diff options
Diffstat (limited to 'block/as-iosched.c')
-rw-r--r-- | block/as-iosched.c | 2005 |
1 files changed, 2005 insertions, 0 deletions
diff --git a/block/as-iosched.c b/block/as-iosched.c new file mode 100644 index 000000000000..a78e160b59a3 --- /dev/null +++ b/block/as-iosched.c | |||
@@ -0,0 +1,2005 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/as-iosched.c | ||
3 | * | ||
4 | * Anticipatory & deadline i/o scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2002 Jens Axboe <axboe@suse.de> | ||
7 | * Nick Piggin <nickpiggin@yahoo.com.au> | ||
8 | * | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/fs.h> | ||
12 | #include <linux/blkdev.h> | ||
13 | #include <linux/elevator.h> | ||
14 | #include <linux/bio.h> | ||
15 | #include <linux/config.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/compiler.h> | ||
20 | #include <linux/hash.h> | ||
21 | #include <linux/rbtree.h> | ||
22 | #include <linux/interrupt.h> | ||
23 | |||
24 | #define REQ_SYNC 1 | ||
25 | #define REQ_ASYNC 0 | ||
26 | |||
27 | /* | ||
28 | * See Documentation/block/as-iosched.txt | ||
29 | */ | ||
30 | |||
31 | /* | ||
32 | * max time before a read is submitted. | ||
33 | */ | ||
34 | #define default_read_expire (HZ / 8) | ||
35 | |||
36 | /* | ||
37 | * ditto for writes, these limits are not hard, even | ||
38 | * if the disk is capable of satisfying them. | ||
39 | */ | ||
40 | #define default_write_expire (HZ / 4) | ||
41 | |||
42 | /* | ||
43 | * read_batch_expire describes how long we will allow a stream of reads to | ||
44 | * persist before looking to see whether it is time to switch over to writes. | ||
45 | */ | ||
46 | #define default_read_batch_expire (HZ / 2) | ||
47 | |||
48 | /* | ||
49 | * write_batch_expire describes how long we want a stream of writes to run for. | ||
50 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | ||
51 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | ||
52 | * a short amount of time... | ||
53 | */ | ||
54 | #define default_write_batch_expire (HZ / 8) | ||
55 | |||
56 | /* | ||
57 | * max time we may wait to anticipate a read (default around 6ms) | ||
58 | */ | ||
59 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | ||
60 | |||
61 | /* | ||
62 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | ||
63 | * however huge values tend to interfere and not decay fast enough. A program | ||
64 | * might be in a non-io phase of operation. Waiting on user input for example, | ||
65 | * or doing a lengthy computation. A small penalty can be justified there, and | ||
66 | * will still catch out those processes that constantly have large thinktimes. | ||
67 | */ | ||
68 | #define MAX_THINKTIME (HZ/50UL) | ||
69 | |||
70 | /* Bits in as_io_context.state */ | ||
71 | enum as_io_states { | ||
72 | AS_TASK_RUNNING=0, /* Process has not exited */ | ||
73 | AS_TASK_IOSTARTED, /* Process has started some IO */ | ||
74 | AS_TASK_IORUNNING, /* Process has completed some IO */ | ||
75 | }; | ||
76 | |||
77 | enum anticipation_status { | ||
78 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | ||
79 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | ||
80 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | ||
81 | last read (which has completed) */ | ||
82 | ANTIC_FINISHED, /* Anticipating but have found a candidate | ||
83 | * or timed out */ | ||
84 | }; | ||
85 | |||
86 | struct as_data { | ||
87 | /* | ||
88 | * run time data | ||
89 | */ | ||
90 | |||
91 | struct request_queue *q; /* the "owner" queue */ | ||
92 | |||
93 | /* | ||
94 | * requests (as_rq s) are present on both sort_list and fifo_list | ||
95 | */ | ||
96 | struct rb_root sort_list[2]; | ||
97 | struct list_head fifo_list[2]; | ||
98 | |||
99 | struct as_rq *next_arq[2]; /* next in sort order */ | ||
100 | sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ | ||
101 | struct list_head *hash; /* request hash */ | ||
102 | |||
103 | unsigned long exit_prob; /* probability a task will exit while | ||
104 | being waited on */ | ||
105 | unsigned long exit_no_coop; /* probablility an exited task will | ||
106 | not be part of a later cooperating | ||
107 | request */ | ||
108 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | ||
109 | unsigned long new_ttime_mean; | ||
110 | u64 new_seek_total; /* mean seek on new proc */ | ||
111 | sector_t new_seek_mean; | ||
112 | |||
113 | unsigned long current_batch_expires; | ||
114 | unsigned long last_check_fifo[2]; | ||
115 | int changed_batch; /* 1: waiting for old batch to end */ | ||
116 | int new_batch; /* 1: waiting on first read complete */ | ||
117 | int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ | ||
118 | int write_batch_count; /* max # of reqs in a write batch */ | ||
119 | int current_write_count; /* how many requests left this batch */ | ||
120 | int write_batch_idled; /* has the write batch gone idle? */ | ||
121 | mempool_t *arq_pool; | ||
122 | |||
123 | enum anticipation_status antic_status; | ||
124 | unsigned long antic_start; /* jiffies: when it started */ | ||
125 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | ||
126 | struct work_struct antic_work; /* Deferred unplugging */ | ||
127 | struct io_context *io_context; /* Identify the expected process */ | ||
128 | int ioc_finished; /* IO associated with io_context is finished */ | ||
129 | int nr_dispatched; | ||
130 | |||
131 | /* | ||
132 | * settings that change how the i/o scheduler behaves | ||
133 | */ | ||
134 | unsigned long fifo_expire[2]; | ||
135 | unsigned long batch_expire[2]; | ||
136 | unsigned long antic_expire; | ||
137 | }; | ||
138 | |||
139 | #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) | ||
140 | |||
141 | /* | ||
142 | * per-request data. | ||
143 | */ | ||
144 | enum arq_state { | ||
145 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | ||
146 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | ||
147 | scheduler */ | ||
148 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | ||
149 | driver now */ | ||
150 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | ||
151 | AS_RQ_REMOVED, | ||
152 | AS_RQ_MERGED, | ||
153 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | ||
154 | }; | ||
155 | |||
156 | struct as_rq { | ||
157 | /* | ||
158 | * rbtree index, key is the starting offset | ||
159 | */ | ||
160 | struct rb_node rb_node; | ||
161 | sector_t rb_key; | ||
162 | |||
163 | struct request *request; | ||
164 | |||
165 | struct io_context *io_context; /* The submitting task */ | ||
166 | |||
167 | /* | ||
168 | * request hash, key is the ending offset (for back merge lookup) | ||
169 | */ | ||
170 | struct list_head hash; | ||
171 | unsigned int on_hash; | ||
172 | |||
173 | /* | ||
174 | * expire fifo | ||
175 | */ | ||
176 | struct list_head fifo; | ||
177 | unsigned long expires; | ||
178 | |||
179 | unsigned int is_sync; | ||
180 | enum arq_state state; | ||
181 | }; | ||
182 | |||
183 | #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) | ||
184 | |||
185 | static kmem_cache_t *arq_pool; | ||
186 | |||
187 | /* | ||
188 | * IO Context helper functions | ||
189 | */ | ||
190 | |||
191 | /* Called to deallocate the as_io_context */ | ||
192 | static void free_as_io_context(struct as_io_context *aic) | ||
193 | { | ||
194 | kfree(aic); | ||
195 | } | ||
196 | |||
197 | /* Called when the task exits */ | ||
198 | static void exit_as_io_context(struct as_io_context *aic) | ||
199 | { | ||
200 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | ||
201 | clear_bit(AS_TASK_RUNNING, &aic->state); | ||
202 | } | ||
203 | |||
204 | static struct as_io_context *alloc_as_io_context(void) | ||
205 | { | ||
206 | struct as_io_context *ret; | ||
207 | |||
208 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | ||
209 | if (ret) { | ||
210 | ret->dtor = free_as_io_context; | ||
211 | ret->exit = exit_as_io_context; | ||
212 | ret->state = 1 << AS_TASK_RUNNING; | ||
213 | atomic_set(&ret->nr_queued, 0); | ||
214 | atomic_set(&ret->nr_dispatched, 0); | ||
215 | spin_lock_init(&ret->lock); | ||
216 | ret->ttime_total = 0; | ||
217 | ret->ttime_samples = 0; | ||
218 | ret->ttime_mean = 0; | ||
219 | ret->seek_total = 0; | ||
220 | ret->seek_samples = 0; | ||
221 | ret->seek_mean = 0; | ||
222 | } | ||
223 | |||
224 | return ret; | ||
225 | } | ||
226 | |||
227 | /* | ||
228 | * If the current task has no AS IO context then create one and initialise it. | ||
229 | * Then take a ref on the task's io context and return it. | ||
230 | */ | ||
231 | static struct io_context *as_get_io_context(void) | ||
232 | { | ||
233 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | ||
234 | if (ioc && !ioc->aic) { | ||
235 | ioc->aic = alloc_as_io_context(); | ||
236 | if (!ioc->aic) { | ||
