { | ||
897 | const int data_dir = arq->is_sync; | ||
898 | |||
899 | /* keep the next_arq cache up to date */ | ||
900 | ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); | ||
901 | |||
902 | /* | ||
903 | * have we been anticipating this request? | ||
904 | * or does it come from the same process as the one we are anticipating | ||
905 | * for? | ||
906 | */ | ||
907 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
908 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
909 | if (as_can_break_anticipation(ad, arq)) | ||
910 | as_antic_stop(ad); | ||
911 | } | ||
912 | } | ||
913 | |||
914 | /* | ||
915 | * Gathers timings and resizes the write batch automatically | ||
916 | */ | ||
917 | static void update_write_batch(struct as_data *ad) | ||
918 | { | ||
919 | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | ||
920 | long write_time; | ||
921 | |||
922 | write_time = (jiffies - ad->current_batch_expires) + batch; | ||
923 | if (write_time < 0) | ||
924 | write_time = 0; | ||
925 | |||
926 | if (write_time > batch && !ad->write_batch_idled) { | ||
927 | if (write_time > batch * 3) | ||
928 | ad->write_batch_count /= 2; | ||
929 | else | ||
930 | ad->write_batch_count--; | ||
931 | } else if (write_time < batch && ad->current_write_count == 0) { | ||
932 | if (batch > write_time * 3) | ||
933 | ad->write_batch_count *= 2; | ||
934 | else | ||
935 | ad->write_batch_count++; | ||
936 | } | ||
937 | |||
938 | if (ad->write_batch_count < 1) | ||
939 | ad->write_batch_count = 1; | ||
940 | } | ||
941 | |||
942 | /* | ||
943 | * as_completed_request is to be called when a request has completed and | ||
944 | * returned something to the requesting process, be it an error or data. | ||
945 | */ | ||
946 | static void as_completed_request(request_queue_t *q, struct request *rq) | ||
947 | { | ||
948 | struct as_data *ad = q->elevator->elevator_data; | ||
949 | struct as_rq *arq = RQ_DATA(rq); | ||
950 | |||
951 | WARN_ON(!list_empty(&rq->queuelist)); | ||
952 | |||
953 | if (arq->state == AS_RQ_PRESCHED) { | ||
954 | WARN_ON(arq->io_context); | ||
955 | goto out; | ||
956 | } | ||
957 | |||
958 | if (arq->state == AS_RQ_MERGED) | ||
959 | goto out_ioc; | ||
960 | |||
961 | if (arq->state != AS_RQ_REMOVED) { | ||
962 | printk("arq->state %d\n", arq->state); | ||
963 | WARN_ON(1); | ||
964 | goto out; | ||
965 | } | ||
966 | |||
967 | if (!blk_fs_request(rq)) | ||
968 | goto out; | ||
969 | |||
970 | if (ad->changed_batch && ad->nr_dispatched == 1) { | ||
971 | kblockd_schedule_work(&ad->antic_work); | ||
972 | ad->changed_batch = 0; | ||
973 | |||
974 | if (ad->batch_data_dir == REQ_SYNC) | ||
975 | ad->new_batch = 1; | ||
976 | } | ||
977 | WARN_ON(ad->nr_dispatched == 0); | ||
978 | ad->nr_dispatched--; | ||
979 | |||
980 | /* | ||
981 | * Start counting the batch from when a request of that direction is | ||
982 | * actually serviced. This should help devices with big TCQ windows | ||
983 | * and writeback caches | ||
984 | */ | ||
985 | if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { | ||
986 | update_write_batch(ad); | ||
987 | ad->current_batch_expires = jiffies + | ||
988 | ad->batch_expire[REQ_SYNC]; | ||
989 | ad->new_batch = 0; | ||
990 | } | ||
991 | |||
992 | if (ad->io_context == arq->io_context && ad->io_context) { | ||
993 | ad->antic_start = jiffies; | ||
994 | ad->ioc_finished = 1; | ||
995 | if (ad->antic_status == ANTIC_WAIT_REQ) { | ||
996 | /* | ||
997 | * We were waiting on this request, now anticipate | ||
998 | * the next one | ||
999 | */ | ||
1000 | as_antic_waitnext(ad); | ||
1001 | } | ||
1002 | } | ||
1003 | |||
1004 | out_ioc: | ||
1005 | if (!arq->io_context) | ||
1006 | goto out; | ||
1007 | |||
1008 | if (arq->is_sync == REQ_SYNC) { | ||
1009 | struct as_io_context *aic = arq->io_context->aic; | ||
1010 | if (aic) { | ||
1011 | spin_lock(&aic->lock); | ||
1012 | set_bit(AS_TASK_IORUNNING, &aic->state); | ||
1013 | aic->last_end_request = jiffies; | ||
1014 | spin_unlock(&aic->lock); | ||
1015 | } | ||
1016 | } | ||
1017 | |||
1018 | put_io_context(arq->io_context); | ||
1019 | out: | ||
1020 | arq->state = AS_RQ_POSTSCHED; | ||
1021 | } | ||
1022 | |||
1023 | /* | ||
1024 | * as_remove_queued_request removes a request from the pre dispatch queue | ||
1025 | * without updating refcounts. It is expected the caller will drop the | ||
1026 | * reference unless it replaces the request at somepart of the elevator | ||
1027 | * (ie. the dispatch queue) | ||
1028 | */ | ||
1029 | static void as_remove_queued_request(request_queue_t *q, struct request *rq) | ||
1030 | { | ||
1031 | struct as_rq *arq = RQ_DATA(rq); | ||
1032 | const int data_dir = arq->is_sync; | ||
1033 | struct as_data *ad = q->elevator->elevator_data; | ||
1034 | |||
1035 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1036 | |||
1037 | if (arq->io_context && arq->io_context->aic) { | ||
1038 | BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); | ||
1039 | atomic_dec(&arq->io_context->aic->nr_queued); | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Update the "next_arq" cache if we are about to remove its | ||
1044 | * entry | ||
1045 | */ | ||
1046 | if (ad->next_arq[data_dir] == arq) | ||
1047 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1048 | |||
1049 | list_del_init(&arq->fifo); | ||
1050 | as_remove_merge_hints(q, arq); | ||
1051 | as_del_arq_rb(ad, arq); | ||
1052 | } | ||
1053 | |||
1054 | /* | ||
