diff options
Diffstat (limited to 'arch')
-rw-r--r-- | arch/arm/mach-tegra/Kconfig | 7 | ||||
-rw-r--r-- | arch/arm/mach-tegra/Makefile | 1 | ||||
-rw-r--r-- | arch/arm/mach-tegra/common.c | 7 | ||||
-rw-r--r-- | arch/arm/mach-tegra/dma.c | 752 | ||||
-rw-r--r-- | arch/arm/mach-tegra/include/mach/dma.h | 155 |
5 files changed, 922 insertions, 0 deletions
diff --git a/arch/arm/mach-tegra/Kconfig b/arch/arm/mach-tegra/Kconfig index a57713c1954a..8e32d9d7ec8d 100644 --- a/arch/arm/mach-tegra/Kconfig +++ b/arch/arm/mach-tegra/Kconfig | |||
@@ -47,4 +47,11 @@ config TEGRA_DEBUG_UARTE | |||
47 | 47 | ||
48 | endchoice | 48 | endchoice |
49 | 49 | ||
50 | config TEGRA_SYSTEM_DMA | ||
51 | bool "Enable system DMA driver for NVIDIA Tegra SoCs" | ||
52 | default y | ||
53 | help | ||
54 | Adds system DMA functionality for NVIDIA Tegra SoCs, used by | ||
55 | several Tegra device drivers | ||
56 | |||
50 | endif | 57 | endif |
diff --git a/arch/arm/mach-tegra/Makefile b/arch/arm/mach-tegra/Makefile index 2a3762179ccf..fc069a9e0f6b 100644 --- a/arch/arm/mach-tegra/Makefile +++ b/arch/arm/mach-tegra/Makefile | |||
@@ -12,6 +12,7 @@ obj-$(CONFIG_ARCH_TEGRA_2x_SOC) += tegra2_dvfs.o | |||
12 | obj-$(CONFIG_ARCH_TEGRA_2x_SOC) += pinmux-t2-tables.o | 12 | obj-$(CONFIG_ARCH_TEGRA_2x_SOC) += pinmux-t2-tables.o |
13 | obj-$(CONFIG_SMP) += platsmp.o localtimer.o headsmp.o | 13 | obj-$(CONFIG_SMP) += platsmp.o localtimer.o headsmp.o |
14 | obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o | 14 | obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o |
15 | obj-$(CONFIG_TEGRA_SYSTEM_DMA) += dma.o | ||
15 | obj-$(CONFIG_CPU_FREQ) += cpu-tegra.o | 16 | obj-$(CONFIG_CPU_FREQ) += cpu-tegra.o |
16 | 17 | ||
17 | obj-${CONFIG_MACH_HARMONY} += board-harmony.o | 18 | obj-${CONFIG_MACH_HARMONY} += board-harmony.o |
diff --git a/arch/arm/mach-tegra/common.c b/arch/arm/mach-tegra/common.c index 445104a993ba..7c91e2b9d643 100644 --- a/arch/arm/mach-tegra/common.c +++ b/arch/arm/mach-tegra/common.c | |||
@@ -19,10 +19,13 @@ | |||
19 | 19 | ||
20 | #include <linux/init.h> | 20 | #include <linux/init.h> |
21 | #include <linux/io.h> | 21 | #include <linux/io.h> |
22 | #include <linux/clk.h> | ||
23 | #include <linux/delay.h> | ||
22 | 24 | ||
23 | #include <asm/hardware/cache-l2x0.h> | 25 | #include <asm/hardware/cache-l2x0.h> |
24 | 26 | ||
25 | #include <mach/iomap.h> | 27 | #include <mach/iomap.h> |
28 | #include <mach/dma.h> | ||
26 | 29 | ||
27 | #include "board.h" | 30 | #include "board.h" |
28 | #include "clock.h" | 31 | #include "clock.h" |
@@ -52,6 +55,7 @@ void __init tegra_init_cache(void) | |||
52 | 55 | ||
53 | l2x0_init(p, 0x6C080001, 0x8200c3fe); | 56 | l2x0_init(p, 0x6C080001, 0x8200c3fe); |
54 | #endif | 57 | #endif |
58 | |||
55 | } | 59 | } |
56 | 60 | ||
57 | void __init tegra_common_init(void) | 61 | void __init tegra_common_init(void) |
@@ -60,4 +64,7 @@ void __init tegra_common_init(void) | |||
60 | tegra_init_clock(); | 64 | tegra_init_clock(); |
61 | tegra_clk_init_from_table(common_clk_init_table); | 65 | tegra_clk_init_from_table(common_clk_init_table); |
62 | tegra_init_cache(); | 66 | tegra_init_cache(); |
67 | #ifdef CONFIG_TEGRA_SYSTEM_DMA | ||
68 | tegra_dma_init(); | ||
69 | #endif | ||
63 | } | 70 | } |
diff --git a/arch/arm/mach-tegra/dma.c b/arch/arm/mach-tegra/dma.c new file mode 100644 index 000000000000..edda6ec5e925 --- /dev/null +++ b/arch/arm/mach-tegra/dma.c | |||
@@ -0,0 +1,752 @@ | |||
1 | /* | ||
2 | * arch/arm/mach-tegra/dma.c | ||
3 | * | ||
4 | * System DMA driver for NVIDIA Tegra SoCs | ||
5 | * | ||
6 | * Copyright (c) 2008-2009, NVIDIA Corporation. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
16 | * more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License along | ||
19 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
20 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
21 | */ | ||
22 | |||
23 | #include <linux/io.h> | ||
24 | #include <linux/interrupt.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/spinlock.h> | ||
27 | #include <linux/err.h> | ||
28 | #include <linux/irq.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <mach/dma.h> | ||
31 | #include <mach/irqs.h> | ||
32 | #include <mach/iomap.h> | ||
33 | |||
34 | #define APB_DMA_GEN 0x000 | ||
35 | #define GEN_ENABLE (1<<31) | ||
36 | |||
37 | #define APB_DMA_CNTRL 0x010 | ||
38 | |||
39 | #define APB_DMA_IRQ_MASK 0x01c | ||
40 | |||
41 | #define APB_DMA_IRQ_MASK_SET 0x020 | ||
42 | |||