237 | put_io_context(ioc); | ||
238 | ioc = NULL; | ||
239 | } | ||
240 | } | ||
241 | return ioc; | ||
242 | } | ||
243 | |||
244 | static void as_put_io_context(struct as_rq *arq) | ||
245 | { | ||
246 | struct as_io_context *aic; | ||
247 | |||
248 | if (unlikely(!arq->io_context)) | ||
249 | return; | ||
250 | |||
251 | aic = arq->io_context->aic; | ||
252 | |||
253 | if (arq->is_sync == REQ_SYNC && aic) { | ||
254 | spin_lock(&aic->lock); | ||
255 | set_bit(AS_TASK_IORUNNING, &aic->state); | ||
256 | aic->last_end_request = jiffies; | ||
257 | spin_unlock(&aic->lock); | ||
258 | } | ||
259 | |||
260 | put_io_context(arq->io_context); | ||
261 | } | ||
262 | |||
263 | /* | ||
264 | * the back merge hash support functions | ||
265 | */ | ||
266 | static const int as_hash_shift = 6; | ||
267 | #define AS_HASH_BLOCK(sec) ((sec) >> 3) | ||
268 | #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) | ||
269 | #define AS_HASH_ENTRIES (1 << as_hash_shift) | ||
270 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
271 | #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) | ||
272 | |||
273 | static inline void __as_del_arq_hash(struct as_rq *arq) | ||
274 | { | ||
275 | arq->on_hash = 0; | ||
276 | list_del_init(&arq->hash); | ||
277 | } | ||
278 | |||
279 | static inline void as_del_arq_hash(struct as_rq *arq) | ||
280 | { | ||
281 | if (arq->on_hash) | ||
282 | __as_del_arq_hash(arq); | ||
283 | } | ||
284 | |||
285 | static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
286 | { | ||
287 | struct request *rq = arq->request; | ||
288 | |||
289 | BUG_ON(arq->on_hash); | ||
290 | |||
291 | arq->on_hash = 1; | ||
292 | list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * move hot entry to front of chain | ||
297 | */ | ||
298 | static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
299 | { | ||
300 | struct request *rq = arq->request; | ||
301 | struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; | ||
302 | |||
303 | if (!arq->on_hash) { | ||
304 | WARN_ON(1); | ||
305 | return; | ||
306 | } | ||
307 | |||
308 | if (arq->hash.prev != head) { | ||
309 | list_del(&arq->hash); | ||
310 | list_add(&arq->hash, head); | ||
311 | } | ||
312 | } | ||
313 | |||
314 | static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) | ||
315 | { | ||
316 | struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; | ||
317 | struct list_head *entry, *next = hash_list->next; | ||
318 | |||
319 | while ((entry = next) != hash_list) { | ||
320 | struct as_rq *arq = list_entry_hash(entry); | ||
321 | struct request *__rq = arq->request; | ||
322 | |||
323 | next = entry->next; | ||
324 | |||
325 | BUG_ON(!arq->on_hash); | ||
326 | |||
327 | if (!rq_mergeable(__rq)) { | ||
328 | as_del_arq_hash(arq); | ||
329 | continue; | ||
330 | } | ||
331 | |||
332 | if (rq_hash_key(__rq) == offset) | ||
333 | return __rq; | ||
334 | } | ||
335 | |||
336 | return NULL; | ||
337 | } | ||
338 | |||
339 | /* | ||
340 | * rb tree support functions | ||
341 | */ | ||
342 | #define RB_NONE (2) | ||
343 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | ||
344 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | ||
345 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | ||
346 | #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) | ||
347 | #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) | ||
348 | #define rq_rb_key(rq) (rq)->sector | ||
349 | |||
350 | /* | ||
351 | * as_find_first_arq finds the first (lowest sector numbered) request | ||
352 | * for the specified data_dir. Used to sweep back to the start of the disk | ||
353 | * (1-way elevator) after we process the last (highest sector) request. | ||
354 | */ | ||
355 | static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) | ||
356 | { | ||
357 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
358 | |||
359 | if (n == NULL) | ||
360 | return NULL; | ||
361 | |||
362 | for (;;) { | ||
363 | if (n->rb_left == NULL) | ||
364 | return rb_entry_arq(n); | ||
365 | |||
366 | n = n->rb_left; | ||
367 | } | ||
368 | } | ||
369 | |||
370 | /* | ||
371 | * Add the request to the rb tree if it is unique. If there is an alias (an | ||
372 | * existing request against the same sector), which can happen when using | ||
373 | * direct IO, then return the alias. | ||
374 | */ | ||
375 | static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
376 | { | ||
377 | struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; | ||
378 | struct rb_node *parent = NULL; | ||
379 | struct as_rq *__arq; | ||
380 | struct request *rq = arq->request; | ||
381 | |||
382 | arq->rb_key = rq_rb_key(rq); | ||
383 | |||
384 | while (*p) { | ||
385 | parent = *p; | ||
386 | __arq = rb_entry_arq(parent); | ||
387 | |||
388 | if (arq->rb_key < __arq->rb_key) | ||
389 | p = &(*p)->rb_left; | ||
390 | else if (arq->rb_key > __arq->rb_key) | ||
391 | p = &(*p)->rb_right; | ||
392 | else | ||
393 | return __arq; | ||
394 | } | ||
395 | |||
396 | rb_link_node(&arq->rb_node, parent, p); | ||
397 | rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
398 | |||
399 | return NULL; | ||
400 | } | ||
401 | |||
402 | static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
403 | { | ||
404 | if (!ON_RB(&arq->rb_node)) { | ||
405 | WARN_ON(1); | ||
406 | return; | ||
407 | } | ||
408 | |||
409 | rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
410 | RB_CLEAR(&arq->rb_node); | ||
411 | } | ||
412 | |||
413 | static struct request * | ||
414 | as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) | ||
415 | { | ||
416 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
417 | struct as_rq *arq; | ||
418 | |||
419 | while (n) { | ||
420 | arq = rb_entry_arq(n); | ||
421 | |||
422 | if (sector < arq->rb_key) | ||
423 | n = n->rb_left; | ||
424 | else if (sector > arq->rb_key) | ||
425 | n = n->rb_right; | ||
426 | else | ||
427 | return arq->request; | ||
428 | } | ||
429 | |||
430 | return NULL; | ||
431 | } | ||
432 | |||
433 | /* | ||
434 | * IO Scheduler proper | ||
435 | */ | ||
436 | |||
437 | #define MAXBACK (1024 * 1024) /* | ||
438 | * Maximum distance the disk will go backward | ||
439 | * for a request. | ||
440 | */ | ||
441 | |||
442 | #define BACK_PENALTY 2 | ||
443 | |||
444 | /* | ||
445 | * as_choose_req selects the preferred one of two requests of the same data_dir | ||
446 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | ||
447 | */ | ||
448 | static struct as_rq * | ||
449 | as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) | ||
450 | { | ||
451 | int data_dir; | ||
452 | sector_t last, s1, s2, d1, d2; | ||
453 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | ||
454 | const sector_t maxback = MAXBACK; | ||
455 | |||
456 | if (arq1 == NULL || arq1 == arq2) | ||
457 | return arq2; | ||
458 | if (arq2 == NULL) | ||
459 | return arq1; | ||
460 | |||
461 | data_dir = arq1->is_sync; | ||
462 | |||
463 | last = ad->last_sector[data_dir]; | ||
464 | s1 = arq1->request->sector; | ||
465 | s2 = arq2->request->sector; | ||
466 | |||
467 | BUG_ON(data_dir != arq2->is_sync); | ||
468 | |||
469 | /* | ||
470 | * Strict one way elevator _except_ in the case where we allow | ||
471 | * short backward seeks which are biased as twice the cost of a | ||
472 | * similar forward seek. | ||
473 | */ | ||
474 | if (s1 >= last) | ||
475 | d1 = s1 - last; | ||
476 | else if (s1+maxback >= last) | ||
477 | d1 = (last - s1)*BACK_PENALTY; | ||
478 | else { | ||
479 | r1_wrap = 1; | ||
480 | d1 = 0; /* shut up, gcc */ | ||
481 | } | ||
482 | |||
483 | if (s2 >= last) | ||
484 | d2 = s2 - last; | ||
485 | else if (s2+maxback >= last) | ||
486 | d2 = (last - s2)*BACK_PENALTY; | ||
487 | else { | ||
488 | r2_wrap = 1; | ||
489 | d2 = 0; | ||
490 | } | ||
491 | |||
492 | /* Found required data */ | ||
493 | if (!r1_wrap && r2_wrap) | ||
494 | return arq1; | ||
495 | else if (!r2_wrap && r1_wrap) | ||
496 | return arq2; | ||
497 | else if (r1_wrap && r2_wrap) { | ||
498 | /* both behind the head */ | ||
499 | if (s1 <= s2) | ||
500 | return arq1; | ||
501 | else | ||
502 | return arq2; | ||
503 | } | ||
504 | |||
505 | /* Both requests in front of the head */ | ||
506 | if (d1 < d2) | ||
507 | return arq1; | ||
508 | else if (d2 < d1) | ||
509 | return arq2; | ||
510 | else { | ||
511 | if (s1 >= s2) | ||
512 | return arq1; | ||
513 | else | ||
514 | return arq2; | ||
515 | } | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * as_find_next_arq finds the next request after @prev in elevator order. | ||
520 | * this with as_choose_req form the basis for how the scheduler chooses | ||
521 | * what request to process next. Anticipation works on top of this. | ||
522 | */ | ||
