diff options
Diffstat (limited to 'crypto/aes.c')
| -rw-r--r-- | crypto/aes.c | 456 |
1 files changed, 0 insertions, 456 deletions
diff --git a/crypto/aes.c b/crypto/aes.c deleted file mode 100644 index e2440773878c..000000000000 --- a/crypto/aes.c +++ /dev/null | |||
| @@ -1,456 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Cryptographic API. | ||
| 3 | * | ||
| 4 | * AES Cipher Algorithm. | ||
| 5 | * | ||
| 6 | * Based on Brian Gladman's code. | ||
| 7 | * | ||
| 8 | * Linux developers: | ||
| 9 | * Alexander Kjeldaas <astor@fast.no> | ||
| 10 | * Herbert Valerio Riedel <hvr@hvrlab.org> | ||
| 11 | * Kyle McMartin <kyle@debian.org> | ||
| 12 | * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). | ||
| 13 | * | ||
| 14 | * This program is free software; you can redistribute it and/or modify | ||
| 15 | * it under the terms of the GNU General Public License as published by | ||
| 16 | * the Free Software Foundation; either version 2 of the License, or | ||
| 17 | * (at your option) any later version. | ||
| 18 | * | ||
| 19 | * --------------------------------------------------------------------------- | ||
| 20 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||
| 21 | * All rights reserved. | ||
| 22 | * | ||
| 23 | * LICENSE TERMS | ||
| 24 | * | ||
| 25 | * The free distribution and use of this software in both source and binary | ||
| 26 | * form is allowed (with or without changes) provided that: | ||
| 27 | * | ||
| 28 | * 1. distributions of this source code include the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer; | ||
| 30 | * | ||
| 31 | * 2. distributions in binary form include the above copyright | ||
| 32 | * notice, this list of conditions and the following disclaimer | ||
| 33 | * in the documentation and/or other associated materials; | ||
| 34 | * | ||
| 35 | * 3. the copyright holder's name is not used to endorse products | ||
| 36 | * built using this software without specific written permission. | ||
| 37 | * | ||
| 38 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
| 39 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
| 40 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
| 41 | * | ||
| 42 | * DISCLAIMER | ||
| 43 | * | ||
| 44 | * This software is provided 'as is' with no explicit or implied warranties | ||
| 45 | * in respect of its properties, including, but not limited to, correctness | ||
| 46 | * and/or fitness for purpose. | ||
| 47 | * --------------------------------------------------------------------------- | ||
| 48 | */ | ||
| 49 | |||
| 50 | /* Some changes from the Gladman version: | ||
| 51 | s/RIJNDAEL(e_key)/E_KEY/g | ||
| 52 | s/RIJNDAEL(d_key)/D_KEY/g | ||
| 53 | */ | ||
| 54 | |||
| 55 | #include <linux/module.h> | ||
| 56 | #include <linux/init.h> | ||
| 57 | #include <linux/types.h> | ||
| 58 | #include <linux/errno.h> | ||
| 59 | #include <linux/crypto.h> | ||
| 60 | #include <asm/byteorder.h> | ||
| 61 | |||
| 62 | #define AES_MIN_KEY_SIZE 16 | ||
| 63 | #define AES_MAX_KEY_SIZE 32 | ||
| 64 | |||
| 65 | #define AES_BLOCK_SIZE 16 | ||
| 66 | |||
| 67 | /* | ||
| 68 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | ||
| 69 | */ | ||
| 70 | static inline u8 | ||
| 71 | byte(const u32 x, const unsigned n) | ||
| 72 | { | ||
| 73 | return x >> (n << 3); | ||
| 74 | } | ||
| 75 | |||
| 76 | struct aes_ctx { | ||
| 77 | int key_length; | ||