1055 | * as_remove_dispatched_request is called to remove a request which has gone | ||
1056 | * to the dispatch list. | ||
1057 | */ | ||
1058 | static void as_remove_dispatched_request(request_queue_t *q, struct request *rq) | ||
1059 | { | ||
1060 | struct as_rq *arq = RQ_DATA(rq); | ||
1061 | struct as_io_context *aic; | ||
1062 | |||
1063 | if (!arq) { | ||
1064 | WARN_ON(1); | ||
1065 | return; | ||
1066 | } | ||
1067 | |||
1068 | WARN_ON(arq->state != AS_RQ_DISPATCHED); | ||
1069 | WARN_ON(ON_RB(&arq->rb_node)); | ||
1070 | if (arq->io_context && arq->io_context->aic) { | ||
1071 | aic = arq->io_context->aic; | ||
1072 | if (aic) { | ||
1073 | WARN_ON(!atomic_read(&aic->nr_dispatched)); | ||
1074 | atomic_dec(&aic->nr_dispatched); | ||
1075 | } | ||
1076 | } | ||
1077 | } | ||
1078 | |||
1079 | /* | ||
1080 | * as_remove_request is called when a driver has finished with a request. | ||
1081 | * This should be only called for dispatched requests, but for some reason | ||
1082 | * a POWER4 box running hwscan it does not. | ||
1083 | */ | ||
1084 | static void as_remove_request(request_queue_t *q, struct request *rq) | ||
1085 | { | ||
1086 | struct as_rq *arq = RQ_DATA(rq); | ||
1087 | |||
1088 | if (unlikely(arq->state == AS_RQ_NEW)) | ||
1089 | goto out; | ||
1090 | |||
1091 | if (ON_RB(&arq->rb_node)) { | ||
1092 | if (arq->state != AS_RQ_QUEUED) { | ||
1093 | printk("arq->state %d\n", arq->state); | ||
1094 | WARN_ON(1); | ||
1095 | goto out; | ||
1096 | } | ||
1097 | /* | ||
1098 | * We'll lose the aliased request(s) here. I don't think this | ||
1099 | * will ever happen, but if it does, hopefully someone will | ||
1100 | * report it. | ||
1101 | */ | ||
1102 | WARN_ON(!list_empty(&rq->queuelist)); | ||
1103 | as_remove_queued_request(q, rq); | ||
1104 | } else { | ||
1105 | if (arq->state != AS_RQ_DISPATCHED) { | ||
1106 | printk("arq->state %d\n", arq->state); | ||
1107 | WARN_ON(1); | ||
1108 | goto out; | ||
1109 | } | ||
1110 | as_remove_dispatched_request(q, rq); | ||
1111 | } | ||
1112 | out: | ||
1113 | arq->state = AS_RQ_REMOVED; | ||
1114 | } | ||
1115 | |||
1116 | /* | ||
1117 | * as_fifo_expired returns 0 if there are no expired reads on the fifo, | ||
1118 | * 1 otherwise. It is ratelimited so that we only perform the check once per | ||
1119 | * `fifo_expire' interval. Otherwise a large number of expired requests | ||
1120 | * would create a hopeless seekstorm. | ||
1121 | * | ||
1122 | * See as_antic_expired comment. | ||
1123 | */ | ||
1124 | static int as_fifo_expired(struct as_data *ad, int adir) | ||
1125 | { | ||
1126 | struct as_rq *arq; | ||
1127 | long delta_jif; | ||
1128 | |||
1129 | delta_jif = jiffies - ad->last_check_fifo[adir]; | ||
1130 | if (unlikely(delta_jif < 0)) | ||
1131 | delta_jif = -delta_jif; | ||
1132 | if (delta_jif < ad->fifo_expire[adir]) | ||
1133 | return 0; | ||
1134 | |||
1135 | ad->last_check_fifo[adir] = jiffies; | ||
1136 | |||
1137 | if (list_empty(&ad->fifo_list[adir])) | ||
1138 | return 0; | ||
1139 | |||
1140 | arq = list_entry_fifo(ad->fifo_list[adir].next); | ||
1141 | |||
1142 | return time_after(jiffies, arq->expires); | ||
1143 | } | ||
1144 | |||
1145 | /* | ||
1146 | * as_batch_expired returns true if the current batch has expired. A batch | ||
1147 | * is a set of reads or a set of writes. | ||
1148 | */ | ||
1149 | static inline int as_batch_expired(struct as_data *ad) | ||
1150 | { | ||
1151 | if (ad->changed_batch || ad->new_batch) | ||
1152 | return 0; | ||
1153 | |||
1154 | if (ad->batch_data_dir == REQ_SYNC) | ||
1155 | /* TODO! add a check so a complete fifo gets written? */ | ||
1156 | return time_after(jiffies, ad->current_batch_expires); | ||
1157 | |||
1158 | return time_after(jiffies, ad->current_batch_expires) | ||
1159 | || ad->current_write_count == 0; | ||
1160 | } | ||
1161 | |||
1162 | /* | ||
1163 | * move an entry to dispatch queue | ||
1164 | */ | ||
1165 | static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) | ||
1166 | { | ||
1167 | struct request *rq = arq->request; | ||
1168 | struct list_head *insert; | ||
1169 | const int data_dir = arq->is_sync; | ||
1170 | |||
1171 | BUG_ON(!ON_RB(&arq->rb_node)); | ||
1172 | |||
1173 | as_antic_stop(ad); | ||
1174 | ad->antic_status = ANTIC_OFF; | ||
1175 | |||
1176 | /* | ||
1177 | * This has to be set in order to be correctly updated by | ||
1178 | * as_find_next_arq | ||
1179 | */ | ||
1180 | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | ||
1181 | |||
1182 | if (data_dir == REQ_SYNC) { | ||
1183 | /* In case we have to anticipate after this */ | ||
1184 | copy_io_context(&ad->io_context, &arq->io_context); | ||
1185 | } else { | ||
1186 | if (ad->io_context) { | ||
1187 | put_io_context(ad->io_context); | ||
1188 | ad->io_context = NULL; | ||
1189 | } | ||
1190 | |||
1191 | if (ad->current_write_count != 0) | ||
1192 | ad->current_write_count--; | ||
1193 | } | ||
1194 | ad->ioc_finished = 0; | ||
1195 | |||
1196 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1197 | |||
1198 | /* | ||
1199 | * take it off the sort and fifo list, add to dispatch queue | ||
1200 | */ | ||
1201 | insert = ad->dispatch->prev; | ||
1202 | |||
1203 | while (!list_empty(&rq->queuelist)) { | ||
1204 | struct request *__rq = list_entry_rq(rq->queuelist.next); | ||
1205 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1206 | |||
1207 | list_move_tail(&__rq->queuelist, ad->dispatch); | ||