523 | static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) | ||
524 | { | ||
525 | const int data_dir = last->is_sync; | ||
526 | struct as_rq *ret; | ||
527 | struct rb_node *rbnext = rb_next(&last->rb_node); | ||
528 | struct rb_node *rbprev = rb_prev(&last->rb_node); | ||
529 | struct as_rq *arq_next, *arq_prev; | ||
530 | |||
531 | BUG_ON(!ON_RB(&last->rb_node)); | ||
532 | |||
533 | if (rbprev) | ||
534 | arq_prev = rb_entry_arq(rbprev); | ||
535 | else | ||
536 | arq_prev = NULL; | ||
537 | |||
538 | if (rbnext) | ||
539 | arq_next = rb_entry_arq(rbnext); | ||
540 | else { | ||
541 | arq_next = as_find_first_arq(ad, data_dir); | ||
542 | if (arq_next == last) | ||
543 | arq_next = NULL; | ||
544 | } | ||
545 | |||
546 | ret = as_choose_req(ad, arq_next, arq_prev); | ||
547 | |||
548 | return ret; | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | * anticipatory scheduling functions follow | ||
553 | */ | ||
554 | |||
555 | /* | ||
556 | * as_antic_expired tells us when we have anticipated too long. | ||
557 | * The funny "absolute difference" math on the elapsed time is to handle | ||
558 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | ||
559 | */ | ||
560 | static int as_antic_expired(struct as_data *ad) | ||
561 | { | ||
562 | long delta_jif; | ||
563 | |||
564 | delta_jif = jiffies - ad->antic_start; | ||
565 | if (unlikely(delta_jif < 0)) | ||
566 | delta_jif = -delta_jif; | ||
567 | if (delta_jif < ad->antic_expire) | ||
568 | return 0; | ||
569 | |||
570 | return 1; | ||
571 | } | ||
572 | |||
573 | /* | ||
574 | * as_antic_waitnext starts anticipating that a nice request will soon be | ||
575 | * submitted. See also as_antic_waitreq | ||
576 | */ | ||
577 | static void as_antic_waitnext(struct as_data *ad) | ||
578 | { | ||
579 | unsigned long timeout; | ||
580 | |||
581 | BUG_ON(ad->antic_status != ANTIC_OFF | ||
582 | && ad->antic_status != ANTIC_WAIT_REQ); | ||
583 | |||
584 | timeout = ad->antic_start + ad->antic_expire; | ||
585 | |||
586 | mod_timer(&ad->antic_timer, timeout); | ||
587 | |||
588 | ad->antic_status = ANTIC_WAIT_NEXT; | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | ||
593 | * until the request that we're anticipating on has finished. This means we | ||
594 | * are timing from when the candidate process wakes up hopefully. | ||
595 | */ | ||
596 | static void as_antic_waitreq(struct as_data *ad) | ||
597 | { | ||
598 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | ||
599 | if (ad->antic_status == ANTIC_OFF) { | ||
600 | if (!ad->io_context || ad->ioc_finished) | ||
601 | as_antic_waitnext(ad); | ||
602 | else | ||
603 | ad->antic_status = ANTIC_WAIT_REQ; | ||
604 | } | ||
605 | } | ||
606 | |||
607 | /* | ||
608 | * This is called directly by the functions in this file to stop anticipation. | ||
609 | * We kill the timer and schedule a call to the request_fn asap. | ||
610 | */ | ||
611 | static void as_antic_stop(struct as_data *ad) | ||
612 | { | ||
613 | int status = ad->antic_status; | ||
614 | |||
615 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | ||
616 | if (status == ANTIC_WAIT_NEXT) | ||
617 | del_timer(&ad->antic_timer); | ||
618 | ad->antic_status = ANTIC_FINISHED; | ||
619 | /* see as_work_handler */ | ||
620 | kblockd_schedule_work(&ad->antic_work); | ||
621 | } | ||
622 | } | ||
623 | |||
624 | /* | ||
625 | * as_antic_timeout is the timer function set by as_antic_waitnext. | ||
626 | */ | ||
627 | static void as_antic_timeout(unsigned long data) | ||
628 | { | ||
629 | struct request_queue *q = (struct request_queue *)data; | ||
630 | struct as_data *ad = q->elevator->elevator_data; | ||
631 | unsigned long flags; | ||
632 | |||
633 | spin_lock_irqsave(q->queue_lock, flags); | ||
634 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
635 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
636 | struct as_io_context *aic = ad->io_context->aic; | ||
637 | |||
638 | ad->antic_status = ANTIC_FINISHED; | ||
639 | kblockd_schedule_work(&ad->antic_work); | ||
640 | |||
641 | if (aic->ttime_samples == 0) { | ||
642 | /* process anticipated on has exited or timed out*/ | ||
643 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
644 | } | ||
645 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
646 | /* process not "saved" by a cooperating request */ | ||
647 | ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8; | ||
648 | } | ||
649 | } | ||
650 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
651 | } | ||
652 | |||
653 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, | ||
654 | unsigned long ttime) | ||
655 | { | ||
656 | /* fixed point: 1.0 == 1<<8 */ | ||
657 | if (aic->ttime_samples == 0) { | ||
658 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | ||
659 | ad->new_ttime_mean = ad->new_ttime_total / 256; | ||
660 | |||
661 | ad->exit_prob = (7*ad->exit_prob)/8; | ||
662 | } | ||
663 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | ||
664 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | ||
665 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | ||
666 | } | ||
667 | |||
668 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, | ||
669 | sector_t sdist) | ||
670 | { | ||
671 | u64 total; | ||
672 | |||
673 | if (aic->seek_samples == 0) { | ||
674 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | ||
675 | ad->new_seek_mean = ad->new_seek_total / 256; | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * Don't allow the seek distance to get too large from the | ||
680 | * odd fragment, pagein, etc | ||
681 | */ | ||
682 | if (aic->seek_samples <= 60) /* second&third seek */ | ||
683 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | ||
684 | else | ||
685 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | ||
686 | |||
687 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | ||
688 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | ||
689 | total = aic->seek_total + (aic->seek_samples/2); | ||
690 | do_div(total, aic->seek_samples); | ||
691 | aic->seek_mean = (sector_t)total; | ||
692 | } | ||
693 | |||
694 | /* | ||
695 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | ||
696 | * updates @aic->ttime_mean based on that. It is called when a new | ||
697 | * request is queued. | ||
698 | */ | ||
699 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, | ||
700 | struct request *rq) | ||
701 | { | ||
702 | struct as_rq *arq = RQ_DATA(rq); | ||
703 | int data_dir = arq->is_sync; | ||
704 | unsigned long thinktime = 0; | ||
705 | sector_t seek_dist; | ||
706 | |||
707 | if (aic == NULL) | ||
708 | return; | ||
709 | |||
710 | if (data_dir == REQ_SYNC) { | ||
711 | unsigned long in_flight = atomic_read(&aic->nr_queued) | ||
712 | + atomic_read(&aic->nr_dispatched); | ||
713 | spin_lock(&aic->lock); | ||
714 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | ||
715 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | ||
716 | /* Calculate read -> read thinktime */ | ||
717 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | ||
718 | && in_flight == 0) { | ||
719 | thinktime = jiffies - aic->last_end_request; | ||
720 | thinktime = min(thinktime, MAX_THINKTIME-1); | ||
721 | } | ||
722 | as_update_thinktime(ad, aic, thinktime); | ||
723 | |||
724 | /* Calculate read -> read seek distance */ | ||
725 | if (aic->last_request_pos < rq->sector) | ||
726 | seek_dist = rq->sector - aic->last_request_pos; | ||
727 | else | ||
728 | seek_dist = aic->last_request_pos - rq->sector; | ||
729 | as_update_seekdist(ad, aic, seek_dist); | ||
730 | } | ||
731 | aic->last_request_pos = rq->sector + rq->nr_sectors; | ||
732 | set_bit(AS_TASK_IOSTARTED, &aic->state); | ||
733 | spin_unlock(&aic->lock); | ||
734 | } | ||
735 | } | ||
736 | |||
737 | /* | ||
738 | * as_close_req decides if one request is considered "close" to the | ||
739 | * previous one issued. | ||
740 | */ | ||
741 | static int as_close_req(struct as_data *ad, struct as_io_context *aic, | ||
742 | struct as_rq *arq) | ||
743 | { | ||
744 | unsigned long delay; /* milliseconds */ | ||
745 | sector_t last = ad->last_sector[ad->batch_data_dir]; | ||
746 | sector_t next = arq->request->sector; | ||
747 | sector_t delta; /* acceptable close offset (in sectors) */ | ||
748 | sector_t s; | ||
749 | |||
750 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | ||
751 | delay = 0; | ||
752 | else | ||
753 | delay = ((jiffies - ad->antic_start) * 1000) / HZ; | ||
754 | |||
755 | if (delay == 0) | ||
756 | delta = 8192; | ||
757 | else if (delay <= 20 && delay <= ad->antic_expire) | ||
758 | delta = 8192 << delay; | ||
759 | else | ||
760 | return 1; | ||
761 | |||
762 | if ((last <= next + (delta>>1)) && (next <= last + delta)) | ||
763 | return 1; | ||
764 | |||
765 | if (last < next) | ||