| 78 | u32 buf[120]; | ||
| 79 | }; | ||
| 80 | |||
| 81 | #define E_KEY (&ctx->buf[0]) | ||
| 82 | #define D_KEY (&ctx->buf[60]) | ||
| 83 | |||
| 84 | static u8 pow_tab[256] __initdata; | ||
| 85 | static u8 log_tab[256] __initdata; | ||
| 86 | static u8 sbx_tab[256] __initdata; | ||
| 87 | static u8 isb_tab[256] __initdata; | ||
| 88 | static u32 rco_tab[10]; | ||
| 89 | static u32 ft_tab[4][256]; | ||
| 90 | static u32 it_tab[4][256]; | ||
| 91 | |||
| 92 | static u32 fl_tab[4][256]; | ||
| 93 | static u32 il_tab[4][256]; | ||
| 94 | |||
| 95 | static inline u8 __init | ||
| 96 | f_mult (u8 a, u8 b) | ||
| 97 | { | ||
| 98 | u8 aa = log_tab[a], cc = aa + log_tab[b]; | ||
| 99 | |||
| 100 | return pow_tab[cc + (cc < aa ? 1 : 0)]; | ||
| 101 | } | ||
| 102 | |||
| 103 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) | ||
| 104 | |||
| 105 | #define f_rn(bo, bi, n, k) \ | ||
| 106 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ | ||
| 107 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
| 108 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
| 109 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
| 110 | |||
| 111 | #define i_rn(bo, bi, n, k) \ | ||
| 112 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ | ||
| 113 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
| 114 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
| 115 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
| 116 | |||
| 117 | #define ls_box(x) \ | ||
| 118 | ( fl_tab[0][byte(x, 0)] ^ \ | ||
| 119 | fl_tab[1][byte(x, 1)] ^ \ | ||
| 120 | fl_tab[2][byte(x, 2)] ^ \ | ||
| 121 | fl_tab[3][byte(x, 3)] ) | ||
| 122 | |||
| 123 | #define f_rl(bo, bi, n, k) \ | ||
| 124 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ | ||
| 125 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
| 126 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
| 127 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
| 128 | |||
| 129 | #define i_rl(bo, bi, n, k) \ | ||
| 130 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ | ||
| 131 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
| 132 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
| 133 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
| 134 | |||
| 135 | static void __init | ||
| 136 | gen_tabs (void) | ||
| 137 | { | ||
| 138 | u32 i, t; | ||
| 139 | u8 p, q; | ||
| 140 | |||
| 141 | /* log and power tables for GF(2**8) finite field with | ||
| 142 | 0x011b as modular polynomial - the simplest primitive | ||
| 143 | root is 0x03, used here to generate the tables */ | ||
| 144 | |||
| 145 | for (i = 0, p = 1; i < 256; ++i) { | ||
| 146 | pow_tab[i] = (u8) p; | ||
| 147 | log_tab[p] = (u8) i; | ||
| 148 | |||
| 149 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
| 150 | } | ||
| 151 | |||
| 152 | log_tab[1] = 0; | ||
| 153 | |||
| 154 | for (i = 0, p = 1; i < 10; ++i) { | ||
| 155 | rco_tab[i] = p; | ||
| 156 | |||
| 157 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
| 158 | } | ||
| 159 | |||
| 160 | for (i = 0; i < 256; ++i) { | ||
| 161 | p = (i ? pow_tab[255 - log_tab[i]] : 0); | ||
| 162 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | ||
| 163 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | ||
| 164 | sbx_tab[i] = p; | ||
| 165 | isb_tab[p] = (u8) i; | ||
| 166 | } | ||
| 167 | |||
| 168 | for (i = 0; i < 256; ++i) { | ||
