aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
Diffstat (limited to 'arch')
-rw-r--r--arch/arm/mm/abort-ev7.S32
-rw-r--r--arch/arm/mm/cache-v7.S253
-rw-r--r--arch/arm/mm/proc-macros.S12
-rw-r--r--arch/arm/mm/proc-v7.S262
4 files changed, 559 insertions, 0 deletions
diff --git a/arch/arm/mm/abort-ev7.S b/arch/arm/mm/abort-ev7.S
new file mode 100644
index 000000000000..eb90bce38e14
--- /dev/null
+++ b/arch/arm/mm/abort-ev7.S
@@ -0,0 +1,32 @@
1#include <linux/linkage.h>
2#include <asm/assembler.h>
3/*
4 * Function: v7_early_abort
5 *
6 * Params : r2 = address of aborted instruction
7 * : r3 = saved SPSR
8 *
9 * Returns : r0 = address of abort
10 * : r1 = FSR, bit 11 = write
11 * : r2-r8 = corrupted
12 * : r9 = preserved
13 * : sp = pointer to registers
14 *
15 * Purpose : obtain information about current aborted instruction.
16 */
17 .align 5
18ENTRY(v7_early_abort)
19 /*
20 * The effect of data aborts on on the exclusive access monitor are
21 * UNPREDICTABLE. Do a CLREX to clear the state
22 */
23 clrex
24
25 mrc p15, 0, r1, c5, c0, 0 @ get FSR
26 mrc p15, 0, r0, c6, c0, 0 @ get FAR
27
28 /*
29 * V6 code adjusts the returned DFSR.
30 * New designs should not need to patch up faults.
31 */
32 mov pc, lr
diff --git a/arch/arm/mm/cache-v7.S b/arch/arm/mm/cache-v7.S
new file mode 100644
index 000000000000..35ffc4d95997
--- /dev/null
+++ b/arch/arm/mm/cache-v7.S
@@ -0,0 +1,253 @@
1/*
2 * linux/arch/arm/mm/cache-v7.S
3 *
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 * Copyright (C) 2005 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This is the "shell" of the ARMv7 processor support.
12 */
13#include <linux/linkage.h>
14#include <linux/init.h>
15#include <asm/assembler.h>
16
17#include "proc-macros.S"
18
19/*
20 * v7_flush_dcache_all()
21 *
22 * Flush the whole D-cache.
23 *
24 * Corrupted registers: r0-r5, r7, r9-r11
25 *
26 * - mm - mm_struct describing address space
27 */
28ENTRY(v7_flush_dcache_all)
29 mrc p15, 1, r0, c0, c0, 1 @ read clidr
30 ands r3, r0, #0x7000000 @ extract loc from clidr
31 mov r3, r3, lsr #23 @ left align loc bit field
32 beq finished @ if loc is 0, then no need to clean
33 mov r10, #0 @ start clean at cache level 0
34loop1:
35 add r2, r10, r10, lsr #1 @ work out 3x current cache level
36 mov r1, r0, lsr r2 @ extract cache type bits from clidr
37 and r1, r1, #7 @ mask of the bits for current cache only
38 cmp r1, #2 @ see what cache we have at this level
39 blt skip @ skip if no cache, or just i-cache
40 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
41 isb @ isb to sych the new cssr&csidr
42 mrc p15, 1, r1, c0, c0, 0 @ read the new csidr
43 and r2, r1, #7 @ extract the length of the cache lines
44 add r2, r2, #4 @ add 4 (line length offset)
45 ldr r4, =0x3ff
46 ands r4, r4, r1, lsr #3 @ find maximum number on the way size
47 clz r5, r4 @ find bit position of way size increment
48 ldr r7, =0x7fff
49 ands r7, r7, r1, lsr #13 @ extract max number of the index size
50loop2:
51 mov r9, r4 @ create working copy of max way size
52loop3:
53 orr r11, r10, r9, lsl r5 @ factor way and cache number into r11
54 orr r11, r11, r7, lsl r2 @ factor index number into r11
55 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way
56 subs r9, r9, #1 @ decrement the way
57 bge loop3
58 subs r7, r7, #1 @ decrement the index
59 bge loop2
60skip:
61 add r10, r10, #2 @ increment cache number
62 cmp r3, r10
63 bgt loop1
64finished:
65 mov r10, #0 @ swith back to cache level 0
66 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
67 isb
68 mov pc, lr
69
70/*
71 * v7_flush_cache_all()
72 *
73 * Flush the entire cache system.