43 | #define APB_DMA_CHAN_CSR 0x000 | ||
44 | #define CSR_ENB (1<<31) | ||
45 | #define CSR_IE_EOC (1<<30) | ||
46 | #define CSR_HOLD (1<<29) | ||
47 | #define CSR_DIR (1<<28) | ||
48 | #define CSR_ONCE (1<<27) | ||
49 | #define CSR_FLOW (1<<21) | ||
50 | #define CSR_REQ_SEL_SHIFT 16 | ||
51 | #define CSR_REQ_SEL_MASK (0x1F<<CSR_REQ_SEL_SHIFT) | ||
52 | #define CSR_REQ_SEL_INVALID (31<<CSR_REQ_SEL_SHIFT) | ||
53 | #define CSR_WCOUNT_SHIFT 2 | ||
54 | #define CSR_WCOUNT_MASK 0xFFFC | ||
55 | |||
56 | #define APB_DMA_CHAN_STA 0x004 | ||
57 | #define STA_BUSY (1<<31) | ||
58 | #define STA_ISE_EOC (1<<30) | ||
59 | #define STA_HALT (1<<29) | ||
60 | #define STA_PING_PONG (1<<28) | ||
61 | #define STA_COUNT_SHIFT 2 | ||
62 | #define STA_COUNT_MASK 0xFFFC | ||
63 | |||
64 | #define APB_DMA_CHAN_AHB_PTR 0x010 | ||
65 | |||
66 | #define APB_DMA_CHAN_AHB_SEQ 0x014 | ||
67 | #define AHB_SEQ_INTR_ENB (1<<31) | ||
68 | #define AHB_SEQ_BUS_WIDTH_SHIFT 28 | ||
69 | #define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
70 | #define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
71 | #define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
72 | #define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
73 | #define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
74 | #define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT) | ||
75 | #define AHB_SEQ_DATA_SWAP (1<<27) | ||
76 | #define AHB_SEQ_BURST_MASK (0x7<<24) | ||
77 | #define AHB_SEQ_BURST_1 (4<<24) | ||
78 | #define AHB_SEQ_BURST_4 (5<<24) | ||
79 | #define AHB_SEQ_BURST_8 (6<<24) | ||
80 | #define AHB_SEQ_DBL_BUF (1<<19) | ||
81 | #define AHB_SEQ_WRAP_SHIFT 16 | ||
82 | #define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT) | ||
83 | |||
84 | #define APB_DMA_CHAN_APB_PTR 0x018 | ||
85 | |||
86 | #define APB_DMA_CHAN_APB_SEQ 0x01c | ||
87 | #define APB_SEQ_BUS_WIDTH_SHIFT 28 | ||
88 | #define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
89 | #define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
90 | #define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
91 | #define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
92 | #define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
93 | #define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT) | ||
94 | #define APB_SEQ_DATA_SWAP (1<<27) | ||
95 | #define APB_SEQ_WRAP_SHIFT 16 | ||
96 | #define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT) | ||
97 | |||
98 | #define TEGRA_SYSTEM_DMA_CH_NR 16 | ||
99 | #define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4 | ||
100 | #define TEGRA_SYSTEM_DMA_CH_MIN 0 | ||
101 | #define TEGRA_SYSTEM_DMA_CH_MAX \ | ||
102 | (TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1) | ||
103 | |||
104 | #define NV_DMA_MAX_TRASFER_SIZE 0x10000 | ||
105 | |||
106 | const unsigned int ahb_addr_wrap_table[8] = { | ||
107 | 0, 32, 64, 128, 256, 512, 1024, 2048 | ||
108 | }; | ||
109 | |||
110 | const unsigned int apb_addr_wrap_table[8] = {0, 1, 2, 4, 8, 16, 32, 64}; | ||
111 | |||
112 | const unsigned int bus_width_table[5] = {8, 16, 32, 64, 128}; | ||
113 | |||
114 | #define TEGRA_DMA_NAME_SIZE 16 | ||
115 | struct tegra_dma_channel { | ||
116 | struct list_head list; | ||
117 | int id; | ||
118 | spinlock_t lock; | ||
119 | char name[TEGRA_DMA_NAME_SIZE]; | ||
120 | void __iomem *addr; | ||
121 | int mode; | ||
122 | int irq; | ||
123 | |||
124 | /* Register shadow */ | ||
125 | u32 csr; | ||
126 | u32 ahb_seq; | ||
127 | u32 ahb_ptr; | ||
128 | u32 apb_seq; | ||
129 | u32 apb_ptr; | ||
130 | }; | ||
131 | |||
132 | #define NV_DMA_MAX_CHANNELS 32 | ||
133 | |||
134 | static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS); | ||
135 | static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS]; | ||
136 | |||
137 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, | ||
138 | struct tegra_dma_req *req); | ||
139 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, | ||
140 | struct tegra_dma_req *req); | ||
141 | static void tegra_dma_init_hw(struct tegra_dma_channel *ch); | ||
142 | static void tegra_dma_stop(struct tegra_dma_channel *ch); | ||
143 | |||
144 | void tegra_dma_flush(struct tegra_dma_channel *ch) | ||
145 | { | ||
146 | } | ||
147 | EXPORT_SYMBOL(tegra_dma_flush); | ||
148 | |||
149 | void tegra_dma_dequeue(struct tegra_dma_channel *ch) | ||
150 | { | ||
151 | struct tegra_dma_req *req; | ||
152 | |||
153 | req = list_entry(ch->list.next, typeof(*req), node); | ||
154 | |||