766 | s = next - last; | ||
767 | else | ||
768 | s = last - next; | ||
769 | |||
770 | if (aic->seek_samples == 0) { | ||
771 | /* | ||
772 | * Process has just started IO. Use past statistics to | ||
773 | * gauge success possibility | ||
774 | */ | ||
775 | if (ad->new_seek_mean > s) { | ||
776 | /* this request is better than what we're expecting */ | ||
777 | return 1; | ||
778 | } | ||
779 | |||
780 | } else { | ||
781 | if (aic->seek_mean > s) { | ||
782 | /* this request is better than what we're expecting */ | ||
783 | return 1; | ||
784 | } | ||
785 | } | ||
786 | |||
787 | return 0; | ||
788 | } | ||
789 | |||
790 | /* | ||
791 | * as_can_break_anticipation returns true if we have been anticipating this | ||
792 | * request. | ||
793 | * | ||
794 | * It also returns true if the process against which we are anticipating | ||
795 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | ||
796 | * dispatch it ASAP, because we know that application will not be submitting | ||
797 | * any new reads. | ||
798 | * | ||
799 | * If the task which has submitted the request has exited, break anticipation. | ||
800 | * | ||
801 | * If this task has queued some other IO, do not enter enticipation. | ||
802 | */ | ||
803 | static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) | ||
804 | { | ||
805 | struct io_context *ioc; | ||
806 | struct as_io_context *aic; | ||
807 | |||
808 | ioc = ad->io_context; | ||
809 | BUG_ON(!ioc); | ||
810 | |||
811 | if (arq && ioc == arq->io_context) { | ||
812 | /* request from same process */ | ||
813 | return 1; | ||
814 | } | ||
815 | |||
816 | if (ad->ioc_finished && as_antic_expired(ad)) { | ||
817 | /* | ||
818 | * In this situation status should really be FINISHED, | ||
819 | * however the timer hasn't had the chance to run yet. | ||
820 | */ | ||
821 | return 1; | ||
822 | } | ||
823 | |||
824 | aic = ioc->aic; | ||
825 | if (!aic) | ||
826 | return 0; | ||
827 | |||
828 | if (atomic_read(&aic->nr_queued) > 0) { | ||
829 | /* process has more requests queued */ | ||
830 | return 1; | ||
831 | } | ||
832 | |||
833 | if (atomic_read(&aic->nr_dispatched) > 0) { | ||
834 | /* process has more requests dispatched */ | ||
835 | return 1; | ||
836 | } | ||
837 | |||
838 | if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) { | ||
839 | /* | ||
840 | * Found a close request that is not one of ours. | ||
841 | * | ||
842 | * This makes close requests from another process update | ||
843 | * our IO history. Is generally useful when there are | ||
844 | * two or more cooperating processes working in the same | ||
845 | * area. | ||
846 | */ | ||
847 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
848 | if (aic->ttime_samples == 0) | ||
849 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
850 | |||
851 | ad->exit_no_coop = (7*ad->exit_no_coop)/8; | ||
852 | } | ||
853 | |||
854 | as_update_iohist(ad, aic, arq->request); | ||
855 | return 1; | ||
856 | } | ||
857 | |||
858 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
859 | /* process anticipated on has exited */ | ||
860 | if (aic->ttime_samples == 0) | ||
861 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
862 | |||
863 | if (ad->exit_no_coop > 128) | ||
864 | return 1; | ||
865 | } | ||
866 | |||
867 | if (aic->ttime_samples == 0) { | ||
868 | if (ad->new_ttime_mean > ad->antic_expire) | ||
869 | return 1; | ||
870 | if (ad->exit_prob * ad->exit_no_coop > 128*256) | ||
871 | return 1; | ||
872 | } else if (aic->ttime_mean > ad->antic_expire) { | ||
873 | /* the process thinks too much between requests */ | ||
874 | return 1; | ||
875 | } | ||
876 | |||
877 | return 0; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * as_can_anticipate indicates weather we should either run arq | ||
882 | * or keep anticipating a better request. | ||
883 | */ | ||
884 | static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) | ||
885 | { | ||
886 | if (!ad->io_context) | ||
887 | /* | ||
888 | * Last request submitted was a write | ||
889 | */ | ||
890 | return 0; | ||
891 | |||
892 | if (ad->antic_status == ANTIC_FINISHED) | ||
893 | /* | ||
894 | * Don't restart if we have just finished. Run the next request | ||
895 | */ | ||
896 | return 0; | ||
897 | |||
898 | if (as_can_break_anticipation(ad, arq)) | ||
899 | /* | ||
900 | * This request is a good candidate. Don't keep anticipating, | ||
901 | * run it. | ||
902 | */ | ||
903 | return 0; | ||
904 | |||
905 | /* | ||
906 | * OK from here, we haven't finished, and don't have a decent request! | ||
907 | * Status is either ANTIC_OFF so start waiting, | ||
908 | * ANTIC_WAIT_REQ so continue waiting for request to finish | ||
909 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | ||
910 | */ | ||
911 | |||
912 | return 1; | ||
913 | } | ||
914 | |||
915 | /* | ||
916 | * as_update_arq must be called whenever a request (arq) is added to | ||
917 | * the sort_list. This function keeps caches up to date, and checks if the | ||
918 | * request might be one we are "anticipating" | ||
919 | */ | ||
920 | static void as_update_arq(struct as_data *ad, struct as_rq *arq) | ||
921 | { | ||
922 | const int data_dir = arq->is_sync; | ||
923 | |||
924 | /* keep the next_arq cache up to date */ | ||
925 | ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); | ||
926 | |||
927 | /* | ||
928 | * have we been anticipating this request? | ||
929 | * or does it come from the same process as the one we are anticipating | ||
930 | * for? | ||
931 | */ | ||
932 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
933 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
934 | if (as_can_break_anticipation(ad, arq)) | ||
935 | as_antic_stop(ad); | ||
936 | } | ||
937 | } | ||
938 | |||
939 | /* | ||
940 | * Gathers timings and resizes the write batch automatically | ||
941 | */ | ||
942 | static void update_write_batch(struct as_data *ad) | ||
943 | { | ||
944 | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | ||
945 | long write_time; | ||
946 | |||
947 | write_time = (jiffies - ad->current_batch_expires) + batch; | ||
948 | if (write_time < 0) | ||
949 | write_time = 0; | ||
950 | |||
951 | if (write_time > batch && !ad->write_batch_idled) { | ||
952 | if (write_time > batch * 3) | ||
953 | ad->write_batch_count /= 2; | ||
954 | else | ||
955 | ad->write_batch_count--; | ||
956 | } else if (write_time < batch && ad->current_write_count == 0) { | ||
957 | if (batch > write_time * 3) | ||
958 | ad->write_batch_count *= 2; | ||
959 | else | ||
960 | ad->write_batch_count++; | ||
961 | } | ||
962 | |||
963 | if (ad->write_batch_count < 1) | ||
964 | ad->write_batch_count = 1; | ||
965 | } | ||
966 | |||
967 | /* | ||
968 | * as_completed_request is to be called when a request has completed and | ||
969 | * returned something to the requesting process, be it an error or data. | ||
970 | */ | ||
971 | static void as_completed_request(request_queue_t *q, struct request *rq) | ||
972 | { | ||
973 | struct as_data *ad = q->elevator->elevator_data; | ||
974 | struct as_rq *arq = RQ_DATA(rq); | ||
975 | |||
976 | WARN_ON(!list_empty(&rq->queuelist)); | ||
977 | |||
978 | if (arq->state != AS_RQ_REMOVED) { | ||
979 | printk("arq->state %d\n", arq->state); | ||
980 | WARN_ON(1); | ||
981 | goto out; | ||
982 | } | ||
983 | |||
984 | if (ad->changed_batch && ad->nr_dispatched == 1) { | ||
985 | kblockd_schedule_work(&ad->antic_work); | ||
986 | ad->changed_batch = 0; | ||
987 | |||
988 | if (ad->batch_data_dir == REQ_SYNC) | ||
989 | ad->new_batch = 1; | ||
990 | } | ||
991 | WARN_ON(ad->nr_dispatched == 0); | ||
992 | ad->nr_dispatched--; | ||
993 | |||
994 | /* | ||
995 | * Start counting the batch from when a request of that direction is | ||
996 | * actually serviced. This should help devices with big TCQ windows | ||
997 | * and writeback caches | ||
998 | */ | ||
999 | if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { | ||
1000 | update_write_batch(ad); | ||
1001 | ad->current_batch_expires = jiffies + | ||
1002 | ad->batch_expire[REQ_SYNC]; | ||
1003 | ad->new_batch = 0; | ||
1004 | } | ||
1005 | |||
1006 | if (ad->io_context == arq->io_context && ad->io_context) { | ||
1007 | ad->antic_start = jiffies; | ||
1008 | ad->ioc_finished = 1; | ||
1009 | if (ad->antic_status == ANTIC_WAIT_REQ) { | ||
1010 | /* | ||
1011 | * We were waiting on this request, now anticipate | ||
1012 | * the next one | ||
1013 | */ | ||
1014 | as_antic_waitnext(ad); | ||
1015 | } | ||
1016 | } | ||
1017 | |||
1018 | as_put_io_context(arq); | ||
1019 | out: | ||
1020 | arq->state = AS_RQ_POSTSCHED; | ||
1021 | } | ||
1022 | |||
1023 | /* | ||
1024 | * as_remove_queued_request removes a request from the pre dispatch queue | ||