1208 | |||
1209 | if (__arq->io_context && __arq->io_context->aic) | ||
1210 | atomic_inc(&__arq->io_context->aic->nr_dispatched); | ||
1211 | |||
1212 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1213 | __arq->state = AS_RQ_DISPATCHED; | ||
1214 | |||
1215 | ad->nr_dispatched++; | ||
1216 | } | ||
1217 | |||
1218 | as_remove_queued_request(ad->q, rq); | ||
1219 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1220 | |||
1221 | list_add(&rq->queuelist, insert); | ||
1222 | arq->state = AS_RQ_DISPATCHED; | ||
1223 | if (arq->io_context && arq->io_context->aic) | ||
1224 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1225 | ad->nr_dispatched++; | ||
1226 | } | ||
1227 | |||
1228 | /* | ||
1229 | * as_dispatch_request selects the best request according to | ||
1230 | * read/write expire, batch expire, etc, and moves it to the dispatch | ||
1231 | * queue. Returns 1 if a request was found, 0 otherwise. | ||
1232 | */ | ||
1233 | static int as_dispatch_request(struct as_data *ad) | ||
1234 | { | ||
1235 | struct as_rq *arq; | ||
1236 | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1237 | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | ||
1238 | |||
1239 | /* Signal that the write batch was uncontended, so we can't time it */ | ||
1240 | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | ||
1241 | if (ad->current_write_count == 0 || !writes) | ||
1242 | ad->write_batch_idled = 1; | ||
1243 | } | ||
1244 | |||
1245 | if (!(reads || writes) | ||
1246 | || ad->antic_status == ANTIC_WAIT_REQ | ||
1247 | || ad->antic_status == ANTIC_WAIT_NEXT | ||
1248 | || ad->changed_batch) | ||
1249 | return 0; | ||
1250 | |||
1251 | if (!(reads && writes && as_batch_expired(ad)) ) { | ||
1252 | /* | ||
1253 | * batch is still running or no reads or no writes | ||
1254 | */ | ||
1255 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1256 | |||
1257 | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | ||
1258 | if (as_fifo_expired(ad, REQ_SYNC)) | ||
1259 | goto fifo_expired; | ||
1260 | |||
1261 | if (as_can_anticipate(ad, arq)) { | ||
1262 | as_antic_waitreq(ad); | ||
1263 | return 0; | ||
1264 | } | ||
1265 | } | ||
1266 | |||
1267 | if (arq) { | ||
1268 | /* we have a "next request" */ | ||
1269 | if (reads && !writes) | ||
1270 | ad->current_batch_expires = | ||
1271 | jiffies + ad->batch_expire[REQ_SYNC]; | ||
1272 | goto dispatch_request; | ||
1273 | } | ||
1274 | } | ||
1275 | |||
1276 | /* | ||
1277 | * at this point we are not running a batch. select the appropriate | ||
1278 | * data direction (read / write) | ||
1279 | */ | ||
1280 | |||
1281 | if (reads) { | ||
1282 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); | ||
1283 | |||
1284 | if (writes && ad->batch_data_dir == REQ_SYNC) | ||
1285 | /* | ||
1286 | * Last batch was a read, switch to writes | ||
1287 | */ | ||
1288 | goto dispatch_writes; | ||
1289 | |||
1290 | if (ad->batch_data_dir == REQ_ASYNC) { | ||
1291 | WARN_ON(ad->new_batch); | ||
1292 | ad->changed_batch = 1; | ||
1293 | } | ||
1294 | ad->batch_data_dir = REQ_SYNC; | ||
1295 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1296 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | ||
1297 | goto dispatch_request; | ||
1298 | } | ||
1299 | |||
1300 | /* | ||
1301 | * the last batch was a read | ||
1302 | */ | ||
1303 | |||
1304 | if (writes) { | ||
1305 | dispatch_writes: | ||
1306 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); | ||
1307 | |||
1308 | if (ad->batch_data_dir == REQ_SYNC) { | ||
1309 | ad->changed_batch = 1; | ||
1310 | |||
1311 | /* | ||
1312 | * new_batch might be 1 when the queue runs out of | ||
1313 | * reads. A subsequent submission of a write might | ||
1314 | * cause a change of batch before the read is finished. | ||
1315 | */ | ||
1316 | ad->new_batch = 0; | ||
1317 | } | ||
1318 | ad->batch_data_dir = REQ_ASYNC; | ||
1319 | ad->current_write_count = ad->write_batch_count; | ||
1320 | ad->write_batch_idled = 0; | ||
1321 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1322 | goto dispatch_request; | ||
1323 | } | ||
1324 | |||
1325 | BUG(); | ||
1326 | return 0; | ||
1327 | |||
1328 | dispatch_request: | ||
1329 | /* | ||
1330 | * If a request has expired, service it. | ||
1331 | */ | ||
1332 | |||
1333 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | ||
1334 | fifo_expired: | ||
1335 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1336 | BUG_ON(arq == NULL); | ||
1337 | } | ||
1338 | |||
1339 | if (ad->changed_batch) { | ||
1340 | WARN_ON(ad->new_batch); | ||
1341 | |||
1342 | if (ad->nr_dispatched) | ||
1343 | return 0; | ||
1344 | |||
1345 | if (ad->batch_data_dir == REQ_ASYNC) | ||
1346 | ad->current_batch_expires = jiffies + | ||
1347 | ad->batch_expire[REQ_ASYNC]; | ||
1348 | else | ||
1349 | ad->new_batch = 1; | ||
1350 | |||
1351 | ad->changed_batch = 0; | ||
1352 | } | ||
1353 | |||
1354 | /* | ||
1355 | * arq is the selected appropriate request. | ||
1356 | */ | ||
1357 | as_move_to_dispatch(ad, arq); | ||
1358 | |||
1359 | return 1; | ||
1360 | } | ||
1361 | |||
1362 | static struct request *as_next_request(request_queue_t *q) | ||
1363 | { | ||
1364 | struct as_data *ad = q->elevator->elevator_data; | ||
1365 | struct request *rq = NULL; | ||
1366 | |||
1367 | /* | ||
1368 | * if there are still requests on the dispatch queue, grab the first | ||
1369 | */ | ||
1370 | if (!list_empty(ad->dispatch) || as_dispatch_request(ad)) | ||