155 | tegra_dma_dequeue_req(ch, req); | ||
156 | return; | ||
157 | } | ||
158 | |||
159 | void tegra_dma_stop(struct tegra_dma_channel *ch) | ||
160 | { | ||
161 | unsigned int csr; | ||
162 | unsigned int status; | ||
163 | |||
164 | csr = ch->csr; | ||
165 | csr &= ~CSR_IE_EOC; | ||
166 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); | ||
167 | |||
168 | csr &= ~CSR_ENB; | ||
169 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); | ||
170 | |||
171 | status = readl(ch->addr + APB_DMA_CHAN_STA); | ||
172 | if (status & STA_ISE_EOC) | ||
173 | writel(status, ch->addr + APB_DMA_CHAN_STA); | ||
174 | } | ||
175 | |||
176 | int tegra_dma_cancel(struct tegra_dma_channel *ch) | ||
177 | { | ||
178 | unsigned int csr; | ||
179 | unsigned long irq_flags; | ||
180 | |||
181 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
182 | while (!list_empty(&ch->list)) | ||
183 | list_del(ch->list.next); | ||
184 | |||
185 | csr = ch->csr; | ||
186 | csr &= ~CSR_REQ_SEL_MASK; | ||
187 | csr |= CSR_REQ_SEL_INVALID; | ||
188 | |||
189 | /* Set the enable as that is not shadowed */ | ||
190 | csr |= CSR_ENB; | ||
191 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); | ||
192 | |||
193 | tegra_dma_stop(ch); | ||
194 | |||
195 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
196 | return 0; | ||
197 | } | ||
198 | |||
199 | int tegra_dma_dequeue_req(struct tegra_dma_channel *ch, | ||
200 | struct tegra_dma_req *_req) | ||
201 | { | ||
202 | unsigned int csr; | ||
203 | unsigned int status; | ||
204 | struct tegra_dma_req *req = NULL; | ||
205 | int found = 0; | ||
206 | unsigned long irq_flags; | ||
207 | int to_transfer; | ||
208 | int req_transfer_count; | ||
209 | |||
210 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
211 | list_for_each_entry(req, &ch->list, node) { | ||
212 | if (req == _req) { | ||
213 | list_del(&req->node); | ||
214 | found = 1; | ||
215 | break; | ||
216 | } | ||
217 | } | ||
218 | if (!found) { | ||
219 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
220 | return 0; | ||
221 | } | ||
222 | |||
223 | /* STOP the DMA and get the transfer count. | ||
224 | * Getting the transfer count is tricky. | ||
225 | * - Change the source selector to invalid to stop the DMA from | ||
226 | * FIFO to memory. | ||
227 | * - Read the status register to know the number of pending | ||
228 | * bytes to be transfered. | ||
229 | * - Finally stop or program the DMA to the next buffer in the | ||
230 | * list. | ||
231 | */ | ||
232 | csr = ch->csr; | ||
233 | csr &= ~CSR_REQ_SEL_MASK; | ||
234 | csr |= CSR_REQ_SEL_INVALID; | ||
235 | |||
236 | /* Set the enable as that is not shadowed */ | ||
237 | csr |= CSR_ENB; | ||
238 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); | ||
239 | |||
240 | /* Get the transfer count */ | ||
241 | status = readl(ch->addr + APB_DMA_CHAN_STA); | ||
242 | to_transfer = (status & STA_COUNT_MASK) >> STA_COUNT_SHIFT; | ||
243 | req_transfer_count = (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; | ||
244 | req_transfer_count += 1; | ||
245 | to_transfer += 1; | ||
246 | |||
247 | req->bytes_transferred = req_transfer_count; | ||
248 | |||
249 | if (status & STA_BUSY) | ||
250 | req->bytes_transferred -= to_transfer; | ||
251 | |||
252 | /* In continous transfer mode, DMA only tracks the count of the | ||
253 | * half DMA buffer. So, if the DMA already finished half the DMA | ||
254 | * then add the half buffer to the completed count. | ||
255 | * | ||
256 | * FIXME: There can be a race here. What if the req to | ||
257 | * dequue happens at the same time as the DMA just moved to | ||
258 | * the new buffer and SW didn't yet received the interrupt? | ||
259 | */ | ||
260 | if (ch->mode & TEGRA_DMA_MODE_CONTINOUS) | ||
261 | if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) | ||
262 | req->bytes_transferred += req_transfer_count; | ||
263 | |||
264 | req->bytes_transferred *= 4; | ||
265 | |||
266 | tegra_dma_stop(ch); | ||
267 | if (!list_empty(&ch->list)) { | ||
268 | /* if the list is not empty, queue the next request */ | ||
269 | struct tegra_dma_req *next_req; | ||
270 | next_req = list_entry(ch->list.next, | ||
271 | typeof(*next_req), node); | ||
272 | tegra_dma_update_hw(ch, next_req); | ||
273 | } | ||
274 | req->status = -TEGRA_DMA_REQ_ERROR_ABORTED; | ||
275 | |||
276 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
277 | |||
278 | /* Callback should be called without any lock */ | ||
279 | req->complete(req); | ||
280 | return 0; | ||