74 * The data cache flush is now achieved using atomic clean / invalidates
75 * working outwards from L1 cache. This is done using Set/Way based cache
76 * maintainance instructions.
77 * The instruction cache can still be invalidated back to the point of
78 * unification in a single instruction.
79 *
80 */
81ENTRY(v7_flush_kern_cache_all)
82 stmfd sp!, {r4-r5, r7, r9-r11, lr}
83 bl v7_flush_dcache_all
84 mov r0, #0
85 mcr p15, 0, r0, c7, c5, 0 @ I+BTB cache invalidate
86 ldmfd sp!, {r4-r5, r7, r9-r11, lr}
87 mov pc, lr
88
89/*
90 * v7_flush_cache_all()
91 *
92 * Flush all TLB entries in a particular address space
93 *
94 * - mm - mm_struct describing address space
95 */
96ENTRY(v7_flush_user_cache_all)
97 /*FALLTHROUGH*/
98
99/*
100 * v7_flush_cache_range(start, end, flags)
101 *
102 * Flush a range of TLB entries in the specified address space.
103 *
104 * - start - start address (may not be aligned)
105 * - end - end address (exclusive, may not be aligned)
106 * - flags - vm_area_struct flags describing address space
107 *
108 * It is assumed that:
109 * - we have a VIPT cache.
110 */
111ENTRY(v7_flush_user_cache_range)
112 mov pc, lr
113
114/*
115 * v7_coherent_kern_range(start,end)
116 *
117 * Ensure that the I and D caches are coherent within specified
118 * region. This is typically used when code has been written to
119 * a memory region, and will be executed.
120 *
121 * - start - virtual start address of region
122 * - end - virtual end address of region
123 *
124 * It is assumed that:
125 * - the Icache does not read data from the write buffer
126 */
127ENTRY(v7_coherent_kern_range)
128 /* FALLTHROUGH */
129
130/*
131 * v7_coherent_user_range(start,end)
132 *
133 * Ensure that the I and D caches are coherent within specified
134 * region. This is typically used when code has been written to
135 * a memory region, and will be executed.
136 *
137 * - start - virtual start address of region
138 * - end - virtual end address of region
139 *
140 * It is assumed that:
141 * - the Icache does not read data from the write buffer
142 */
143ENTRY(v7_coherent_user_range)
144 dcache_line_size r2, r3
145 sub r3, r2, #1
146 bic r0, r0, r3
1471: mcr p15, 0, r0, c7, c11, 1 @ clean D line to the point of unification
148 dsb
149 mcr p15, 0, r0, c7, c5, 1 @ invalidate I line
150 add r0, r0, r2
151 cmp r0, r1
152 blo 1b
153 mov r0, #0
154 mcr p15, 0, r0, c7, c5, 6 @ invalidate BTB
155 dsb
156 isb
157 mov pc, lr
158
159/*
160 * v7_flush_kern_dcache_page(kaddr)
161 *
162 * Ensure that the data held in the page kaddr is written back
163 * to the page in question.
164 *
165 * - kaddr - kernel address (guaranteed to be page aligned)
166 */
167ENTRY(v7_flush_kern_dcache_page)
168 dcache_line_size r2, r3
169 add r1, r0, #PAGE_SZ
1701:
171 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line
172 add r0, r0, r2
173 cmp r0, r1
174 blo 1b
175 dsb
176 mov pc, lr
177
178/*
179 * v7_dma_inv_range(start,end)
180 *
181 * Invalidate the data cache within the specified region; we will
182 * be performing a DMA operation in this region and we want to
183 * purge old data in the cache.