1371 | rq = list_entry_rq(ad->dispatch->next); | ||
1372 | |||
1373 | return rq; | ||
1374 | } | ||
1375 | |||
1376 | /* | ||
1377 | * Add arq to a list behind alias | ||
1378 | */ | ||
1379 | static inline void | ||
1380 | as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias) | ||
1381 | { | ||
1382 | struct request *req = arq->request; | ||
1383 | struct list_head *insert = alias->request->queuelist.prev; | ||
1384 | |||
1385 | /* | ||
1386 | * Transfer list of aliases | ||
1387 | */ | ||
1388 | while (!list_empty(&req->queuelist)) { | ||
1389 | struct request *__rq = list_entry_rq(req->queuelist.next); | ||
1390 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1391 | |||
1392 | list_move_tail(&__rq->queuelist, &alias->request->queuelist); | ||
1393 | |||
1394 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1395 | } | ||
1396 | |||
1397 | /* | ||
1398 | * Another request with the same start sector on the rbtree. | ||
1399 | * Link this request to that sector. They are untangled in | ||
1400 | * as_move_to_dispatch | ||
1401 | */ | ||
1402 | list_add(&arq->request->queuelist, insert); | ||
1403 | |||
1404 | /* | ||
1405 | * Don't want to have to handle merges. | ||
1406 | */ | ||
1407 | as_remove_merge_hints(ad->q, arq); | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1411 | * add arq to rbtree and fifo | ||
1412 | */ | ||
1413 | static void as_add_request(struct as_data *ad, struct as_rq *arq) | ||
1414 | { | ||
1415 | struct as_rq *alias; | ||
1416 | int data_dir; | ||
1417 | |||
1418 | if (rq_data_dir(arq->request) == READ | ||
1419 | || current->flags&PF_SYNCWRITE) | ||
1420 | arq->is_sync = 1; | ||
1421 | else | ||
1422 | arq->is_sync = 0; | ||
1423 | data_dir = arq->is_sync; | ||
1424 | |||
1425 | arq->io_context = as_get_io_context(); | ||
1426 | |||
1427 | if (arq->io_context) { | ||
1428 | as_update_iohist(ad, arq->io_context->aic, arq->request); | ||
1429 | atomic_inc(&arq->io_context->aic->nr_queued); | ||
1430 | } | ||
1431 | |||
1432 | alias = as_add_arq_rb(ad, arq); | ||
1433 | if (!alias) { | ||
1434 | /* | ||
1435 | * set expire time (only used for reads) and add to fifo list | ||
1436 | */ | ||
1437 | arq->expires = jiffies + ad->fifo_expire[data_dir]; | ||
1438 | list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); | ||
1439 | |||
1440 | if (rq_mergeable(arq->request)) { | ||
1441 | as_add_arq_hash(ad, arq); | ||
1442 | |||
1443 | if (!ad->q->last_merge) | ||
1444 | ad->q->last_merge = arq->request; | ||
1445 | } | ||
1446 | as_update_arq(ad, arq); /* keep state machine up to date */ | ||
1447 | |||
1448 | } else { | ||
1449 | as_add_aliased_request(ad, arq, alias); | ||
1450 | |||
1451 | /* | ||
1452 | * have we been anticipating this request? | ||
1453 | * or does it come from the same process as the one we are | ||
1454 | * anticipating for? | ||
1455 | */ | ||
1456 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
1457 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1458 | if (as_can_break_anticipation(ad, arq)) | ||
1459 | as_antic_stop(ad); | ||
1460 | } | ||
1461 | } | ||
1462 | |||
1463 | arq->state = AS_RQ_QUEUED; | ||
1464 | } | ||
1465 | |||
1466 | static void as_deactivate_request(request_queue_t *q, struct request *rq) | ||
1467 | { | ||
1468 | struct as_data *ad = q->elevator->elevator_data; | ||
1469 | struct as_rq *arq = RQ_DATA(rq); | ||
1470 | |||
1471 | if (arq) { | ||
1472 | if (arq->state == AS_RQ_REMOVED) { | ||
1473 | arq->state = AS_RQ_DISPATCHED; | ||
1474 | if (arq->io_context && arq->io_context->aic) | ||
1475 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1476 | } | ||
1477 | } else | ||
1478 | WARN_ON(blk_fs_request(rq) | ||
1479 | && (!(rq->flags & (REQ_HARDBARRIER|REQ_SOFTBARRIER))) ); | ||
1480 | |||
1481 | /* Stop anticipating - let this request get through */ | ||
1482 | as_antic_stop(ad); | ||
1483 | } | ||
1484 | |||
1485 | /* | ||
1486 | * requeue the request. The request has not been completed, nor is it a | ||
1487 | * new request, so don't touch accounting. | ||
1488 | */ | ||
1489 | static void as_requeue_request(request_queue_t *q, struct request *rq) | ||
1490 | { | ||
1491 | as_deactivate_request(q, rq); | ||
1492 | list_add(&rq->queuelist, &q->queue_head); | ||
1493 | } | ||
1494 | |||
1495 | /* | ||
1496 | * Account a request that is inserted directly onto the dispatch queue. | ||
1497 | * arq->io_context->aic->nr_dispatched should not need to be incremented | ||
1498 | * because only new requests should come through here: requeues go through | ||
1499 | * our explicit requeue handler. | ||
1500 | */ | ||
1501 | static void as_account_queued_request(struct as_data *ad, struct request *rq) | ||
1502 | { | ||
1503 | if (blk_fs_request(rq)) { | ||
1504 | struct as_rq *arq = RQ_DATA(rq); | ||
1505 | arq->state = AS_RQ_DISPATCHED; | ||
1506 | ad->nr_dispatched++; | ||
1507 | } | ||
1508 | } | ||
1509 | |||
1510 | static void | ||
1511 | as_insert_request(request_queue_t *q, struct request *rq, int where) | ||
1512 | { | ||
1513 | struct as_data *ad = q->elevator->elevator_data; | ||
1514 | struct as_rq *arq = RQ_DATA(rq); | ||
1515 | |||
1516 | if (arq) { | ||
1517 | if (arq->state != AS_RQ_PRESCHED) { | ||
1518 | printk("arq->state: %d\n", arq->state); | ||
1519 | WARN_ON(1); | ||
1520 | } | ||
1521 | arq->state = AS_RQ_NEW; | ||
1522 | } | ||
1523 | |||
1524 | /* barriers must flush the reorder queue */ | ||