281 | } | ||
282 | EXPORT_SYMBOL(tegra_dma_dequeue_req); | ||
283 | |||
284 | bool tegra_dma_is_empty(struct tegra_dma_channel *ch) | ||
285 | { | ||
286 | unsigned long irq_flags; | ||
287 | bool is_empty; | ||
288 | |||
289 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
290 | if (list_empty(&ch->list)) | ||
291 | is_empty = true; | ||
292 | else | ||
293 | is_empty = false; | ||
294 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
295 | return is_empty; | ||
296 | } | ||
297 | EXPORT_SYMBOL(tegra_dma_is_empty); | ||
298 | |||
299 | bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch, | ||
300 | struct tegra_dma_req *_req) | ||
301 | { | ||
302 | unsigned long irq_flags; | ||
303 | struct tegra_dma_req *req; | ||
304 | |||
305 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
306 | list_for_each_entry(req, &ch->list, node) { | ||
307 | if (req == _req) { | ||
308 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
309 | return true; | ||
310 | } | ||
311 | } | ||
312 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
313 | return false; | ||
314 | } | ||
315 | EXPORT_SYMBOL(tegra_dma_is_req_inflight); | ||
316 | |||
317 | int tegra_dma_enqueue_req(struct tegra_dma_channel *ch, | ||
318 | struct tegra_dma_req *req) | ||
319 | { | ||
320 | unsigned long irq_flags; | ||
321 | int start_dma = 0; | ||
322 | |||
323 | if (req->size > NV_DMA_MAX_TRASFER_SIZE || | ||
324 | req->source_addr & 0x3 || req->dest_addr & 0x3) { | ||
325 | pr_err("Invalid DMA request for channel %d\n", ch->id); | ||
326 | return -EINVAL; | ||
327 | } | ||
328 | |||
329 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
330 | |||
331 | req->bytes_transferred = 0; | ||
332 | req->status = 0; | ||
333 | req->buffer_status = 0; | ||
334 | if (list_empty(&ch->list)) | ||
335 | start_dma = 1; | ||
336 | |||
337 | list_add_tail(&req->node, &ch->list); | ||
338 | |||
339 | if (start_dma) | ||
340 | tegra_dma_update_hw(ch, req); | ||
341 | |||
342 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
343 | |||
344 | return 0; | ||
345 | } | ||
346 | EXPORT_SYMBOL(tegra_dma_enqueue_req); | ||
347 | |||
348 | struct tegra_dma_channel *tegra_dma_allocate_channel(int mode) | ||
349 | { | ||
350 | int channel; | ||
351 | struct tegra_dma_channel *ch; | ||
352 | |||
353 | /* first channel is the shared channel */ | ||
354 | if (mode & TEGRA_DMA_SHARED) { | ||
355 | channel = TEGRA_SYSTEM_DMA_CH_MIN; | ||
356 | } else { | ||
357 | channel = find_first_zero_bit(channel_usage, | ||
358 | ARRAY_SIZE(dma_channels)); | ||
359 | if (channel >= ARRAY_SIZE(dma_channels)) | ||
360 | return NULL; | ||
361 | } | ||
362 | __set_bit(channel, channel_usage); | ||
363 | ch = &dma_channels[channel]; | ||
364 | ch->mode = mode; | ||
365 | return ch; | ||
366 | } | ||
367 | EXPORT_SYMBOL(tegra_dma_allocate_channel); | ||
368 | |||
369 | void tegra_dma_free_channel(struct tegra_dma_channel *ch) | ||
370 | { | ||
371 | if (ch->mode & TEGRA_DMA_SHARED) | ||
372 | return; | ||
373 | tegra_dma_cancel(ch); | ||
374 | __clear_bit(ch->id, channel_usage); | ||
375 | } | ||
376 | EXPORT_SYMBOL(tegra_dma_free_channel); | ||
377 | |||
378 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, | ||
379 | struct tegra_dma_req *req) | ||
380 | { | ||
381 | if (req->to_memory) { | ||
382 | ch->apb_ptr = req->source_addr; | ||
383 | ch->ahb_ptr = req->dest_addr; | ||
384 | } else { | ||
385 | ch->apb_ptr = req->dest_addr; | ||
386 | ch->ahb_ptr = req->source_addr; | ||
387 | } | ||
388 | writel(ch->apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); | ||
389 | writel(ch->ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); | ||
390 | |||
391 | req->status = TEGRA_DMA_REQ_INFLIGHT; | ||
392 | return; | ||
393 | } | ||
394 | |||
395 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, | ||
396 | struct tegra_dma_req *req) | ||
397 | { | ||
398 | int ahb_addr_wrap; | ||
399 | int apb_addr_wrap; | ||
400 | int ahb_bus_width; | ||
401 | int apb_bus_width; | ||
402 | int index; | ||
403 | unsigned long csr; | ||
404 | |||
405 | |||
406 | ch->csr |= CSR_FLOW; | ||
407 | ch->csr &= ~CSR_REQ_SEL_MASK; | ||
408 | ch->csr |= req->req_sel << CSR_REQ_SEL_SHIFT; | ||
409 | ch->ahb_seq &= ~AHB_SEQ_BURST_MASK; | ||
410 | ch->ahb_seq |= AHB_SEQ_BURST_1; | ||
411 | |||
412 | /* One shot mode is always single buffered, | ||
413 | * continuous mode is always double buffered | ||
414 | * */ | ||
415 | if (ch->mode & TEGRA_DMA_MODE_ONESHOT) { | ||