184 *
185 * - start - virtual start address of region
186 * - end - virtual end address of region
187 */
188ENTRY(v7_dma_inv_range)
189 dcache_line_size r2, r3
190 sub r3, r2, #1
191 tst r0, r3
192 bic r0, r0, r3
193 mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
194
195 tst r1, r3
196 bic r1, r1, r3
197 mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line
1981:
199 mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line
200 add r0, r0, r2
201 cmp r0, r1
202 blo 1b
203 dsb
204 mov pc, lr
205
206/*
207 * v7_dma_clean_range(start,end)
208 * - start - virtual start address of region
209 * - end - virtual end address of region
210 */
211ENTRY(v7_dma_clean_range)
212 dcache_line_size r2, r3
213 sub r3, r2, #1
214 bic r0, r0, r3
2151:
216 mcr p15, 0, r0, c7, c10, 1 @ clean D / U line
217 add r0, r0, r2
218 cmp r0, r1
219 blo 1b
220 dsb
221 mov pc, lr
222
223/*
224 * v7_dma_flush_range(start,end)
225 * - start - virtual start address of region
226 * - end - virtual end address of region
227 */
228ENTRY(v7_dma_flush_range)
229 dcache_line_size r2, r3
230 sub r3, r2, #1
231 bic r0, r0, r3
2321:
233 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
234 add r0, r0, r2
235 cmp r0, r1
236 blo 1b
237 dsb
238 mov pc, lr
239
240 __INITDATA
241
242 .type v7_cache_fns, #object
243ENTRY(v7_cache_fns)
244 .long v7_flush_kern_cache_all
245 .long v7_flush_user_cache_all
246 .long v7_flush_user_cache_range
247 .long v7_coherent_kern_range
248 .long v7_coherent_user_range
249 .long v7_flush_kern_dcache_page
250 .long v7_dma_inv_range
251 .long v7_dma_clean_range
252 .long v7_dma_flush_range
253 .size v7_cache_fns, . - v7_cache_fns
diff --git a/arch/arm/mm/proc-macros.S b/arch/arm/mm/proc-macros.S
index 9e2c89eb2115..b13150052a76 100644
--- a/arch/arm/mm/proc-macros.S
+++ b/arch/arm/mm/proc-macros.S
@@ -59,3 +59,15 @@
59 .word \ucset 59 .word \ucset
60#endif 60#endif
61 .endm 61 .endm
62
63/*
64 * cache_line_size - get the cache line size from the CSIDR register
65 * (available on ARMv7+). It assumes that the CSSR register was configured
66 * to access the L1 data cache CSIDR.
67 */
68 .macro dcache_line_size, reg, tmp
69 mrc p15, 1, \tmp, c0, c0, 0 @ read CSIDR
70 and \tmp, \tmp, #7 @ cache line size encoding
71 mov \reg, #16 @ size offset
72 mov \reg, \reg, lsl \tmp @ actual cache line size
73 .endm
diff --git a/arch/arm/mm/proc-v7.S b/arch/arm/mm/proc-v7.S
new file mode 100644
index 000000000000..dd823dd4a374
--- /dev/null
+++ b/arch/arm/mm/proc-v7.S
@@ -0,0 +1,262 @@
1/*
2 * linux/arch/arm/mm/proc-v7.S
3 *
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This is the "shell" of the ARMv7 processor support.
11 */
12#include <linux/linkage.h>
13#include <asm/assembler.h>
14#include <asm/asm-offsets.h>
15#include <asm/elf.h>
16#include <asm/pgtable-hwdef.h>
17#include <asm/pgtable.h>
18
19#include "proc-macros.S"
20
21#define TTB_C (1 << 0)
22#define TTB_S (1 << 1)
23#define TTB_RGN_OC_WT (2 << 3)
24#define TTB_RGN_OC_WB (3 << 3)
25
26ENTRY(cpu_v7_proc_init)
27 mov pc, lr
28
29ENTRY(cpu_v7_proc_fin)
30 mov pc, lr
31
32/*
33 * cpu_v7_reset(loc)
34 *
35 * Perform a soft reset of the system. Put the CPU into the
36 * same state as it would be if it had been reset, and branch
37 * to what would be the reset vector.
38 *
39 * - loc - location to jump to for soft reset
40 *
41 * It is assumed that:
42 */
43 .align 5
44ENTRY(cpu_v7_reset)
45 mov pc, r0
46
47/*
48 * cpu_v7_do_idle()
49 *
50 * Idle the processor (eg, wait for interrupt).