1525 | if (unlikely(rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER) | ||
1526 | && where == ELEVATOR_INSERT_SORT)) { | ||
1527 | WARN_ON(1); | ||
1528 | where = ELEVATOR_INSERT_BACK; | ||
1529 | } | ||
1530 | |||
1531 | switch (where) { | ||
1532 | case ELEVATOR_INSERT_BACK: | ||
1533 | while (ad->next_arq[REQ_SYNC]) | ||
1534 | as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); | ||
1535 | |||
1536 | while (ad->next_arq[REQ_ASYNC]) | ||
1537 | as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); | ||
1538 | |||
1539 | list_add_tail(&rq->queuelist, ad->dispatch); | ||
1540 | as_account_queued_request(ad, rq); | ||
1541 | as_antic_stop(ad); | ||
1542 | break; | ||
1543 | case ELEVATOR_INSERT_FRONT: | ||
1544 | list_add(&rq->queuelist, ad->dispatch); | ||
1545 | as_account_queued_request(ad, rq); | ||
1546 | as_antic_stop(ad); | ||
1547 | break; | ||
1548 | case ELEVATOR_INSERT_SORT: | ||
1549 | BUG_ON(!blk_fs_request(rq)); | ||
1550 | as_add_request(ad, arq); | ||
1551 | break; | ||
1552 | default: | ||
1553 | BUG(); | ||
1554 | return; | ||
1555 | } | ||
1556 | } | ||
1557 | |||
1558 | /* | ||
1559 | * as_queue_empty tells us if there are requests left in the device. It may | ||
1560 | * not be the case that a driver can get the next request even if the queue | ||
1561 | * is not empty - it is used in the block layer to check for plugging and | ||
1562 | * merging opportunities | ||
1563 | */ | ||
1564 | static int as_queue_empty(request_queue_t *q) | ||
1565 | { | ||
1566 | struct as_data *ad = q->elevator->elevator_data; | ||
1567 | |||
1568 | if (!list_empty(&ad->fifo_list[REQ_ASYNC]) | ||
1569 | || !list_empty(&ad->fifo_list[REQ_SYNC]) | ||
1570 | || !list_empty(ad->dispatch)) | ||
1571 | return 0; | ||
1572 | |||
1573 | return 1; | ||
1574 | } | ||
1575 | |||
1576 | static struct request * | ||
1577 | as_former_request(request_queue_t *q, struct request *rq) | ||
1578 | { | ||
1579 | struct as_rq *arq = RQ_DATA(rq); | ||
1580 | struct rb_node *rbprev = rb_prev(&arq->rb_node); | ||
1581 | struct request *ret = NULL; | ||
1582 | |||
1583 | if (rbprev) | ||
1584 | ret = rb_entry_arq(rbprev)->request; | ||
1585 | |||
1586 | return ret; | ||
1587 | } | ||
1588 | |||
1589 | static struct request * | ||
1590 | as_latter_request(request_queue_t *q, struct request *rq) | ||
1591 | { | ||
1592 | struct as_rq *arq = RQ_DATA(rq); | ||
1593 | struct rb_node *rbnext = rb_next(&arq->rb_node); | ||
1594 | struct request *ret = NULL; | ||
1595 | |||
1596 | if (rbnext) | ||
1597 | ret = rb_entry_arq(rbnext)->request; | ||
1598 | |||
1599 | return ret; | ||
1600 | } | ||
1601 | |||
1602 | static int | ||
1603 | as_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
1604 | { | ||
1605 | struct as_data *ad = q->elevator->elevator_data; | ||
1606 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
1607 | struct request *__rq; | ||
1608 | int ret; | ||
1609 | |||
1610 | /* | ||
1611 | * try last_merge to avoid going to hash | ||
1612 | */ | ||
1613 | ret = elv_try_last_merge(q, bio); | ||
1614 | if (ret != ELEVATOR_NO_MERGE) { | ||
1615 | __rq = q->last_merge; | ||
1616 | goto out_insert; | ||
1617 | } | ||
1618 | |||
1619 | /* | ||
1620 | * see if the merge hash can satisfy a back merge | ||
1621 | */ | ||
1622 | __rq = as_find_arq_hash(ad, bio->bi_sector); | ||
1623 | if (__rq) { | ||
1624 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | ||
1625 | |||
1626 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1627 | ret = ELEVATOR_BACK_MERGE; | ||
1628 | goto out; | ||
1629 | } | ||
1630 | } | ||
1631 | |||
1632 | /* | ||
1633 | * check for front merge | ||
1634 | */ | ||
1635 | __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); | ||
1636 | if (__rq) { | ||
1637 | BUG_ON(rb_key != rq_rb_key(__rq)); | ||
1638 | |||
1639 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1640 | ret = ELEVATOR_FRONT_MERGE; | ||
1641 | goto out; | ||
1642 | } | ||
1643 | } | ||
1644 | |||
1645 | return ELEVATOR_NO_MERGE; | ||
1646 | out: | ||
1647 | if (rq_mergeable(__rq)) | ||
1648 | q->last_merge = __rq; | ||
1649 | out_insert: | ||
1650 | if (ret) { | ||
1651 | if (rq_mergeable(__rq)) | ||
1652 | as_hot_arq_hash(ad, RQ_DATA(__rq)); | ||
1653 | } | ||
1654 | *req = __rq; | ||
1655 | return ret; | ||
1656 | } | ||
1657 | |||
1658 | static void as_merged_request(request_queue_t *q, struct request *req) | ||
1659 | { | ||
1660 | struct as_data *ad = q->elevator->elevator_data; | ||
1661 | struct as_rq *arq = RQ_DATA(req); | ||
1662 | |||
1663 | /* | ||
1664 | * hash always needs to be repositioned, key is end sector | ||
1665 | */ | ||
1666 | as_del_arq_hash(arq); | ||
1667 | as_add_arq_hash(ad, arq); | ||
1668 | |||
1669 | /* | ||
1670 | * if the merge was a front merge, we need to reposition request | ||
1671 | */ | ||
1672 | if (rq_rb_key(req) != arq->rb_key) { | ||
1673 | struct as_rq *alias, *next_arq = NULL; | ||
1674 | |||
1675 | if (ad->next_arq[arq->is_sync] == arq) | ||
1676 | next_arq = as_find_next_arq(ad, arq); | ||
1677 | |||
1678 | /* | ||
1679 | * Note! We should really be moving any old aliased requests | ||
1680 | * off this request and try to insert them into the rbtree. We | ||
1681 | * currently don't bother. Ditto the next function. | ||
1682 | */ | ||
1683 | as_del_arq_rb(ad, arq); | ||
1684 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1685 | list_del_init(&arq->fifo); | ||
1686 | as_add_aliased_request(ad, arq, alias); | ||