416 | ch->csr |= CSR_ONCE; | ||
417 | ch->ahb_seq &= ~AHB_SEQ_DBL_BUF; | ||
418 | ch->csr &= ~CSR_WCOUNT_MASK; | ||
419 | ch->csr |= ((req->size>>2) - 1) << CSR_WCOUNT_SHIFT; | ||
420 | } else { | ||
421 | ch->csr &= ~CSR_ONCE; | ||
422 | ch->ahb_seq |= AHB_SEQ_DBL_BUF; | ||
423 | |||
424 | /* In double buffered mode, we set the size to half the | ||
425 | * requested size and interrupt when half the buffer | ||
426 | * is full */ | ||
427 | ch->csr &= ~CSR_WCOUNT_MASK; | ||
428 | ch->csr |= ((req->size>>3) - 1) << CSR_WCOUNT_SHIFT; | ||
429 | } | ||
430 | |||
431 | if (req->to_memory) { | ||
432 | ch->csr &= ~CSR_DIR; | ||
433 | ch->apb_ptr = req->source_addr; | ||
434 | ch->ahb_ptr = req->dest_addr; | ||
435 | |||
436 | apb_addr_wrap = req->source_wrap; | ||
437 | ahb_addr_wrap = req->dest_wrap; | ||
438 | apb_bus_width = req->source_bus_width; | ||
439 | ahb_bus_width = req->dest_bus_width; | ||
440 | |||
441 | } else { | ||
442 | ch->csr |= CSR_DIR; | ||
443 | ch->apb_ptr = req->dest_addr; | ||
444 | ch->ahb_ptr = req->source_addr; | ||
445 | |||
446 | apb_addr_wrap = req->dest_wrap; | ||
447 | ahb_addr_wrap = req->source_wrap; | ||
448 | apb_bus_width = req->dest_bus_width; | ||
449 | ahb_bus_width = req->source_bus_width; | ||
450 | } | ||
451 | |||
452 | apb_addr_wrap >>= 2; | ||
453 | ahb_addr_wrap >>= 2; | ||
454 | |||
455 | /* set address wrap for APB size */ | ||
456 | index = 0; | ||
457 | do { | ||
458 | if (apb_addr_wrap_table[index] == apb_addr_wrap) | ||
459 | break; | ||
460 | index++; | ||
461 | } while (index < ARRAY_SIZE(apb_addr_wrap_table)); | ||
462 | BUG_ON(index == ARRAY_SIZE(apb_addr_wrap_table)); | ||
463 | ch->apb_seq &= ~APB_SEQ_WRAP_MASK; | ||
464 | ch->apb_seq |= index << APB_SEQ_WRAP_SHIFT; | ||
465 | |||
466 | /* set address wrap for AHB size */ | ||
467 | index = 0; | ||
468 | do { | ||
469 | if (ahb_addr_wrap_table[index] == ahb_addr_wrap) | ||
470 | break; | ||
471 | index++; | ||
472 | } while (index < ARRAY_SIZE(ahb_addr_wrap_table)); | ||
473 | BUG_ON(index == ARRAY_SIZE(ahb_addr_wrap_table)); | ||
474 | ch->ahb_seq &= ~AHB_SEQ_WRAP_MASK; | ||
475 | ch->ahb_seq |= index << AHB_SEQ_WRAP_SHIFT; | ||
476 | |||
477 | for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { | ||
478 | if (bus_width_table[index] == ahb_bus_width) | ||
479 | break; | ||
480 | } | ||
481 | BUG_ON(index == ARRAY_SIZE(bus_width_table)); | ||
482 | ch->ahb_seq &= ~AHB_SEQ_BUS_WIDTH_MASK; | ||
483 | ch->ahb_seq |= index << AHB_SEQ_BUS_WIDTH_SHIFT; | ||
484 | |||
485 | for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { | ||
486 | if (bus_width_table[index] == apb_bus_width) | ||
487 | break; | ||
488 | } | ||
489 | BUG_ON(index == ARRAY_SIZE(bus_width_table)); | ||
490 | ch->apb_seq &= ~APB_SEQ_BUS_WIDTH_MASK; | ||
491 | ch->apb_seq |= index << APB_SEQ_BUS_WIDTH_SHIFT; | ||
492 | |||
493 | ch->csr |= CSR_IE_EOC; | ||
494 | |||
495 | /* update hw registers with the shadow */ | ||
496 | writel(ch->csr, ch->addr + APB_DMA_CHAN_CSR); | ||
497 | writel(ch->apb_seq, ch->addr + APB_DMA_CHAN_APB_SEQ); | ||
498 | writel(ch->apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); | ||
499 | writel(ch->ahb_seq, ch->addr + APB_DMA_CHAN_AHB_SEQ); | ||
500 | writel(ch->ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); | ||
501 | |||
502 | csr = ch->csr | CSR_ENB; | ||
503 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); | ||
504 | |||
505 | req->status = TEGRA_DMA_REQ_INFLIGHT; | ||
506 | } | ||
507 | |||
508 | static void tegra_dma_init_hw(struct tegra_dma_channel *ch) | ||
509 | { | ||
510 | /* One shot with an interrupt to CPU after transfer */ | ||
511 | ch->csr = CSR_ONCE | CSR_IE_EOC; | ||
512 | ch->ahb_seq = AHB_SEQ_BUS_WIDTH_32 | AHB_SEQ_INTR_ENB; | ||
513 | ch->apb_seq = APB_SEQ_BUS_WIDTH_32 | 1 << APB_SEQ_WRAP_SHIFT; | ||
514 | } | ||
515 | |||
516 | static void handle_oneshot_dma(struct tegra_dma_channel *ch) | ||
517 | { | ||
518 | struct tegra_dma_req *req; | ||
519 | |||
520 | spin_lock(&ch->lock); | ||
521 | if (list_empty(&ch->list)) { | ||
522 | spin_unlock(&ch->lock); | ||
523 | return; | ||
524 | } | ||
525 | |||
526 | req = list_entry(ch->list.next, typeof(*req), node); | ||
527 | if (req) { | ||
528 | int bytes_transferred; | ||
529 | |||
530 | bytes_transferred = | ||
531 | (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; | ||
532 | bytes_transferred += 1; | ||
533 | bytes_transferred <<= 2; | ||
534 | |||
535 | list_del(&req->node); | ||