1025 | * without updating refcounts. It is expected the caller will drop the | ||
1026 | * reference unless it replaces the request at somepart of the elevator | ||
1027 | * (ie. the dispatch queue) | ||
1028 | */ | ||
1029 | static void as_remove_queued_request(request_queue_t *q, struct request *rq) | ||
1030 | { | ||
1031 | struct as_rq *arq = RQ_DATA(rq); | ||
1032 | const int data_dir = arq->is_sync; | ||
1033 | struct as_data *ad = q->elevator->elevator_data; | ||
1034 | |||
1035 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1036 | |||
1037 | if (arq->io_context && arq->io_context->aic) { | ||
1038 | BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); | ||
1039 | atomic_dec(&arq->io_context->aic->nr_queued); | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Update the "next_arq" cache if we are about to remove its | ||
1044 | * entry | ||
1045 | */ | ||
1046 | if (ad->next_arq[data_dir] == arq) | ||
1047 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1048 | |||
1049 | list_del_init(&arq->fifo); | ||
1050 | as_del_arq_hash(arq); | ||
1051 | as_del_arq_rb(ad, arq); | ||
1052 | } | ||
1053 | |||
1054 | /* | ||
1055 | * as_fifo_expired returns 0 if there are no expired reads on the fifo, | ||
1056 | * 1 otherwise. It is ratelimited so that we only perform the check once per | ||
1057 | * `fifo_expire' interval. Otherwise a large number of expired requests | ||
1058 | * would create a hopeless seekstorm. | ||
1059 | * | ||
1060 | * See as_antic_expired comment. | ||
1061 | */ | ||
1062 | static int as_fifo_expired(struct as_data *ad, int adir) | ||
1063 | { | ||
1064 | struct as_rq *arq; | ||
1065 | long delta_jif; | ||
1066 | |||
1067 | delta_jif = jiffies - ad->last_check_fifo[adir]; | ||
1068 | if (unlikely(delta_jif < 0)) | ||
1069 | delta_jif = -delta_jif; | ||
1070 | if (delta_jif < ad->fifo_expire[adir]) | ||
1071 | return 0; | ||
1072 | |||
1073 | ad->last_check_fifo[adir] = jiffies; | ||
1074 | |||
1075 | if (list_empty(&ad->fifo_list[adir])) | ||
1076 | return 0; | ||
1077 | |||
1078 | arq = list_entry_fifo(ad->fifo_list[adir].next); | ||
1079 | |||
1080 | return time_after(jiffies, arq->expires); | ||
1081 | } | ||
1082 | |||
1083 | /* | ||
1084 | * as_batch_expired returns true if the current batch has expired. A batch | ||
1085 | * is a set of reads or a set of writes. | ||
1086 | */ | ||
1087 | static inline int as_batch_expired(struct as_data *ad) | ||
1088 | { | ||
1089 | if (ad->changed_batch || ad->new_batch) | ||
1090 | return 0; | ||
1091 | |||
1092 | if (ad->batch_data_dir == REQ_SYNC) | ||
1093 | /* TODO! add a check so a complete fifo gets written? */ | ||
1094 | return time_after(jiffies, ad->current_batch_expires); | ||
1095 | |||
1096 | return time_after(jiffies, ad->current_batch_expires) | ||
1097 | || ad->current_write_count == 0; | ||
1098 | } | ||
1099 | |||
1100 | /* | ||
1101 | * move an entry to dispatch queue | ||
1102 | */ | ||
1103 | static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) | ||
1104 | { | ||
1105 | struct request *rq = arq->request; | ||
1106 | const int data_dir = arq->is_sync; | ||
1107 | |||
1108 | BUG_ON(!ON_RB(&arq->rb_node)); | ||
1109 | |||
1110 | as_antic_stop(ad); | ||
1111 | ad->antic_status = ANTIC_OFF; | ||
1112 | |||
1113 | /* | ||
1114 | * This has to be set in order to be correctly updated by | ||
1115 | * as_find_next_arq | ||
1116 | */ | ||
1117 | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | ||
1118 | |||
1119 | if (data_dir == REQ_SYNC) { | ||
1120 | /* In case we have to anticipate after this */ | ||
1121 | copy_io_context(&ad->io_context, &arq->io_context); | ||
1122 | } else { | ||
1123 | if (ad->io_context) { | ||
1124 | put_io_context(ad->io_context); | ||
1125 | ad->io_context = NULL; | ||
1126 | } | ||
1127 | |||
1128 | if (ad->current_write_count != 0) | ||
1129 | ad->current_write_count--; | ||
1130 | } | ||
1131 | ad->ioc_finished = 0; | ||
1132 | |||
1133 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1134 | |||
1135 | /* | ||
1136 | * take it off the sort and fifo list, add to dispatch queue | ||
1137 | */ | ||
1138 | while (!list_empty(&rq->queuelist)) { | ||
1139 | struct request *__rq = list_entry_rq(rq->queuelist.next); | ||
1140 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1141 | |||
1142 | list_del(&__rq->queuelist); | ||
1143 | |||
1144 | elv_dispatch_add_tail(ad->q, __rq); | ||
1145 | |||
1146 | if (__arq->io_context && __arq->io_context->aic) | ||
1147 | atomic_inc(&__arq->io_context->aic->nr_dispatched); | ||
1148 | |||
1149 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1150 | __arq->state = AS_RQ_DISPATCHED; | ||
1151 | |||
1152 | ad->nr_dispatched++; | ||
1153 | } | ||
1154 | |||
1155 | as_remove_queued_request(ad->q, rq); | ||
1156 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1157 | |||
1158 | elv_dispatch_sort(ad->q, rq); | ||
1159 | |||
1160 | arq->state = AS_RQ_DISPATCHED; | ||
1161 | if (arq->io_context && arq->io_context->aic) | ||
1162 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1163 | ad->nr_dispatched++; | ||
1164 | } | ||
1165 | |||
1166 | /* | ||
1167 | * as_dispatch_request selects the best request according to | ||
1168 | * read/write expire, batch expire, etc, and moves it to the dispatch | ||
1169 | * queue. Returns 1 if a request was found, 0 otherwise. | ||
1170 | */ | ||
1171 | static int as_dispatch_request(request_queue_t *q, int force) | ||
1172 | { | ||
1173 | struct as_data *ad = q->elevator->elevator_data; | ||
1174 | struct as_rq *arq; | ||
1175 | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1176 | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | ||
1177 | |||
1178 | if (unlikely(force)) { | ||
1179 | /* | ||
1180 | * Forced dispatch, accounting is useless. Reset | ||
1181 | * accounting states and dump fifo_lists. Note that | ||
1182 | * batch_data_dir is reset to REQ_SYNC to avoid | ||
1183 | * screwing write batch accounting as write batch | ||
1184 | * accounting occurs on W->R transition. | ||
1185 | */ | ||
1186 | int dispatched = 0; | ||
1187 | |||
1188 | ad->batch_data_dir = REQ_SYNC; | ||
1189 | ad->changed_batch = 0; | ||
1190 | ad->new_batch = 0; | ||
1191 | |||
1192 | while (ad->next_arq[REQ_SYNC]) { | ||
1193 | as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); | ||
1194 | dispatched++; | ||
1195 | } | ||
1196 | ad->last_check_fifo[REQ_SYNC] = jiffies; | ||
1197 | |||
1198 | while (ad->next_arq[REQ_ASYNC]) { | ||
1199 | as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); | ||
1200 | dispatched++; | ||
1201 | } | ||
1202 | ad->last_check_fifo[REQ_ASYNC] = jiffies; | ||
1203 | |||
1204 | return dispatched; | ||
1205 | } | ||
1206 | |||
1207 | /* Signal that the write batch was uncontended, so we can't time it */ | ||
1208 | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | ||
1209 | if (ad->current_write_count == 0 || !writes) | ||
1210 | ad->write_batch_idled = 1; | ||
1211 | } | ||
1212 | |||
1213 | if (!(reads || writes) | ||
1214 | || ad->antic_status == ANTIC_WAIT_REQ | ||
1215 | || ad->antic_status == ANTIC_WAIT_NEXT | ||
1216 | || ad->changed_batch) | ||
1217 | return 0; | ||
1218 | |||
1219 | if (!(reads && writes && as_batch_expired(ad))) { | ||
1220 | /* | ||
1221 | * batch is still running or no reads or no writes | ||
1222 | */ | ||
1223 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1224 | |||
1225 | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | ||
1226 | if (as_fifo_expired(ad, REQ_SYNC)) | ||
1227 | goto fifo_expired; | ||
1228 | |||
1229 | if (as_can_anticipate(ad, arq)) { | ||
1230 | as_antic_waitreq(ad); | ||
1231 | return 0; | ||
1232 | } | ||
1233 | } | ||
1234 | |||
1235 | if (arq) { | ||
1236 | /* we have a "next request" */ | ||
1237 | if (reads && !writes) | ||
1238 | ad->current_batch_expires = | ||
1239 | jiffies + ad->batch_expire[REQ_SYNC]; | ||
1240 | goto dispatch_request; | ||
1241 | } | ||
1242 | } | ||
1243 | |||
1244 | /* | ||
1245 | * at this point we are not running a batch. select the appropriate | ||
1246 | * data direction (read / write) | ||
1247 | */ | ||
1248 | |||
1249 | if (reads) { | ||
1250 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); | ||
1251 | |||
1252 | if (writes && ad->batch_data_dir == REQ_SYNC) | ||
1253 | /* | ||
1254 | * Last batch was a read, switch to writes | ||
1255 | */ | ||
1256 | goto dispatch_writes; | ||
1257 | |||
1258 | if (ad->batch_data_dir == REQ_ASYNC) { | ||
1259 | WARN_ON(ad->new_batch); | ||
1260 | ad->changed_batch = 1; | ||
1261 | } | ||
1262 | ad->batch_data_dir = REQ_SYNC; | ||
1263 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1264 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | ||
1265 | goto dispatch_request; | ||