1687 | if (next_arq) | ||
1688 | ad->next_arq[arq->is_sync] = next_arq; | ||
1689 | } | ||
1690 | /* | ||
1691 | * Note! At this stage of this and the next function, our next | ||
1692 | * request may not be optimal - eg the request may have "grown" | ||
1693 | * behind the disk head. We currently don't bother adjusting. | ||
1694 | */ | ||
1695 | } | ||
1696 | |||
1697 | if (arq->on_hash) | ||
1698 | q->last_merge = req; | ||
1699 | } | ||
1700 | |||
1701 | static void | ||
1702 | as_merged_requests(request_queue_t *q, struct request *req, | ||
1703 | struct request *next) | ||
1704 | { | ||
1705 | struct as_data *ad = q->elevator->elevator_data; | ||
1706 | struct as_rq *arq = RQ_DATA(req); | ||
1707 | struct as_rq *anext = RQ_DATA(next); | ||
1708 | |||
1709 | BUG_ON(!arq); | ||
1710 | BUG_ON(!anext); | ||
1711 | |||
1712 | /* | ||
1713 | * reposition arq (this is the merged request) in hash, and in rbtree | ||
1714 | * in case of a front merge | ||
1715 | */ | ||
1716 | as_del_arq_hash(arq); | ||
1717 | as_add_arq_hash(ad, arq); | ||
1718 | |||
1719 | if (rq_rb_key(req) != arq->rb_key) { | ||
1720 | struct as_rq *alias, *next_arq = NULL; | ||
1721 | |||
1722 | if (ad->next_arq[arq->is_sync] == arq) | ||
1723 | next_arq = as_find_next_arq(ad, arq); | ||
1724 | |||
1725 | as_del_arq_rb(ad, arq); | ||
1726 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1727 | list_del_init(&arq->fifo); | ||
1728 | as_add_aliased_request(ad, arq, alias); | ||
1729 | if (next_arq) | ||
1730 | ad->next_arq[arq->is_sync] = next_arq; | ||
1731 | } | ||
1732 | } | ||
1733 | |||
1734 | /* | ||
1735 | * if anext expires before arq, assign its expire time to arq | ||
1736 | * and move into anext position (anext will be deleted) in fifo | ||
1737 | */ | ||
1738 | if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { | ||
1739 | if (time_before(anext->expires, arq->expires)) { | ||
1740 | list_move(&arq->fifo, &anext->fifo); | ||
1741 | arq->expires = anext->expires; | ||
1742 | /* | ||
1743 | * Don't copy here but swap, because when anext is | ||
1744 | * removed below, it must contain the unused context | ||
1745 | */ | ||
1746 | swap_io_context(&arq->io_context, &anext->io_context); | ||
1747 | } | ||
1748 | } | ||
1749 | |||
1750 | /* | ||
1751 | * Transfer list of aliases | ||
1752 | */ | ||
1753 | while (!list_empty(&next->queuelist)) { | ||
1754 | struct request *__rq = list_entry_rq(next->queuelist.next); | ||
1755 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1756 | |||
1757 | list_move_tail(&__rq->queuelist, &req->queuelist); | ||
1758 | |||
1759 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1760 | } | ||
1761 | |||
1762 | /* | ||
1763 | * kill knowledge of next, this one is a goner | ||
1764 | */ | ||
1765 | as_remove_queued_request(q, next); | ||
1766 | |||
1767 | anext->state = AS_RQ_MERGED; | ||
1768 | } | ||
1769 | |||
1770 | /* | ||
1771 | * This is executed in a "deferred" process context, by kblockd. It calls the | ||
1772 | * driver's request_fn so the driver can submit that request. | ||
1773 | * | ||
1774 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | ||
1775 | * state before calling, and don't rely on any state over calls. | ||
1776 | * | ||
1777 | * FIXME! dispatch queue is not a queue at all! | ||
1778 | */ | ||
1779 | static void as_work_handler(void *data) | ||
1780 | { | ||
1781 | struct request_queue *q = data; | ||
1782 | unsigned long flags; | ||
1783 | |||
1784 | spin_lock_irqsave(q->queue_lock, flags); | ||
1785 | if (as_next_request(q)) | ||
1786 | q->request_fn(q); | ||
1787 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1788 | } | ||
1789 | |||
1790 | static void as_put_request(request_queue_t *q, struct request *rq) | ||
1791 | { | ||
1792 | struct as_data *ad = q->elevator->elevator_data; | ||
1793 | struct as_rq *arq = RQ_DATA(rq); | ||
1794 | |||
1795 | if (!arq) { | ||
1796 | WARN_ON(1); | ||
1797 | return; | ||
1798 | } | ||
1799 | |||
1800 | if (arq->state != AS_RQ_POSTSCHED && arq->state != AS_RQ_PRESCHED) { | ||
1801 | printk("arq->state %d\n", arq->state); | ||
1802 | WARN_ON(1); | ||
1803 | } | ||
1804 | |||
1805 | mempool_free(arq, ad->arq_pool); | ||
1806 | rq->elevator_private = NULL; | ||
1807 | } | ||
1808 | |||
1809 | static int as_set_request(request_queue_t *q, struct request *rq, int gfp_mask) | ||
1810 | { | ||
1811 | struct as_data *ad = q->elevator->elevator_data; | ||
1812 | struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); | ||
1813 | |||
1814 | if (arq) { | ||
1815 | memset(arq, 0, sizeof(*arq)); | ||
1816 | RB_CLEAR(&arq->rb_node); | ||
1817 | arq->request = rq; | ||
1818 | arq->state = AS_RQ_PRESCHED; | ||
1819 | arq->io_context = NULL; | ||
1820 | INIT_LIST_HEAD(&arq->hash); | ||
1821 | arq->on_hash = 0; | ||
1822 | INIT_LIST_HEAD(&arq->fifo); | ||
1823 | rq->elevator_private = arq; | ||
1824 | return 0; | ||
1825 | } | ||
1826 | |||
1827 | return 1; | ||
1828 | } | ||
1829 | |||
1830 | static int as_may_queue(request_queue_t *q, int rw) | ||
1831 | { | ||
1832 | int ret = ELV_MQUEUE_MAY; | ||
1833 | struct as_data *ad = q->elevator->elevator_data; | ||
1834 | struct io_context *ioc; | ||
1835 | if (ad->antic_status == ANTIC_WAIT_REQ || | ||
1836 | ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1837 | ioc = as_get_io_context(); | ||
1838 | if (ad->io_context == ioc) | ||
1839 | ret = ELV_MQUEUE_MUST; | ||
1840 | put_io_context(ioc); | ||