536 | req->bytes_transferred = bytes_transferred; | ||
537 | req->status = TEGRA_DMA_REQ_SUCCESS; | ||
538 | |||
539 | spin_unlock(&ch->lock); | ||
540 | /* Callback should be called without any lock */ | ||
541 | pr_debug("%s: transferred %d bytes\n", __func__, | ||
542 | req->bytes_transferred); | ||
543 | req->complete(req); | ||
544 | spin_lock(&ch->lock); | ||
545 | } | ||
546 | |||
547 | if (!list_empty(&ch->list)) { | ||
548 | req = list_entry(ch->list.next, typeof(*req), node); | ||
549 | /* the complete function we just called may have enqueued | ||
550 | another req, in which case dma has already started */ | ||
551 | if (req->status != TEGRA_DMA_REQ_INFLIGHT) | ||
552 | tegra_dma_update_hw(ch, req); | ||
553 | } | ||
554 | spin_unlock(&ch->lock); | ||
555 | } | ||
556 | |||
557 | static void handle_continuous_dma(struct tegra_dma_channel *ch) | ||
558 | { | ||
559 | struct tegra_dma_req *req; | ||
560 | |||
561 | spin_lock(&ch->lock); | ||
562 | if (list_empty(&ch->list)) { | ||
563 | spin_unlock(&ch->lock); | ||
564 | return; | ||
565 | } | ||
566 | |||
567 | req = list_entry(ch->list.next, typeof(*req), node); | ||
568 | if (req) { | ||
569 | if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_EMPTY) { | ||
570 | /* Load the next request into the hardware, if available | ||
571 | * */ | ||
572 | if (!list_is_last(&req->node, &ch->list)) { | ||
573 | struct tegra_dma_req *next_req; | ||
574 | |||
575 | next_req = list_entry(req->node.next, | ||
576 | typeof(*next_req), node); | ||
577 | tegra_dma_update_hw_partial(ch, next_req); | ||
578 | } | ||
579 | req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL; | ||
580 | req->status = TEGRA_DMA_REQ_SUCCESS; | ||
581 | /* DMA lock is NOT held when callback is called */ | ||
582 | spin_unlock(&ch->lock); | ||
583 | if (likely(req->threshold)) | ||
584 | req->threshold(req); | ||
585 | return; | ||
586 | |||
587 | } else if (req->buffer_status == | ||
588 | TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) { | ||
589 | /* Callback when the buffer is completely full (i.e on | ||
590 | * the second interrupt */ | ||
591 | int bytes_transferred; | ||
592 | |||
593 | bytes_transferred = | ||
594 | (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; | ||
595 | bytes_transferred += 1; | ||
596 | bytes_transferred <<= 3; | ||
597 | |||
598 | req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL; | ||
599 | req->bytes_transferred = bytes_transferred; | ||
600 | req->status = TEGRA_DMA_REQ_SUCCESS; | ||
601 | list_del(&req->node); | ||
602 | |||
603 | /* DMA lock is NOT held when callbak is called */ | ||
604 | spin_unlock(&ch->lock); | ||
605 | req->complete(req); | ||
606 | return; | ||
607 | |||
608 | } else { | ||
609 | BUG(); | ||
610 | } | ||
611 | } | ||
612 | spin_unlock(&ch->lock); | ||
613 | } | ||
614 | |||
615 | static irqreturn_t dma_isr(int irq, void *data) | ||
616 | { | ||
617 | struct tegra_dma_channel *ch = data; | ||
618 | unsigned long status; | ||
619 | |||
620 | status = readl(ch->addr + APB_DMA_CHAN_STA); | ||
621 | if (status & STA_ISE_EOC) | ||
622 | writel(status, ch->addr + APB_DMA_CHAN_STA); | ||
623 | else { | ||
624 | pr_warning("Got a spurious ISR for DMA channel %d\n", ch->id); | ||
625 | return IRQ_HANDLED; | ||
626 | } | ||
627 | return IRQ_WAKE_THREAD; | ||
628 | } | ||
629 | |||
630 | static irqreturn_t dma_thread_fn(int irq, void *data) | ||
631 | { | ||
632 | struct tegra_dma_channel *ch = data; | ||
633 | |||
634 | if (ch->mode & TEGRA_DMA_MODE_ONESHOT) | ||
635 | handle_oneshot_dma(ch); | ||
636 | else | ||
637 | handle_continuous_dma(ch); | ||
638 | |||
639 | |||
640 | return IRQ_HANDLED; | ||
641 | } | ||
642 | |||
643 | int __init tegra_dma_init(void) | ||
644 | { | ||
645 | int ret = 0; | ||
646 | int i; | ||
647 | unsigned int irq; | ||
648 | void __iomem *addr; | ||
649 | |||
650 | addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | ||
651 | writel(GEN_ENABLE, addr + APB_DMA_GEN); | ||
652 | writel(0, addr + APB_DMA_CNTRL); | ||
653 | writel(0xFFFFFFFFul >> (31 - TEGRA_SYSTEM_DMA_CH_MAX), | ||
654 | addr + APB_DMA_IRQ_MASK_SET); | ||
655 | |||
656 | memset(channel_usage, 0, sizeof(channel_usage)); | ||
657 | memset(dma_channels, 0, sizeof(dma_channels)); | ||
658 | |||
659 | /* Reserve all the channels we are not supposed to touch */ | ||
660 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_MIN; i++) | ||
661 | __set_bit(i, channel_usage); | ||
662 | |||
663 | for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { | ||