1266 | } | ||
1267 | |||
1268 | /* | ||
1269 | * the last batch was a read | ||
1270 | */ | ||
1271 | |||
1272 | if (writes) { | ||
1273 | dispatch_writes: | ||
1274 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); | ||
1275 | |||
1276 | if (ad->batch_data_dir == REQ_SYNC) { | ||
1277 | ad->changed_batch = 1; | ||
1278 | |||
1279 | /* | ||
1280 | * new_batch might be 1 when the queue runs out of | ||
1281 | * reads. A subsequent submission of a write might | ||
1282 | * cause a change of batch before the read is finished. | ||
1283 | */ | ||
1284 | ad->new_batch = 0; | ||
1285 | } | ||
1286 | ad->batch_data_dir = REQ_ASYNC; | ||
1287 | ad->current_write_count = ad->write_batch_count; | ||
1288 | ad->write_batch_idled = 0; | ||
1289 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1290 | goto dispatch_request; | ||
1291 | } | ||
1292 | |||
1293 | BUG(); | ||
1294 | return 0; | ||
1295 | |||
1296 | dispatch_request: | ||
1297 | /* | ||
1298 | * If a request has expired, service it. | ||
1299 | */ | ||
1300 | |||
1301 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | ||
1302 | fifo_expired: | ||
1303 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1304 | BUG_ON(arq == NULL); | ||
1305 | } | ||
1306 | |||
1307 | if (ad->changed_batch) { | ||
1308 | WARN_ON(ad->new_batch); | ||
1309 | |||
1310 | if (ad->nr_dispatched) | ||
1311 | return 0; | ||
1312 | |||
1313 | if (ad->batch_data_dir == REQ_ASYNC) | ||
1314 | ad->current_batch_expires = jiffies + | ||
1315 | ad->batch_expire[REQ_ASYNC]; | ||
1316 | else | ||
1317 | ad->new_batch = 1; | ||
1318 | |||
1319 | ad->changed_batch = 0; | ||
1320 | } | ||
1321 | |||
1322 | /* | ||
1323 | * arq is the selected appropriate request. | ||
1324 | */ | ||
1325 | as_move_to_dispatch(ad, arq); | ||
1326 | |||
1327 | return 1; | ||
1328 | } | ||
1329 | |||
1330 | /* | ||
1331 | * Add arq to a list behind alias | ||
1332 | */ | ||
1333 | static inline void | ||
1334 | as_add_aliased_request(struct as_data *ad, struct as_rq *arq, | ||
1335 | struct as_rq *alias) | ||
1336 | { | ||
1337 | struct request *req = arq->request; | ||
1338 | struct list_head *insert = alias->request->queuelist.prev; | ||
1339 | |||
1340 | /* | ||
1341 | * Transfer list of aliases | ||
1342 | */ | ||
1343 | while (!list_empty(&req->queuelist)) { | ||
1344 | struct request *__rq = list_entry_rq(req->queuelist.next); | ||
1345 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1346 | |||
1347 | list_move_tail(&__rq->queuelist, &alias->request->queuelist); | ||
1348 | |||
1349 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1350 | } | ||
1351 | |||
1352 | /* | ||
1353 | * Another request with the same start sector on the rbtree. | ||
1354 | * Link this request to that sector. They are untangled in | ||
1355 | * as_move_to_dispatch | ||
1356 | */ | ||
1357 | list_add(&arq->request->queuelist, insert); | ||
1358 | |||
1359 | /* | ||
1360 | * Don't want to have to handle merges. | ||
1361 | */ | ||
1362 | as_del_arq_hash(arq); | ||
1363 | arq->request->flags |= REQ_NOMERGE; | ||
1364 | } | ||
1365 | |||
1366 | /* | ||
1367 | * add arq to rbtree and fifo | ||
1368 | */ | ||
1369 | static void as_add_request(request_queue_t *q, struct request *rq) | ||
1370 | { | ||
1371 | struct as_data *ad = q->elevator->elevator_data; | ||
1372 | struct as_rq *arq = RQ_DATA(rq); | ||
1373 | struct as_rq *alias; | ||
1374 | int data_dir; | ||
1375 | |||
1376 | if (arq->state != AS_RQ_PRESCHED) { | ||
1377 | printk("arq->state: %d\n", arq->state); | ||
1378 | WARN_ON(1); | ||
1379 | } | ||
1380 | arq->state = AS_RQ_NEW; | ||
1381 | |||
1382 | if (rq_data_dir(arq->request) == READ | ||
1383 | || current->flags&PF_SYNCWRITE) | ||
1384 | arq->is_sync = 1; | ||
1385 | else | ||
1386 | arq->is_sync = 0; | ||
1387 | data_dir = arq->is_sync; | ||
1388 | |||
1389 | arq->io_context = as_get_io_context(); | ||
1390 | |||
1391 | if (arq->io_context) { | ||
1392 | as_update_iohist(ad, arq->io_context->aic, arq->request); | ||
1393 | atomic_inc(&arq->io_context->aic->nr_queued); | ||
1394 | } | ||
1395 | |||
1396 | alias = as_add_arq_rb(ad, arq); | ||
1397 | if (!alias) { | ||
1398 | /* | ||
1399 | * set expire time (only used for reads) and add to fifo list | ||
1400 | */ | ||
1401 | arq->expires = jiffies + ad->fifo_expire[data_dir]; | ||
1402 | list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); | ||
1403 | |||
1404 | if (rq_mergeable(arq->request)) | ||
1405 | as_add_arq_hash(ad, arq); | ||
1406 | as_update_arq(ad, arq); /* keep state machine up to date */ | ||
1407 | |||
1408 | } else { | ||
1409 | as_add_aliased_request(ad, arq, alias); | ||
1410 | |||
1411 | /* | ||
1412 | * have we been anticipating this request? | ||
1413 | * or does it come from the same process as the one we are | ||
1414 | * anticipating for? | ||
1415 | */ | ||
1416 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
1417 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1418 | if (as_can_break_anticipation(ad, arq)) | ||
1419 | as_antic_stop(ad); | ||
1420 | } | ||
1421 | } | ||
1422 | |||
1423 | arq->state = AS_RQ_QUEUED; | ||
1424 | } | ||
1425 | |||
1426 | static void as_activate_request(request_queue_t *q, struct request *rq) | ||
1427 | { | ||
1428 | struct as_rq *arq = RQ_DATA(rq); | ||
1429 | |||
1430 | WARN_ON(arq->state != AS_RQ_DISPATCHED); | ||
1431 | arq->state = AS_RQ_REMOVED; | ||
1432 | if (arq->io_context && arq->io_context->aic) | ||
1433 | atomic_dec(&arq->io_context->aic->nr_dispatched); | ||
1434 | } | ||
1435 | |||
1436 | static void as_deactivate_request(request_queue_t *q, struct request *rq) | ||
1437 | { | ||
1438 | struct as_rq *arq = RQ_DATA(rq); | ||
1439 | |||
1440 | WARN_ON(arq->state != AS_RQ_REMOVED); | ||
1441 | arq->state = AS_RQ_DISPATCHED; | ||
1442 | if (arq->io_context && arq->io_context->aic) | ||
1443 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1444 | } | ||
1445 | |||
1446 | /* | ||
1447 | * as_queue_empty tells us if there are requests left in the device. It may | ||
1448 | * not be the case that a driver can get the next request even if the queue | ||
1449 | * is not empty - it is used in the block layer to check for plugging and | ||
1450 | * merging opportunities | ||
1451 | */ | ||
1452 | static int as_queue_empty(request_queue_t *q) | ||
1453 | { | ||
1454 | struct as_data *ad = q->elevator->elevator_data; | ||
1455 | |||
1456 | return list_empty(&ad->fifo_list[REQ_ASYNC]) | ||
1457 | && list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1458 | } | ||
1459 | |||
1460 | static struct request *as_former_request(request_queue_t *q, | ||
1461 | struct request *rq) | ||
1462 | { | ||
1463 | struct as_rq *arq = RQ_DATA(rq); | ||
1464 | struct rb_node *rbprev = rb_prev(&arq->rb_node); | ||
1465 | struct request *ret = NULL; | ||
1466 | |||
1467 | if (rbprev) | ||
1468 | ret = rb_entry_arq(rbprev)->request; | ||
1469 | |||
1470 | return ret; | ||
1471 | } | ||
1472 | |||
1473 | static struct request *as_latter_request(request_queue_t *q, | ||
1474 | struct request *rq) | ||
1475 | { | ||
1476 | struct as_rq *arq = RQ_DATA(rq); | ||
1477 | struct rb_node *rbnext = rb_next(&arq->rb_node); | ||
1478 | struct request *ret = NULL; | ||
1479 | |||
1480 | if (rbnext) | ||
1481 | ret = rb_entry_arq(rbnext)->request; | ||
1482 | |||
1483 | return ret; | ||
1484 | } | ||
1485 | |||
1486 | static int | ||
1487 | as_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
1488 | { | ||
1489 | struct as_data *ad = q->elevator->elevator_data; | ||
1490 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
1491 | struct request *__rq; | ||
1492 | int ret; | ||
1493 | |||
1494 | /* | ||
1495 | * see if the merge hash can satisfy a back merge | ||
1496 | */ | ||
1497 | __rq = as_find_arq_hash(ad, bio->bi_sector); | ||
1498 | if (__rq) { | ||
1499 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | ||
1500 | |||
1501 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1502 | ret = ELEVATOR_BACK_MERGE; | ||
1503 | goto out; | ||
1504 | } | ||
1505 | } | ||
1506 | |||
1507 | /* | ||
1508 | * check for front merge | ||
1509 | */ | ||
1510 | __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); | ||
1511 | if (__rq) { | ||
1512 | BUG_ON(rb_key != rq_rb_key(__rq)); | ||
1513 | |||
1514 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1515 | ret = ELEVATOR_FRONT_MERGE; | ||
1516 | goto out; | ||
1517 | } | ||
1518 | } | ||
1519 | |||
1520 | return ELEVATOR_NO_MERGE; | ||
1521 | out: | ||
1522 | if (ret) { | ||
1523 | if (rq_mergeable(__rq)) | ||
1524 | as_hot_arq_hash(ad, RQ_DATA(__rq)); | ||
1525 | } | ||
1526 | *req = __rq; | ||
1527 | return ret; | ||
1528 | } | ||
1529 | |||
1530 | static void as_merged_request(request_queue_t *q, struct request *req) | ||