1841 | } | ||
1842 | |||
1843 | return ret; | ||
1844 | } | ||
1845 | |||
1846 | static void as_exit_queue(elevator_t *e) | ||
1847 | { | ||
1848 | struct as_data *ad = e->elevator_data; | ||
1849 | |||
1850 | del_timer_sync(&ad->antic_timer); | ||
1851 | kblockd_flush(); | ||
1852 | |||
1853 | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | ||
1854 | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | ||
1855 | |||
1856 | mempool_destroy(ad->arq_pool); | ||
1857 | put_io_context(ad->io_context); | ||
1858 | kfree(ad->hash); | ||
1859 | kfree(ad); | ||
1860 | } | ||
1861 | |||
1862 | /* | ||
1863 | * initialize elevator private data (as_data), and alloc a arq for | ||
1864 | * each request on the free lists | ||
1865 | */ | ||
1866 | static int as_init_queue(request_queue_t *q, elevator_t *e) | ||
1867 | { | ||
1868 | struct as_data *ad; | ||
1869 | int i; | ||
1870 | |||
1871 | if (!arq_pool) | ||
1872 | return -ENOMEM; | ||
1873 | |||
1874 | ad = kmalloc(sizeof(*ad), GFP_KERNEL); | ||
1875 | if (!ad) | ||
1876 | return -ENOMEM; | ||
1877 | memset(ad, 0, sizeof(*ad)); | ||
1878 | |||
1879 | ad->q = q; /* Identify what queue the data belongs to */ | ||
1880 | |||
1881 | ad->hash = kmalloc(sizeof(struct list_head)*AS_HASH_ENTRIES,GFP_KERNEL); | ||
1882 | if (!ad->hash) { | ||
1883 | kfree(ad); | ||
1884 | return -ENOMEM; | ||
1885 | } | ||
1886 | |||
1887 | ad->arq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, arq_pool); | ||
1888 | if (!ad->arq_pool) { | ||
1889 | kfree(ad->hash); | ||
1890 | kfree(ad); | ||
1891 | return -ENOMEM; | ||
1892 | } | ||
1893 | |||
1894 | /* anticipatory scheduling helpers */ | ||
1895 | ad->antic_timer.function = as_antic_timeout; | ||
1896 | ad->antic_timer.data = (unsigned long)q; | ||
1897 | init_timer(&ad->antic_timer); | ||
1898 | INIT_WORK(&ad->antic_work, as_work_handler, q); | ||
1899 | |||
1900 | for (i = 0; i < AS_HASH_ENTRIES; i++) | ||
1901 | INIT_LIST_HEAD(&ad->hash[i]); | ||
1902 | |||
1903 | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | ||
1904 | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | ||
1905 | ad->sort_list[REQ_SYNC] = RB_ROOT; | ||
1906 | ad->sort_list[REQ_ASYNC] = RB_ROOT; | ||
1907 | ad->dispatch = &q->queue_head; | ||
1908 | ad->fifo_expire[REQ_SYNC] = default_read_expire; | ||
1909 | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | ||
1910 | ad->antic_expire = default_antic_expire; | ||
1911 | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | ||
1912 | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | ||
1913 | e->elevator_data = ad; | ||
1914 | |||
1915 | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | ||
1916 | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | ||
1917 | if (ad->write_batch_count < 2) | ||
1918 | ad->write_batch_count = 2; | ||
1919 | |||
1920 | return 0; | ||
1921 | } | ||
1922 | |||
1923 | /* | ||
1924 | * sysfs parts below | ||
1925 | */ | ||
1926 | struct as_fs_entry { | ||
1927 | struct attribute attr; | ||
1928 | ssize_t (*show)(struct as_data *, char *); | ||
1929 | ssize_t (*store)(struct as_data *, const char *, size_t); | ||
1930 | }; | ||
1931 | |||
1932 | static ssize_t | ||
1933 | as_var_show(unsigned int var, char *page) | ||
1934 | { | ||
1935 | var = (var * 1000) / HZ; | ||
1936 | return sprintf(page, "%d\n", var); | ||
1937 | } | ||
1938 | |||
1939 | static ssize_t | ||
1940 | as_var_store(unsigned long *var, const char *page, size_t count) | ||
1941 | { | ||
1942 | unsigned long tmp; | ||
1943 | char *p = (char *) page; | ||
1944 | |||
1945 | tmp = simple_strtoul(p, &p, 10); | ||
1946 | if (tmp != 0) { | ||
1947 | tmp = (tmp * HZ) / 1000; | ||
1948 | if (tmp == 0) | ||
1949 | tmp = 1; | ||
1950 | } | ||
1951 | *var = tmp; | ||
1952 | return count; | ||
1953 | } | ||
1954 | |||
1955 | static ssize_t as_est_show(struct as_data *ad, char *page) | ||
1956 | { | ||
1957 | int pos = 0; | ||
1958 | |||
1959 | pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); | ||
1960 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | ||
1961 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); | ||
1962 | |||
1963 | return pos; | ||
1964 | } | ||
1965 | |||
1966 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | ||
1967 | static ssize_t __FUNC(struct as_data *ad, char *page) \ | ||
1968 | { \ | ||
1969 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | ||
1970 | } | ||
1971 | SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); | ||
1972 | SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); | ||
1973 | SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); | ||
1974 | SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); | ||
1975 | SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); | ||
1976 | #undef SHOW_FUNCTION | ||
1977 | |||
1978 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | ||
1979 | static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ | ||
1980 | { \ | ||
1981 | int ret = as_var_store(__PTR, (page), count); \ | ||
1982 | if (*(__PTR) < (MIN)) \ | ||
1983 | *(__PTR) = (MIN); \ | ||
1984 | else if (*(__PTR) > (MAX)) \ | ||
1985 | *(__PTR) = (MAX); \ | ||
1986 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | ||
1987 | return ret; \ | ||
1988 | } | ||
1989 | STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | ||
1990 | STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | ||
1991 | STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); | ||