664 | struct tegra_dma_channel *ch = &dma_channels[i]; | ||
665 | |||
666 | __clear_bit(i, channel_usage); | ||
667 | |||
668 | ch->id = i; | ||
669 | snprintf(ch->name, TEGRA_DMA_NAME_SIZE, "dma_channel_%d", i); | ||
670 | |||
671 | ch->addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | ||
672 | TEGRA_APB_DMA_CH0_SIZE * i); | ||
673 | |||
674 | spin_lock_init(&ch->lock); | ||
675 | INIT_LIST_HEAD(&ch->list); | ||
676 | tegra_dma_init_hw(ch); | ||
677 | |||
678 | irq = INT_APB_DMA_CH0 + i; | ||
679 | ret = request_threaded_irq(irq, dma_isr, dma_thread_fn, 0, | ||
680 | dma_channels[i].name, ch); | ||
681 | if (ret) { | ||
682 | pr_err("Failed to register IRQ %d for DMA %d\n", | ||
683 | irq, i); | ||
684 | goto fail; | ||
685 | } | ||
686 | ch->irq = irq; | ||
687 | } | ||
688 | /* mark the shared channel allocated */ | ||
689 | __set_bit(TEGRA_SYSTEM_DMA_CH_MIN, channel_usage); | ||
690 | |||
691 | for (i = TEGRA_SYSTEM_DMA_CH_MAX+1; i < NV_DMA_MAX_CHANNELS; i++) | ||
692 | __set_bit(i, channel_usage); | ||
693 | |||
694 | return ret; | ||
695 | fail: | ||
696 | writel(0, addr + APB_DMA_GEN); | ||
697 | for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { | ||
698 | struct tegra_dma_channel *ch = &dma_channels[i]; | ||
699 | if (ch->irq) | ||
700 | free_irq(ch->irq, ch); | ||
701 | } | ||
702 | return ret; | ||
703 | } | ||
704 | |||
705 | #ifdef CONFIG_PM | ||
706 | static u32 apb_dma[5*TEGRA_SYSTEM_DMA_CH_NR + 3]; | ||
707 | |||
708 | void tegra_dma_suspend(void) | ||
709 | { | ||
710 | void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | ||
711 | u32 *ctx = apb_dma; | ||
712 | int i; | ||
713 | |||
714 | *ctx++ = readl(addr + APB_DMA_GEN); | ||
715 | *ctx++ = readl(addr + APB_DMA_CNTRL); | ||
716 | *ctx++ = readl(addr + APB_DMA_IRQ_MASK); | ||
717 | |||
718 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { | ||
719 | addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | ||
720 | TEGRA_APB_DMA_CH0_SIZE * i); | ||
721 | |||
722 | *ctx++ = readl(addr + APB_DMA_CHAN_CSR); | ||
723 | *ctx++ = readl(addr + APB_DMA_CHAN_AHB_PTR); | ||
724 | *ctx++ = readl(addr + APB_DMA_CHAN_AHB_SEQ); | ||
725 | *ctx++ = readl(addr + APB_DMA_CHAN_APB_PTR); | ||
726 | *ctx++ = readl(addr + APB_DMA_CHAN_APB_SEQ); | ||
727 | } | ||
728 | } | ||
729 | |||
730 | void tegra_dma_resume(void) | ||
731 | { | ||
732 | void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | ||
733 | u32 *ctx = apb_dma; | ||
734 | int i; | ||
735 | |||
736 | writel(*ctx++, addr + APB_DMA_GEN); | ||
737 | writel(*ctx++, addr + APB_DMA_CNTRL); | ||
738 | writel(*ctx++, addr + APB_DMA_IRQ_MASK); | ||
739 | |||
740 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { | ||
741 | addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | ||
742 | TEGRA_APB_DMA_CH0_SIZE * i); | ||
743 | |||
744 | writel(*ctx++, addr + APB_DMA_CHAN_CSR); | ||
745 | writel(*ctx++, addr + APB_DMA_CHAN_AHB_PTR); | ||
746 | writel(*ctx++, addr + APB_DMA_CHAN_AHB_SEQ); | ||
747 | writel(*ctx++, addr + APB_DMA_CHAN_APB_PTR); | ||
748 | writel(*ctx++, addr + APB_DMA_CHAN_APB_SEQ); | ||
749 | } | ||
750 | } | ||
751 | |||
752 | #endif | ||
diff --git a/arch/arm/mach-tegra/include/mach/dma.h b/arch/arm/mach-tegra/include/mach/dma.h new file mode 100644 index 000000000000..39011bd9a925 --- /dev/null +++ b/arch/arm/mach-tegra/include/mach/dma.h | |||
@@ -0,0 +1,155 @@ | |||
1 | /* | ||
2 | * arch/arm/mach-tegra/include/mach/dma.h | ||
3 | * | ||
4 | * Copyright (c) 2008-2009, NVIDIA Corporation. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | * more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License along | ||
17 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
18 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
19 | */ | ||
20 | |||
21 | #ifndef __MACH_TEGRA_DMA_H | ||
22 | #define __MACH_TEGRA_DMA_H | ||
23 | |||
24 | #include <linux/list.h> | ||
25 | |||
26 | #if defined(CONFIG_TEGRA_SYSTEM_DMA) | ||
27 | |||
28 | struct tegra_dma_req; | ||
29 | struct tegra_dma_channel; | ||
30 | |||
31 | #define TEGRA_DMA_REQ_SEL_CNTR 0 | ||
32 | #define TEGRA_DMA_REQ_SEL_I2S_2 1 | ||
33 | #define TEGRA_DMA_REQ_SEL_I2S_1 2 | ||
34 | #define TEGRA_DMA_REQ_SEL_SPD_I 3 | ||
35 | #define TEGRA_DMA_REQ_SEL_UI_I 4 | ||
36 | #define TEGRA_DMA_REQ_SEL_MIPI 5 | ||
37 | #define TEGRA_DMA_REQ_SEL_I2S2_2 6 | ||
38 | #define TEGRA_DMA_REQ_SEL_I2S2_1 7 | ||
39 | #define TEGRA_DMA_REQ_SEL_UARTA 8 | ||
40 | #define TEGRA_DMA_REQ_SEL_UARTB 9 | ||