| 169 | p = sbx_tab[i]; | ||
| 170 | |||
| 171 | t = p; | ||
| 172 | fl_tab[0][i] = t; | ||
| 173 | fl_tab[1][i] = rol32(t, 8); | ||
| 174 | fl_tab[2][i] = rol32(t, 16); | ||
| 175 | fl_tab[3][i] = rol32(t, 24); | ||
| 176 | |||
| 177 | t = ((u32) ff_mult (2, p)) | | ||
| 178 | ((u32) p << 8) | | ||
| 179 | ((u32) p << 16) | ((u32) ff_mult (3, p) << 24); | ||
| 180 | |||
| 181 | ft_tab[0][i] = t; | ||
| 182 | ft_tab[1][i] = rol32(t, 8); | ||
| 183 | ft_tab[2][i] = rol32(t, 16); | ||
| 184 | ft_tab[3][i] = rol32(t, 24); | ||
| 185 | |||
| 186 | p = isb_tab[i]; | ||
| 187 | |||
| 188 | t = p; | ||
| 189 | il_tab[0][i] = t; | ||
| 190 | il_tab[1][i] = rol32(t, 8); | ||
| 191 | il_tab[2][i] = rol32(t, 16); | ||
| 192 | il_tab[3][i] = rol32(t, 24); | ||
| 193 | |||
| 194 | t = ((u32) ff_mult (14, p)) | | ||
| 195 | ((u32) ff_mult (9, p) << 8) | | ||
| 196 | ((u32) ff_mult (13, p) << 16) | | ||
| 197 | ((u32) ff_mult (11, p) << 24); | ||
| 198 | |||
| 199 | it_tab[0][i] = t; | ||
| 200 | it_tab[1][i] = rol32(t, 8); | ||
| 201 | it_tab[2][i] = rol32(t, 16); | ||
| 202 | it_tab[3][i] = rol32(t, 24); | ||
| 203 | } | ||
| 204 | } | ||
| 205 | |||
| 206 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | ||
| 207 | |||
| 208 | #define imix_col(y,x) \ | ||
| 209 | u = star_x(x); \ | ||
| 210 | v = star_x(u); \ | ||
| 211 | w = star_x(v); \ | ||
| 212 | t = w ^ (x); \ | ||
| 213 | (y) = u ^ v ^ w; \ | ||
| 214 | (y) ^= ror32(u ^ t, 8) ^ \ | ||
| 215 | ror32(v ^ t, 16) ^ \ | ||
| 216 | ror32(t,24) | ||
| 217 | |||
| 218 | /* initialise the key schedule from the user supplied key */ | ||
| 219 | |||
| 220 | #define loop4(i) \ | ||
| 221 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
| 222 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ | ||
| 223 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ | ||
| 224 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ | ||
| 225 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ | ||
| 226 | } | ||
| 227 | |||
| 228 | #define loop6(i) \ | ||
| 229 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
| 230 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ | ||
| 231 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ | ||
| 232 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ | ||
| 233 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ | ||
| 234 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ | ||
| 235 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ | ||
| 236 | } | ||
| 237 | |||
| 238 | #define loop8(i) \ | ||
| 239 | { t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ | ||
| 240 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ | ||
| 241 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ | ||
| 242 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ | ||
| 243 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ | ||
| 244 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ | ||
| 245 | E_KEY[8 * i + 12] = t; \ | ||
| 246 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ | ||
| 247 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ | ||
| 248 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ | ||
| 249 | } | ||
| 250 | |||
| 251 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | ||
| 252 | unsigned int key_len) | ||
| 253 | { | ||
| 254 | struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | ||