1531 | { | ||
1532 | struct as_data *ad = q->elevator->elevator_data; | ||
1533 | struct as_rq *arq = RQ_DATA(req); | ||
1534 | |||
1535 | /* | ||
1536 | * hash always needs to be repositioned, key is end sector | ||
1537 | */ | ||
1538 | as_del_arq_hash(arq); | ||
1539 | as_add_arq_hash(ad, arq); | ||
1540 | |||
1541 | /* | ||
1542 | * if the merge was a front merge, we need to reposition request | ||
1543 | */ | ||
1544 | if (rq_rb_key(req) != arq->rb_key) { | ||
1545 | struct as_rq *alias, *next_arq = NULL; | ||
1546 | |||
1547 | if (ad->next_arq[arq->is_sync] == arq) | ||
1548 | next_arq = as_find_next_arq(ad, arq); | ||
1549 | |||
1550 | /* | ||
1551 | * Note! We should really be moving any old aliased requests | ||
1552 | * off this request and try to insert them into the rbtree. We | ||
1553 | * currently don't bother. Ditto the next function. | ||
1554 | */ | ||
1555 | as_del_arq_rb(ad, arq); | ||
1556 | if ((alias = as_add_arq_rb(ad, arq))) { | ||
1557 | list_del_init(&arq->fifo); | ||
1558 | as_add_aliased_request(ad, arq, alias); | ||
1559 | if (next_arq) | ||
1560 | ad->next_arq[arq->is_sync] = next_arq; | ||
1561 | } | ||
1562 | /* | ||
1563 | * Note! At this stage of this and the next function, our next | ||
1564 | * request may not be optimal - eg the request may have "grown" | ||
1565 | * behind the disk head. We currently don't bother adjusting. | ||
1566 | */ | ||
1567 | } | ||
1568 | } | ||
1569 | |||
1570 | static void as_merged_requests(request_queue_t *q, struct request *req, | ||
1571 | struct request *next) | ||
1572 | { | ||
1573 | struct as_data *ad = q->elevator->elevator_data; | ||
1574 | struct as_rq *arq = RQ_DATA(req); | ||
1575 | struct as_rq *anext = RQ_DATA(next); | ||
1576 | |||
1577 | BUG_ON(!arq); | ||
1578 | BUG_ON(!anext); | ||
1579 | |||
1580 | /* | ||
1581 | * reposition arq (this is the merged request) in hash, and in rbtree | ||
1582 | * in case of a front merge | ||
1583 | */ | ||
1584 | as_del_arq_hash(arq); | ||
1585 | as_add_arq_hash(ad, arq); | ||
1586 | |||
1587 | if (rq_rb_key(req) != arq->rb_key) { | ||
1588 | struct as_rq *alias, *next_arq = NULL; | ||
1589 | |||
1590 | if (ad->next_arq[arq->is_sync] == arq) | ||
1591 | next_arq = as_find_next_arq(ad, arq); | ||
1592 | |||
1593 | as_del_arq_rb(ad, arq); | ||
1594 | if ((alias = as_add_arq_rb(ad, arq))) { | ||
1595 | list_del_init(&arq->fifo); | ||
1596 | as_add_aliased_request(ad, arq, alias); | ||
1597 | if (next_arq) | ||
1598 | ad->next_arq[arq->is_sync] = next_arq; | ||
1599 | } | ||
1600 | } | ||
1601 | |||
1602 | /* | ||
1603 | * if anext expires before arq, assign its expire time to arq | ||
1604 | * and move into anext position (anext will be deleted) in fifo | ||
1605 | */ | ||
1606 | if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { | ||
1607 | if (time_before(anext->expires, arq->expires)) { | ||
1608 | list_move(&arq->fifo, &anext->fifo); | ||
1609 | arq->expires = anext->expires; | ||
1610 | /* | ||
1611 | * Don't copy here but swap, because when anext is | ||
1612 | * removed below, it must contain the unused context | ||
1613 | */ | ||
1614 | swap_io_context(&arq->io_context, &anext->io_context); | ||
1615 | } | ||
1616 | } | ||
1617 | |||
1618 | /* | ||
1619 | * Transfer list of aliases | ||
1620 | */ | ||
1621 | while (!list_empty(&next->queuelist)) { | ||
1622 | struct request *__rq = list_entry_rq(next->queuelist.next); | ||
1623 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1624 | |||
1625 | list_move_tail(&__rq->queuelist, &req->queuelist); | ||
1626 | |||
1627 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1628 | } | ||
1629 | |||
1630 | /* | ||
1631 | * kill knowledge of next, this one is a goner | ||
1632 | */ | ||
1633 | as_remove_queued_request(q, next); | ||
1634 | as_put_io_context(anext); | ||
1635 | |||
1636 | anext->state = AS_RQ_MERGED; | ||
1637 | } | ||
1638 | |||
1639 | /* | ||
1640 | * This is executed in a "deferred" process context, by kblockd. It calls the | ||
1641 | * driver's request_fn so the driver can submit that request. | ||
1642 | * | ||
1643 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | ||
1644 | * state before calling, and don't rely on any state over calls. | ||
1645 | * | ||
1646 | * FIXME! dispatch queue is not a queue at all! | ||
1647 | */ | ||
1648 | static void as_work_handler(void *data) | ||
1649 | { | ||
1650 | struct request_queue *q = data; | ||
1651 | unsigned long flags; | ||
1652 | |||
1653 | spin_lock_irqsave(q->queue_lock, flags); | ||
1654 | if (!as_queue_empty(q)) | ||
1655 | q->request_fn(q); | ||
1656 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1657 | } | ||
1658 | |||
1659 | static void as_put_request(request_queue_t *q, struct request *rq) | ||
1660 | { | ||
1661 | struct as_data *ad = q->elevator->elevator_data; | ||
1662 | struct as_rq *arq = RQ_DATA(rq); | ||
1663 | |||
1664 | if (!arq) { | ||
1665 | WARN_ON(1); | ||
1666 | return; | ||
1667 | } | ||
1668 | |||
1669 | if (unlikely(arq->state != AS_RQ_POSTSCHED && | ||
1670 | arq->state != AS_RQ_PRESCHED && | ||
1671 | arq->state != AS_RQ_MERGED)) { | ||
1672 | printk("arq->state %d\n", arq->state); | ||
1673 | WARN_ON(1); | ||
1674 | } | ||
1675 | |||
1676 | mempool_free(arq, ad->arq_pool); | ||
1677 | rq->elevator_private = NULL; | ||
1678 | } | ||
1679 | |||
1680 | static int as_set_request(request_queue_t *q, struct request *rq, | ||
1681 | struct bio *bio, gfp_t gfp_mask) | ||
1682 | { | ||
1683 | struct as_data *ad = q->elevator->elevator_data; | ||
1684 | struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); | ||
1685 | |||
1686 | if (arq) { | ||
1687 | memset(arq, 0, sizeof(*arq)); | ||
1688 | RB_CLEAR(&arq->rb_node); | ||
1689 | arq->request = rq; | ||
1690 | arq->state = AS_RQ_PRESCHED; | ||
1691 | arq->io_context = NULL; | ||
1692 | INIT_LIST_HEAD(&arq->hash); | ||
1693 | arq->on_hash = 0; | ||
1694 | INIT_LIST_HEAD(&arq->fifo); | ||
1695 | rq->elevator_private = arq; | ||
1696 | return 0; | ||
1697 | } | ||
1698 | |||
1699 | return 1; | ||
1700 | } | ||
1701 | |||
1702 | static int as_may_queue(request_queue_t *q, int rw, struct bio *bio) | ||
1703 | { | ||
1704 | int ret = ELV_MQUEUE_MAY; | ||
1705 | struct as_data *ad = q->elevator->elevator_data; | ||
1706 | struct io_context *ioc; | ||
1707 | if (ad->antic_status == ANTIC_WAIT_REQ || | ||
1708 | ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1709 | ioc = as_get_io_context(); | ||
1710 | if (ad->io_context == ioc) | ||
1711 | ret = ELV_MQUEUE_MUST; | ||
1712 | put_io_context(ioc); | ||
1713 | } | ||
1714 | |||
1715 | return ret; | ||
1716 | } | ||
1717 | |||
1718 | static void as_exit_queue(elevator_t *e) | ||
1719 | { | ||
1720 | struct as_data *ad = e->elevator_data; | ||
1721 | |||
1722 | del_timer_sync(&ad->antic_timer); | ||
1723 | kblockd_flush(); | ||
1724 | |||
1725 | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | ||
1726 | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | ||
1727 | |||
1728 | mempool_destroy(ad->arq_pool); | ||
1729 | put_io_context(ad->io_context); | ||
1730 | kfree(ad->hash); | ||
1731 | kfree(ad); | ||
1732 | } | ||
1733 | |||
1734 | /* | ||
1735 | * initialize elevator private data (as_data), and alloc a arq for | ||
1736 | * each request on the free lists | ||
1737 | */ | ||
1738 | static int as_init_queue(request_queue_t *q, elevator_t *e) | ||
1739 | { | ||
1740 | struct as_data *ad; | ||
1741 | int i; | ||
1742 | |||
1743 | if (!arq_pool) | ||
1744 | return -ENOMEM; | ||
1745 | |||
1746 | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node); | ||
1747 | if (!ad) | ||
1748 | return -ENOMEM; | ||
1749 | memset(ad, 0, sizeof(*ad)); | ||
1750 | |||
1751 | ad->q = q; /* Identify what queue the data belongs to */ | ||
1752 | |||
1753 | ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES, | ||
1754 | GFP_KERNEL, q->node); | ||
1755 | if (!ad->hash) { | ||
1756 | kfree(ad); | ||
1757 | return -ENOMEM; | ||
1758 | } | ||
1759 | |||
1760 | ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
1761 | mempool_free_slab, arq_pool, q->node); | ||
1762 | if (!ad->arq_pool) { | ||
1763 | kfree(ad->hash); | ||
1764 | kfree(ad); | ||
1765 | return -ENOMEM; | ||
1766 | } | ||
1767 | |||
1768 | /* anticipatory scheduling helpers */ | ||
1769 | ad->antic_timer.function = as_antic_timeout; | ||
1770 | ad->antic_timer.data = (unsigned long)q; | ||
1771 | init_timer(&ad->antic_timer); | ||
1772 | INIT_WORK(&ad->antic_work, as_work_handler, q); | ||
1773 | |||
1774 | for (i = 0; i < AS_HASH_ENTRIES; i++) | ||
1775 | INIT_LIST_HEAD(&ad->hash[i]); | ||
1776 | |||
1777 | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | ||