1992 | STORE_FUNCTION(as_read_batchexpire_store, | ||
1993 | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | ||
1994 | STORE_FUNCTION(as_write_batchexpire_store, | ||
1995 | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | ||
1996 | #undef STORE_FUNCTION | ||
1997 | |||
1998 | static struct as_fs_entry as_est_entry = { | ||
1999 | .attr = {.name = "est_time", .mode = S_IRUGO }, | ||
2000 | .show = as_est_show, | ||
2001 | }; | ||
2002 | static struct as_fs_entry as_readexpire_entry = { | ||
2003 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | ||
2004 | .show = as_readexpire_show, | ||
2005 | .store = as_readexpire_store, | ||
2006 | }; | ||
2007 | static struct as_fs_entry as_writeexpire_entry = { | ||
2008 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | ||
2009 | .show = as_writeexpire_show, | ||
2010 | .store = as_writeexpire_store, | ||
2011 | }; | ||
2012 | static struct as_fs_entry as_anticexpire_entry = { | ||
2013 | .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, | ||
2014 | .show = as_anticexpire_show, | ||
2015 | .store = as_anticexpire_store, | ||
2016 | }; | ||
2017 | static struct as_fs_entry as_read_batchexpire_entry = { | ||
2018 | .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
2019 | .show = as_read_batchexpire_show, | ||
2020 | .store = as_read_batchexpire_store, | ||
2021 | }; | ||
2022 | static struct as_fs_entry as_write_batchexpire_entry = { | ||
2023 | .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
2024 | .show = as_write_batchexpire_show, | ||
2025 | .store = as_write_batchexpire_store, | ||
2026 | }; | ||
2027 | |||
2028 | static struct attribute *default_attrs[] = { | ||
2029 | &as_est_entry.attr, | ||
2030 | &as_readexpire_entry.attr, | ||
2031 | &as_writeexpire_entry.attr, | ||
2032 | &as_anticexpire_entry.attr, | ||
2033 | &as_read_batchexpire_entry.attr, | ||
2034 | &as_write_batchexpire_entry.attr, | ||
2035 | NULL, | ||
2036 | }; | ||
2037 | |||
2038 | #define to_as(atr) container_of((atr), struct as_fs_entry, attr) | ||
2039 | |||
2040 | static ssize_t | ||
2041 | as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
2042 | { | ||
2043 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
2044 | struct as_fs_entry *entry = to_as(attr); | ||
2045 | |||
2046 | if (!entry->show) | ||
2047 | return 0; | ||
2048 | |||
2049 | return entry->show(e->elevator_data, page); | ||
2050 | } | ||
2051 | |||
2052 | static ssize_t | ||
2053 | as_attr_store(struct kobject *kobj, struct attribute *attr, | ||
2054 | const char *page, size_t length) | ||
2055 | { | ||
2056 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
2057 | struct as_fs_entry *entry = to_as(attr); | ||
2058 | |||
2059 | if (!entry->store) | ||
2060 | return -EINVAL; | ||
2061 | |||
2062 | return entry->store(e->elevator_data, page, length); | ||
2063 | } | ||
2064 | |||
2065 | static struct sysfs_ops as_sysfs_ops = { | ||
2066 | .show = as_attr_show, | ||
2067 | .store = as_attr_store, | ||
2068 | }; | ||
2069 | |||
2070 | static struct kobj_type as_ktype = { | ||
2071 | .sysfs_ops = &as_sysfs_ops, | ||
2072 | .default_attrs = default_attrs, | ||
2073 | }; | ||
2074 | |||
2075 | static struct elevator_type iosched_as = { | ||
2076 | .ops = { | ||
2077 | .elevator_merge_fn = as_merge, | ||
2078 | .elevator_merged_fn = as_merged_request, | ||
2079 | .elevator_merge_req_fn = as_merged_requests, | ||
2080 | .elevator_next_req_fn = as_next_request, | ||
2081 | .elevator_add_req_fn = as_insert_request, | ||
2082 | .elevator_remove_req_fn = as_remove_request, | ||
2083 | .elevator_requeue_req_fn = as_requeue_request, | ||
2084 | .elevator_deactivate_req_fn = as_deactivate_request, | ||
2085 | .elevator_queue_empty_fn = as_queue_empty, | ||
2086 | .elevator_completed_req_fn = as_completed_request, | ||
2087 | .elevator_former_req_fn = as_former_request, | ||
2088 | .elevator_latter_req_fn = as_latter_request, | ||
2089 | .elevator_set_req_fn = as_set_request, | ||
2090 | .elevator_put_req_fn = as_put_request, | ||
2091 | .elevator_may_queue_fn = as_may_queue, | ||
2092 | .elevator_init_fn = as_init_queue, | ||
2093 | .elevator_exit_fn = as_exit_queue, | ||
2094 | }, | ||
2095 | |||
2096 | .elevator_ktype = &as_ktype, | ||
2097 | .elevator_name = "anticipatory", | ||
2098 | .elevator_owner = THIS_MODULE, | ||
2099 | }; | ||
2100 | |||
2101 | static int __init as_init(void) | ||
2102 | { | ||
2103 | int ret; | ||
2104 | |||
2105 | arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), | ||
2106 | 0, 0, NULL, NULL); | ||
2107 | if (!arq_pool) | ||
2108 | return -ENOMEM; | ||
2109 | |||
2110 | ret = elv_register(&iosched_as); | ||
2111 | if (!ret) { | ||
2112 | /* | ||
2113 | * don't allow AS to get unregistered, since we would have | ||
2114 | * to browse all tasks in the system and release their | ||
2115 | * as_io_context first | ||
2116 | */ | ||
2117 | __module_get(THIS_MODULE); | ||
2118 | return 0; | ||
2119 | } | ||
2120 | |||
2121 | kmem_cache_destroy(arq_pool); | ||
2122 | return ret; | ||
2123 | } | ||
2124 | |||
2125 | static void __exit as_exit(void) | ||
2126 | { | ||
2127 | kmem_cache_destroy(arq_pool); | ||
2128 | elv_unregister(&iosched_as); | ||
2129 | } | ||
2130 | |||
2131 | module_init(as_init); | ||
2132 | module_exit(as_exit); | ||
2133 | |||
2134 | MODULE_AUTHOR("Nick Piggin"); | ||
2135 | MODULE_LICENSE("GPL"); | ||
2136 | MODULE_DESCRIPTION("anticipatory IO scheduler"); | ||