| 255 | const __le32 *key = (const __le32 *)in_key; | ||
| 256 | u32 *flags = &tfm->crt_flags; | ||
| 257 | u32 i, t, u, v, w; | ||
| 258 | |||
| 259 | if (key_len % 8) { | ||
| 260 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
| 261 | return -EINVAL; | ||
| 262 | } | ||
| 263 | |||
| 264 | ctx->key_length = key_len; | ||
| 265 | |||
| 266 | E_KEY[0] = le32_to_cpu(key[0]); | ||
| 267 | E_KEY[1] = le32_to_cpu(key[1]); | ||
| 268 | E_KEY[2] = le32_to_cpu(key[2]); | ||
| 269 | E_KEY[3] = le32_to_cpu(key[3]); | ||
| 270 | |||
| 271 | switch (key_len) { | ||
| 272 | case 16: | ||
| 273 | t = E_KEY[3]; | ||
| 274 | for (i = 0; i < 10; ++i) | ||
| 275 | loop4 (i); | ||
| 276 | break; | ||
| 277 | |||
| 278 | case 24: | ||
| 279 | E_KEY[4] = le32_to_cpu(key[4]); | ||
| 280 | t = E_KEY[5] = le32_to_cpu(key[5]); | ||
| 281 | for (i = 0; i < 8; ++i) | ||
| 282 | loop6 (i); | ||
| 283 | break; | ||
| 284 | |||
| 285 | case 32: | ||
| 286 | E_KEY[4] = le32_to_cpu(key[4]); | ||
| 287 | E_KEY[5] = le32_to_cpu(key[5]); | ||
| 288 | E_KEY[6] = le32_to_cpu(key[6]); | ||
| 289 | t = E_KEY[7] = le32_to_cpu(key[7]); | ||
| 290 | for (i = 0; i < 7; ++i) | ||
| 291 | loop8 (i); | ||
| 292 | break; | ||
| 293 | } | ||
| 294 | |||
| 295 | D_KEY[0] = E_KEY[0]; | ||
| 296 | D_KEY[1] = E_KEY[1]; | ||
| 297 | D_KEY[2] = E_KEY[2]; | ||
| 298 | D_KEY[3] = E_KEY[3]; | ||
| 299 | |||
| 300 | for (i = 4; i < key_len + 24; ++i) { | ||
| 301 | imix_col (D_KEY[i], E_KEY[i]); | ||
| 302 | } | ||
| 303 | |||
| 304 | return 0; | ||
| 305 | } | ||
| 306 | |||
| 307 | /* encrypt a block of text */ | ||
| 308 | |||
| 309 | #define f_nround(bo, bi, k) \ | ||
| 310 | f_rn(bo, bi, 0, k); \ | ||
| 311 | f_rn(bo, bi, 1, k); \ | ||
| 312 | f_rn(bo, bi, 2, k); \ | ||
| 313 | f_rn(bo, bi, 3, k); \ | ||
| 314 | k += 4 | ||
| 315 | |||
| 316 | #define f_lround(bo, bi, k) \ | ||
| 317 | f_rl(bo, bi, 0, k); \ | ||
| 318 | f_rl(bo, bi, 1, k); \ | ||
| 319 | f_rl(bo, bi, 2, k); \ | ||
| 320 | f_rl(bo, bi, 3, k) | ||
| 321 | |||
| 322 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | ||
| 323 | { | ||
| 324 | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | ||
| 325 | const __le32 *src = (const __le32 *)in; | ||
| 326 | __le32 *dst = (__le32 *)out; | ||
| 327 | u32 b0[4], b1[4]; | ||
| 328 | const u32 *kp = E_KEY + 4; | ||
| 329 | |||
| 330 | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0]; | ||
| 331 | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1]; | ||
| 332 | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2]; | ||
| 333 | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3]; | ||
| 334 | |||
| 335 | if (ctx->key_length > 24) { | ||
| 336 | f_nround (b1, b0, kp); | ||
| 337 | f_nround (b0, b1, kp); | ||
| 338 | } | ||
| 339 | |||
| 340 | if (ctx->key_length > 16) { | ||
| 341 | f_nround (b1, b0, kp); | ||
| 342 | f_nround (b0, b1, kp); | ||
| 343 | } | ||
| 344 | |||
| 345 | f_nround (b1, b0, kp); | ||
| 346 | f_nround (b0, b1, kp); | ||
| 347 | f_nround (b1, b0, kp); | ||
| 348 | f_nround (b0, b1, kp); | ||
| 349 | f_nround (b1, b0, kp); | ||
| 350 | f_nround (b0, b1, kp); | ||
| 351 | f_nround (b1, b0, kp); | ||
| 352 | f_nround (b0, b1, kp); | ||
| 353 | f_nround (b1, b0, kp); | ||
| 354 | f_lround (b0, b1, kp); | ||
| 355 | |||
| 356 | dst[0] = cpu_to_le32(b0[0]); | ||
| 357 | dst[1] = cpu_to_le32(b0[1]); | ||