1778 | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | ||
1779 | ad->sort_list[REQ_SYNC] = RB_ROOT; | ||
1780 | ad->sort_list[REQ_ASYNC] = RB_ROOT; | ||
1781 | ad->fifo_expire[REQ_SYNC] = default_read_expire; | ||
1782 | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | ||
1783 | ad->antic_expire = default_antic_expire; | ||
1784 | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | ||
1785 | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | ||
1786 | e->elevator_data = ad; | ||
1787 | |||
1788 | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | ||
1789 | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | ||
1790 | if (ad->write_batch_count < 2) | ||
1791 | ad->write_batch_count = 2; | ||
1792 | |||
1793 | return 0; | ||
1794 | } | ||
1795 | |||
1796 | /* | ||
1797 | * sysfs parts below | ||
1798 | */ | ||
1799 | struct as_fs_entry { | ||
1800 | struct attribute attr; | ||
1801 | ssize_t (*show)(struct as_data *, char *); | ||
1802 | ssize_t (*store)(struct as_data *, const char *, size_t); | ||
1803 | }; | ||
1804 | |||
1805 | static ssize_t | ||
1806 | as_var_show(unsigned int var, char *page) | ||
1807 | { | ||
1808 | return sprintf(page, "%d\n", var); | ||
1809 | } | ||
1810 | |||
1811 | static ssize_t | ||
1812 | as_var_store(unsigned long *var, const char *page, size_t count) | ||
1813 | { | ||
1814 | char *p = (char *) page; | ||
1815 | |||
1816 | *var = simple_strtoul(p, &p, 10); | ||
1817 | return count; | ||
1818 | } | ||
1819 | |||
1820 | static ssize_t as_est_show(struct as_data *ad, char *page) | ||
1821 | { | ||
1822 | int pos = 0; | ||
1823 | |||
1824 | pos += sprintf(page+pos, "%lu %% exit probability\n", | ||
1825 | 100*ad->exit_prob/256); | ||
1826 | pos += sprintf(page+pos, "%lu %% probability of exiting without a " | ||
1827 | "cooperating process submitting IO\n", | ||
1828 | 100*ad->exit_no_coop/256); | ||
1829 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | ||
1830 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", | ||
1831 | (unsigned long long)ad->new_seek_mean); | ||
1832 | |||
1833 | return pos; | ||
1834 | } | ||
1835 | |||
1836 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | ||
1837 | static ssize_t __FUNC(struct as_data *ad, char *page) \ | ||
1838 | { \ | ||
1839 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | ||
1840 | } | ||
1841 | SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); | ||
1842 | SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); | ||
1843 | SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); | ||
1844 | SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); | ||
1845 | SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); | ||
1846 | #undef SHOW_FUNCTION | ||
1847 | |||
1848 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | ||
1849 | static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ | ||
1850 | { \ | ||
1851 | int ret = as_var_store(__PTR, (page), count); \ | ||
1852 | if (*(__PTR) < (MIN)) \ | ||
1853 | *(__PTR) = (MIN); \ | ||
1854 | else if (*(__PTR) > (MAX)) \ | ||
1855 | *(__PTR) = (MAX); \ | ||
1856 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | ||
1857 | return ret; \ | ||
1858 | } | ||
1859 | STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | ||
1860 | STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | ||
1861 | STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); | ||
1862 | STORE_FUNCTION(as_read_batchexpire_store, | ||
1863 | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | ||
1864 | STORE_FUNCTION(as_write_batchexpire_store, | ||
1865 | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | ||
1866 | #undef STORE_FUNCTION | ||
1867 | |||
1868 | static struct as_fs_entry as_est_entry = { | ||
1869 | .attr = {.name = "est_time", .mode = S_IRUGO }, | ||
1870 | .show = as_est_show, | ||
1871 | }; | ||
1872 | static struct as_fs_entry as_readexpire_entry = { | ||
1873 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1874 | .show = as_readexpire_show, | ||
1875 | .store = as_readexpire_store, | ||
1876 | }; | ||
1877 | static struct as_fs_entry as_writeexpire_entry = { | ||
1878 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1879 | .show = as_writeexpire_show, | ||
1880 | .store = as_writeexpire_store, | ||
1881 | }; | ||
1882 | static struct as_fs_entry as_anticexpire_entry = { | ||
1883 | .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1884 | .show = as_anticexpire_show, | ||
1885 | .store = as_anticexpire_store, | ||
1886 | }; | ||
1887 | static struct as_fs_entry as_read_batchexpire_entry = { | ||
1888 | .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1889 | .show = as_read_batchexpire_show, | ||
1890 | .store = as_read_batchexpire_store, | ||
1891 | }; | ||
1892 | static struct as_fs_entry as_write_batchexpire_entry = { | ||
1893 | .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1894 | .show = as_write_batchexpire_show, | ||
1895 | .store = as_write_batchexpire_store, | ||
1896 | }; | ||
1897 | |||
1898 | static struct attribute *default_attrs[] = { | ||
1899 | &as_est_entry.attr, | ||
1900 | &as_readexpire_entry.attr, | ||
1901 | &as_writeexpire_entry.attr, | ||
1902 | &as_anticexpire_entry.attr, | ||
1903 | &as_read_batchexpire_entry.attr, | ||
1904 | &as_write_batchexpire_entry.attr, | ||
1905 | NULL, | ||
1906 | }; | ||
1907 | |||
1908 | #define to_as(atr) container_of((atr), struct as_fs_entry, attr) | ||
1909 | |||
1910 | static ssize_t | ||
1911 | as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
1912 | { | ||
1913 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1914 | struct as_fs_entry *entry = to_as(attr); | ||
1915 | |||
1916 | if (!entry->show) | ||
1917 | return -EIO; | ||
1918 | |||
1919 | return entry->show(e->elevator_data, page); | ||
1920 | } | ||
1921 | |||
1922 | static ssize_t | ||
1923 | as_attr_store(struct kobject *kobj, struct attribute *attr, | ||
1924 | const char *page, size_t length) | ||
1925 | { | ||
1926 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1927 | struct as_fs_entry *entry = to_as(attr); | ||
1928 | |||
1929 | if (!entry->store) | ||
1930 | return -EIO; | ||
1931 | |||
1932 | return entry->store(e->elevator_data, page, length); | ||
1933 | } | ||
1934 | |||
1935 | static struct sysfs_ops as_sysfs_ops = { | ||
1936 | .show = as_attr_show, | ||
1937 | .store = as_attr_store, | ||
1938 | }; | ||
1939 | |||
1940 | static struct kobj_type as_ktype = { | ||
1941 | .sysfs_ops = &as_sysfs_ops, | ||
1942 | .default_attrs = default_attrs, | ||
1943 | }; | ||
1944 | |||
1945 | static struct elevator_type iosched_as = { | ||
1946 | .ops = { | ||
1947 | .elevator_merge_fn = as_merge, | ||
1948 | .elevator_merged_fn = as_merged_request, | ||
1949 | .elevator_merge_req_fn = as_merged_requests, | ||
1950 | .elevator_dispatch_fn = as_dispatch_request, | ||
1951 | .elevator_add_req_fn = as_add_request, | ||
1952 | .elevator_activate_req_fn = as_activate_request, | ||
1953 | .elevator_deactivate_req_fn = as_deactivate_request, | ||
1954 | .elevator_queue_empty_fn = as_queue_empty, | ||
1955 | .elevator_completed_req_fn = as_completed_request, | ||
1956 | .elevator_former_req_fn = as_former_request, | ||
1957 | .elevator_latter_req_fn = as_latter_request, | ||
1958 | .elevator_set_req_fn = as_set_request, | ||
1959 | .elevator_put_req_fn = as_put_request, | ||
1960 | .elevator_may_queue_fn = as_may_queue, | ||
1961 | .elevator_init_fn = as_init_queue, | ||
1962 | .elevator_exit_fn = as_exit_queue, | ||
1963 | }, | ||
1964 | |||
1965 | .elevator_ktype = &as_ktype, | ||
1966 | .elevator_name = "anticipatory", | ||
1967 | .elevator_owner = THIS_MODULE, | ||
1968 | }; | ||
1969 | |||
1970 | static int __init as_init(void) | ||
1971 | { | ||
1972 | int ret; | ||
1973 | |||
1974 | arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), | ||
1975 | 0, 0, NULL, NULL); | ||
1976 | if (!arq_pool) | ||
1977 | return -ENOMEM; | ||
1978 | |||
1979 | ret = elv_register(&iosched_as); | ||
1980 | if (!ret) { | ||
1981 | /* | ||
1982 | * don't allow AS to get unregistered, since we would have | ||
1983 | * to browse all tasks in the system and release their | ||
1984 | * as_io_context first | ||
1985 | */ | ||
1986 | __module_get(THIS_MODULE); | ||
1987 | return 0; | ||
1988 | } | ||
1989 | |||
1990 | kmem_cache_destroy(arq_pool); | ||
1991 | return ret; | ||
1992 | } | ||
1993 | |||
1994 | static void __exit as_exit(void) | ||
1995 | { | ||
1996 | elv_unregister(&iosched_as); | ||
1997 | kmem_cache_destroy(arq_pool); | ||
1998 | } | ||
1999 | |||
2000 | module_init(as_init); | ||
2001 | module_exit(as_exit); | ||
2002 | |||
2003 | MODULE_AUTHOR("Nick Piggin"); | ||
2004 | MODULE_LICENSE("GPL"); | ||
2005 | MODULE_DESCRIPTION("anticipatory IO scheduler"); | ||