41 | #define TEGRA_DMA_REQ_SEL_UARTC 10 | ||
42 | #define TEGRA_DMA_REQ_SEL_SPI 11 | ||
43 | #define TEGRA_DMA_REQ_SEL_AC97 12 | ||
44 | #define TEGRA_DMA_REQ_SEL_ACMODEM 13 | ||
45 | #define TEGRA_DMA_REQ_SEL_SL4B 14 | ||
46 | #define TEGRA_DMA_REQ_SEL_SL2B1 15 | ||
47 | #define TEGRA_DMA_REQ_SEL_SL2B2 16 | ||
48 | #define TEGRA_DMA_REQ_SEL_SL2B3 17 | ||
49 | #define TEGRA_DMA_REQ_SEL_SL2B4 18 | ||
50 | #define TEGRA_DMA_REQ_SEL_UARTD 19 | ||
51 | #define TEGRA_DMA_REQ_SEL_UARTE 20 | ||
52 | #define TEGRA_DMA_REQ_SEL_I2C 21 | ||
53 | #define TEGRA_DMA_REQ_SEL_I2C2 22 | ||
54 | #define TEGRA_DMA_REQ_SEL_I2C3 23 | ||
55 | #define TEGRA_DMA_REQ_SEL_DVC_I2C 24 | ||
56 | #define TEGRA_DMA_REQ_SEL_OWR 25 | ||
57 | #define TEGRA_DMA_REQ_SEL_INVALID 31 | ||
58 | |||
59 | enum tegra_dma_mode { | ||
60 | TEGRA_DMA_SHARED = 1, | ||
61 | TEGRA_DMA_MODE_CONTINOUS = 2, | ||
62 | TEGRA_DMA_MODE_ONESHOT = 4, | ||
63 | }; | ||
64 | |||
65 | enum tegra_dma_req_error { | ||
66 | TEGRA_DMA_REQ_SUCCESS = 0, | ||
67 | TEGRA_DMA_REQ_ERROR_ABORTED, | ||
68 | TEGRA_DMA_REQ_INFLIGHT, | ||
69 | }; | ||
70 | |||
71 | enum tegra_dma_req_buff_status { | ||
72 | TEGRA_DMA_REQ_BUF_STATUS_EMPTY = 0, | ||
73 | TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL, | ||
74 | TEGRA_DMA_REQ_BUF_STATUS_FULL, | ||
75 | }; | ||
76 | |||
77 | struct tegra_dma_req { | ||
78 | struct list_head node; | ||
79 | unsigned int modid; | ||
80 | int instance; | ||
81 | |||
82 | /* Called when the req is complete and from the DMA ISR context. | ||
83 | * When this is called the req structure is no longer queued by | ||
84 | * the DMA channel. | ||
85 | * | ||
86 | * State of the DMA depends on the number of req it has. If there are | ||
87 | * no DMA requests queued up, then it will STOP the DMA. It there are | ||
88 | * more requests in the DMA, then it will queue the next request. | ||
89 | */ | ||
90 | void (*complete)(struct tegra_dma_req *req); | ||
91 | |||
92 | /* This is a called from the DMA ISR context when the DMA is still in | ||
93 | * progress and is actively filling same buffer. | ||
94 | * | ||
95 | * In case of continous mode receive, this threshold is 1/2 the buffer | ||
96 | * size. In other cases, this will not even be called as there is no | ||
97 | * hardware support for it. | ||
98 | * | ||
99 | * In the case of continous mode receive, if there is next req already | ||
100 | * queued, DMA programs the HW to use that req when this req is | ||
101 | * completed. If there is no "next req" queued, then DMA ISR doesn't do | ||
102 | * anything before calling this callback. | ||
103 | * | ||
104 | * This is mainly used by the cases, where the clients has queued | ||
105 | * only one req and want to get some sort of DMA threshold | ||
106 | * callback to program the next buffer. | ||
107 | * | ||
108 | */ | ||
109 | void (*threshold)(struct tegra_dma_req *req); | ||
110 | |||
111 | /* 1 to copy to memory. | ||
112 | * 0 to copy from the memory to device FIFO */ | ||
113 | int to_memory; | ||
114 | |||
115 | void *virt_addr; | ||
116 | |||
117 | unsigned long source_addr; | ||
118 | unsigned long dest_addr; | ||
119 | unsigned long dest_wrap; | ||
120 | unsigned long source_wrap; | ||
121 | unsigned long source_bus_width; | ||
122 | unsigned long dest_bus_width; | ||
123 | unsigned long req_sel; | ||
124 | unsigned int size; | ||
125 | |||
126 | /* Updated by the DMA driver on the conpletion of the request. */ | ||
127 | int bytes_transferred; | ||
128 | int status; | ||
129 | |||
130 | /* DMA completion tracking information */ | ||
131 | int buffer_status; | ||
132 | |||
133 | /* Client specific data */ | ||
134 | void *dev; | ||
135 | }; | ||
136 | |||
137 | int tegra_dma_enqueue_req(struct tegra_dma_channel *ch, | ||
138 | struct tegra_dma_req *req); | ||
139 | int tegra_dma_dequeue_req(struct tegra_dma_channel *ch, | ||
140 | struct tegra_dma_req *req); | ||
141 | void tegra_dma_dequeue(struct tegra_dma_channel *ch); | ||
142 | void tegra_dma_flush(struct tegra_dma_channel *ch); | ||
143 | |||
144 | bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch, | ||
145 | struct tegra_dma_req *req); | ||
146 | bool tegra_dma_is_empty(struct tegra_dma_channel *ch); | ||
147 | |||
148 | struct tegra_dma_channel *tegra_dma_allocate_channel(int mode); | ||
149 | void tegra_dma_free_channel(struct tegra_dma_channel *ch); | ||
150 | |||
151 | int __init tegra_dma_init(void); | ||
152 | |||
153 | #endif | ||
154 | |||
155 | #endif | ||