51 *
52 * IRQs are already disabled.
53 */
54ENTRY(cpu_v7_do_idle)
55 .long 0xe320f003 @ ARM V7 WFI instruction
56 mov pc, lr
57
58ENTRY(cpu_v7_dcache_clean_area)
59#ifndef TLB_CAN_READ_FROM_L1_CACHE
60 dcache_line_size r2, r3
611: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
62 add r0, r0, r2
63 subs r1, r1, r2
64 bhi 1b
65 dsb
66#endif
67 mov pc, lr
68
69/*
70 * cpu_v7_switch_mm(pgd_phys, tsk)
71 *
72 * Set the translation table base pointer to be pgd_phys
73 *
74 * - pgd_phys - physical address of new TTB
75 *
76 * It is assumed that:
77 * - we are not using split page tables
78 */
79ENTRY(cpu_v7_switch_mm)
80 mov r2, #0
81 ldr r1, [r1, #MM_CONTEXT_ID] @ get mm->context.id
82 orr r0, r0, #TTB_RGN_OC_WB @ mark PTWs outer cacheable, WB
83 mcr p15, 0, r2, c13, c0, 1 @ set reserved context ID
84 isb
851: mcr p15, 0, r0, c2, c0, 0 @ set TTB 0
86 isb
87 mcr p15, 0, r1, c13, c0, 1 @ set context ID
88 isb
89 mov pc, lr
90
91/*
92 * cpu_v7_set_pte_ext(ptep, pte)
93 *
94 * Set a level 2 translation table entry.
95 *
96 * - ptep - pointer to level 2 translation table entry
97 * (hardware version is stored at -1024 bytes)
98 * - pte - PTE value to store
99 * - ext - value for extended PTE bits
100 *
101 * Permissions:
102 * YUWD APX AP1 AP0 SVC User
103 * 0xxx 0 0 0 no acc no acc
104 * 100x 1 0 1 r/o no acc
105 * 10x0 1 0 1 r/o no acc
106 * 1011 0 0 1 r/w no acc
107 * 110x 0 1 0 r/w r/o
108 * 11x0 0 1 0 r/w r/o
109 * 1111 0 1 1 r/w r/w
110 */
111ENTRY(cpu_v7_set_pte_ext)
112 str r1, [r0], #-2048 @ linux version
113
114 bic r3, r1, #0x000003f0
115 bic r3, r3, #0x00000003
116 orr r3, r3, r2
117 orr r3, r3, #PTE_EXT_AP0 | 2
118
119 tst r1, #L_PTE_WRITE
120 tstne r1, #L_PTE_DIRTY
121 orreq r3, r3, #PTE_EXT_APX
122
123 tst r1, #L_PTE_USER
124 orrne r3, r3, #PTE_EXT_AP1
125 tstne r3, #PTE_EXT_APX
126 bicne r3, r3, #PTE_EXT_APX | PTE_EXT_AP0
127
128 tst r1, #L_PTE_YOUNG
129 biceq r3, r3, #PTE_EXT_APX | PTE_EXT_AP_MASK
130
131 tst r1, #L_PTE_EXEC
132 orreq r3, r3, #PTE_EXT_XN
133
134 tst r1, #L_PTE_PRESENT
135 moveq r3, #0
136
137 str r3, [r0]
138 mcr p15, 0, r0, c7, c10, 1 @ flush_pte
139 mov pc, lr
140
141cpu_v7_name:
142 .ascii "ARMv7 Processor"
143 .align
144
145 .section ".text.init", #alloc, #execinstr
146
147/*
148 * __v7_setup
149 *
150 * Initialise TLB, Caches, and MMU state ready to switch the MMU
151 * on. Return in r0 the new CP15 C1 control register setting.
152 *
153 * We automatically detect if we have a Harvard cache, and use the
154 * Harvard cache control instructions insead of the unified cache
155 * control instructions.
156 *
157 * This should be able to cover all ARMv7 cores.