| 358 | dst[2] = cpu_to_le32(b0[2]); | ||
| 359 | dst[3] = cpu_to_le32(b0[3]); | ||
| 360 | } | ||
| 361 | |||
| 362 | /* decrypt a block of text */ | ||
| 363 | |||
| 364 | #define i_nround(bo, bi, k) \ | ||
| 365 | i_rn(bo, bi, 0, k); \ | ||
| 366 | i_rn(bo, bi, 1, k); \ | ||
| 367 | i_rn(bo, bi, 2, k); \ | ||
| 368 | i_rn(bo, bi, 3, k); \ | ||
| 369 | k -= 4 | ||
| 370 | |||
| 371 | #define i_lround(bo, bi, k) \ | ||
| 372 | i_rl(bo, bi, 0, k); \ | ||
| 373 | i_rl(bo, bi, 1, k); \ | ||
| 374 | i_rl(bo, bi, 2, k); \ | ||
| 375 | i_rl(bo, bi, 3, k) | ||
| 376 | |||
| 377 | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | ||
| 378 | { | ||
| 379 | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | ||
| 380 | const __le32 *src = (const __le32 *)in; | ||
| 381 | __le32 *dst = (__le32 *)out; | ||
| 382 | u32 b0[4], b1[4]; | ||
| 383 | const int key_len = ctx->key_length; | ||
| 384 | const u32 *kp = D_KEY + key_len + 20; | ||
| 385 | |||
| 386 | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24]; | ||
| 387 | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25]; | ||
| 388 | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26]; | ||
| 389 | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27]; | ||
| 390 | |||
| 391 | if (key_len > 24) { | ||
| 392 | i_nround (b1, b0, kp); | ||
| 393 | i_nround (b0, b1, kp); | ||
| 394 | } | ||
| 395 | |||
| 396 | if (key_len > 16) { | ||
| 397 | i_nround (b1, b0, kp); | ||
| 398 | i_nround (b0, b1, kp); | ||
| 399 | } | ||
| 400 | |||
| 401 | i_nround (b1, b0, kp); | ||
| 402 | i_nround (b0, b1, kp); | ||
| 403 | i_nround (b1, b0, kp); | ||
| 404 | i_nround (b0, b1, kp); | ||
| 405 | i_nround (b1, b0, kp); | ||
| 406 | i_nround (b0, b1, kp); | ||
| 407 | i_nround (b1, b0, kp); | ||
| 408 | i_nround (b0, b1, kp); | ||
| 409 | i_nround (b1, b0, kp); | ||
| 410 | i_lround (b0, b1, kp); | ||
| 411 | |||
| 412 | dst[0] = cpu_to_le32(b0[0]); | ||
| 413 | dst[1] = cpu_to_le32(b0[1]); | ||
| 414 | dst[2] = cpu_to_le32(b0[2]); | ||
| 415 | dst[3] = cpu_to_le32(b0[3]); | ||
| 416 | } | ||
| 417 | |||
| 418 | |||
| 419 | static struct crypto_alg aes_alg = { | ||
| 420 | .cra_name = "aes", | ||
| 421 | .cra_driver_name = "aes-generic", | ||
| 422 | .cra_priority = 100, | ||
| 423 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, | ||
| 424 | .cra_blocksize = AES_BLOCK_SIZE, | ||
| 425 | .cra_ctxsize = sizeof(struct aes_ctx), | ||
| 426 | .cra_alignmask = 3, | ||
| 427 | .cra_module = THIS_MODULE, | ||
| 428 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | ||
| 429 | .cra_u = { | ||
| 430 | .cipher = { | ||
| 431 | .cia_min_keysize = AES_MIN_KEY_SIZE, | ||
| 432 | .cia_max_keysize = AES_MAX_KEY_SIZE, | ||
| 433 | .cia_setkey = aes_set_key, | ||
| 434 | .cia_encrypt = aes_encrypt, | ||
| 435 | .cia_decrypt = aes_decrypt | ||
| 436 | } | ||
| 437 | } | ||
| 438 | }; | ||
| 439 | |||
| 440 | static int __init aes_init(void) | ||
| 441 | { | ||
| 442 | gen_tabs(); | ||
| 443 | return crypto_register_alg(&aes_alg); | ||
| 444 | } | ||
| 445 | |||
| 446 | static void __exit aes_fini(void) | ||
| 447 | { | ||
| 448 | crypto_unregister_alg(&aes_alg); | ||
| 449 | } | ||
| 450 | |||
| 451 | module_init(aes_init); | ||
| 452 | module_exit(aes_fini); | ||
| 453 | |||
| 454 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); | ||
| 455 | MODULE_LICENSE("Dual BSD/GPL"); | ||
| 456 | |||