158 *
159 * It is assumed that:
160 * - cache type register is implemented
161 */
162__v7_setup:
163 adr r12, __v7_setup_stack @ the local stack
164 stmia r12, {r0-r5, r7, r9, r11, lr}
165 bl v7_flush_dcache_all
166 ldmia r12, {r0-r5, r7, r9, r11, lr}
167 mov r10, #0
168#ifdef HARVARD_CACHE
169 mcr p15, 0, r10, c7, c5, 0 @ I+BTB cache invalidate
170#endif
171 dsb
172 mcr p15, 0, r10, c8, c7, 0 @ invalidate I + D TLBs
173 mcr p15, 0, r10, c2, c0, 2 @ TTB control register
174 orr r4, r4, #TTB_RGN_OC_WB @ mark PTWs outer cacheable, WB
175 mcr p15, 0, r4, c2, c0, 0 @ load TTB0
176 mcr p15, 0, r4, c2, c0, 1 @ load TTB1
177 mov r10, #0x1f @ domains 0, 1 = manager
178 mcr p15, 0, r10, c3, c0, 0 @ load domain access register
179#ifndef CONFIG_CPU_L2CACHE_DISABLE
180 @ L2 cache configuration in the L2 aux control register
181 mrc p15, 1, r10, c9, c0, 2
182 bic r10, r10, #(1 << 16) @ L2 outer cache
183 mcr p15, 1, r10, c9, c0, 2
184 @ L2 cache is enabled in the aux control register
185 mrc p15, 0, r10, c1, c0, 1
186 orr r10, r10, #2
187 mcr p15, 0, r10, c1, c0, 1
188#endif
189 mrc p15, 0, r0, c1, c0, 0 @ read control register
190 ldr r10, cr1_clear @ get mask for bits to clear
191 bic r0, r0, r10 @ clear bits them
192 ldr r10, cr1_set @ get mask for bits to set
193 orr r0, r0, r10 @ set them
194 mov pc, lr @ return to head.S:__ret
195
196 /*
197 * V X F I D LR
198 * .... ...E PUI. .T.T 4RVI ZFRS BLDP WCAM
199 * rrrr rrrx xxx0 0101 xxxx xxxx x111 xxxx < forced
200 * 0 110 0011 1.00 .111 1101 < we want
201 */
202 .type cr1_clear, #object
203 .type cr1_set, #object
204cr1_clear:
205 .word 0x0120c302
206cr1_set:
207 .word 0x00c0387d
208
209__v7_setup_stack:
210 .space 4 * 11 @ 11 registers
211
212 .type v7_processor_functions, #object
213ENTRY(v7_processor_functions)
214 .word v7_early_abort
215 .word cpu_v7_proc_init
216 .word cpu_v7_proc_fin
217 .word cpu_v7_reset
218 .word cpu_v7_do_idle
219 .word cpu_v7_dcache_clean_area
220 .word cpu_v7_switch_mm
221 .word cpu_v7_set_pte_ext
222 .size v7_processor_functions, . - v7_processor_functions
223
224 .type cpu_arch_name, #object
225cpu_arch_name:
226 .asciz "armv7"
227 .size cpu_arch_name, . - cpu_arch_name
228
229 .type cpu_elf_name, #object
230cpu_elf_name:
231 .asciz "v7"
232 .size cpu_elf_name, . - cpu_elf_name
233 .align
234
235 .section ".proc.info.init", #alloc, #execinstr
236
237 /*
238 * Match any ARMv7 processor core.
239 */
240 .type __v7_proc_info, #object
241__v7_proc_info:
242 .long 0x000f0000 @ Required ID value
243 .long 0x000f0000 @ Mask for ID
244 .long PMD_TYPE_SECT | \
245 PMD_SECT_BUFFERABLE | \
246 PMD_SECT_CACHEABLE | \
247 PMD_SECT_AP_WRITE | \
248 PMD_SECT_AP_READ
249 .long PMD_TYPE_SECT | \
250 PMD_SECT_XN | \
251 PMD_SECT_AP_WRITE | \
252 PMD_SECT_AP_READ
253 b __v7_setup
254 .long cpu_arch_name
255 .long cpu_elf_name
256 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
257 .long cpu_v7_name
258 .long v7_processor_functions
259 .long v6wbi_tlb_fns
260 .long v6_user_fns
261 .long v7_cache_fns
262 .size __v7_proc_info, . - __v7_proc_info