diff options
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/kernel/step.c | 81 | ||||
-rw-r--r-- | arch/x86/mm/fault_32.c | 77 | ||||
-rw-r--r-- | arch/x86/mm/fault_64.c | 77 |
3 files changed, 81 insertions, 154 deletions
diff --git a/arch/x86/kernel/step.c b/arch/x86/kernel/step.c index 21ea22fda5fc..5884dd485db8 100644 --- a/arch/x86/kernel/step.c +++ b/arch/x86/kernel/step.c | |||
@@ -6,6 +6,87 @@ | |||
6 | #include <linux/ptrace.h> | 6 | #include <linux/ptrace.h> |
7 | 7 | ||
8 | #ifdef CONFIG_X86_32 | 8 | #ifdef CONFIG_X86_32 |
9 | #include <linux/uaccess.h> | ||
10 | |||
11 | #include <asm/desc.h> | ||
12 | |||
13 | /* | ||
14 | * Return EIP plus the CS segment base. The segment limit is also | ||
15 | * adjusted, clamped to the kernel/user address space (whichever is | ||
16 | * appropriate), and returned in *eip_limit. | ||
17 | * | ||
18 | * The segment is checked, because it might have been changed by another | ||
19 | * task between the original faulting instruction and here. | ||
20 | * | ||
21 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
22 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
23 | * then the returned value will be greater than *eip_limit. | ||
24 | * | ||
25 | * This is slow, but is very rarely executed. | ||
26 | */ | ||
27 | unsigned long get_segment_eip(struct pt_regs *regs, | ||
28 | unsigned long *eip_limit) | ||
29 | { | ||
30 | unsigned long ip = regs->ip; | ||
31 | unsigned seg = regs->cs & 0xffff; | ||
32 | u32 seg_ar, seg_limit, base, *desc; | ||
33 | |||
34 | /* Unlikely, but must come before segment checks. */ | ||
35 | if (unlikely(regs->flags & VM_MASK)) { | ||
36 | base = seg << 4; | ||
37 | *eip_limit = base + 0xffff; | ||
38 | return base + (ip & 0xffff); | ||
39 | } | ||
40 | |||
41 | /* The standard kernel/user address space limit. */ | ||
42 | *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | ||
43 | |||
44 | /* By far the most common cases. */ | ||
45 | if (likely(SEGMENT_IS_FLAT_CODE(seg))) | ||
46 | return ip; | ||
47 | |||
48 | /* Check the segment exists, is within the current LDT/GDT size, | ||
49 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
50 | that it's a code segment, and get the limit. */ | ||
51 | __asm__("larl %3,%0; lsll %3,%1" | ||
52 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
53 | if ((~seg_ar & 0x9800) || ip > seg_limit) { | ||
54 | *eip_limit = 0; | ||
55 | return 1; /* So that returned ip > *eip_limit. */ | ||
56 | } | ||
57 | |||
58 | /* Get the GDT/LDT descriptor base. | ||
59 | When you look for races in this code remember that | ||
60 | LDT and other horrors are only used in user space. */ | ||
61 | if (seg & (1<<2)) { | ||
62 | /* Must lock the LDT while reading it. */ | ||
63 | mutex_lock(¤t->mm->context.lock); | ||
64 | desc = current->mm->context.ldt; | ||
65 | desc = (void *)desc + (seg & ~7); | ||
66 | } else { | ||
67 | /* Must disable preemption while reading the GDT. */ | ||
68 | desc = (u32 *)get_cpu_gdt_table(get_cpu()); | ||
69 | desc = (void *)desc + (seg & ~7); | ||
70 | } | ||
71 | |||
72 | /* Decode the code segment base from the descriptor */ | ||
73 | base = get_desc_base((struct desc_struct *)desc); | ||
74 | |||
75 | if (seg & (1<<2)) | ||
76 | mutex_unlock(¤t->mm->context.lock); | ||
77 | else | ||
78 | put_cpu(); | ||
79 | |||
80 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
81 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
82 | seg_limit += base; | ||
83 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
84 | *eip_limit = seg_limit; | ||
85 | return ip + base; | ||
86 | } | ||
87 | #endif | ||
88 | |||
89 | #ifdef CONFIG_X86_32 | ||
9 | static | 90 | static |
10 | #endif | 91 | #endif |
11 | unsigned long convert_rip_to_linear(struct task_struct *child, struct pt_regs *regs) | 92 | unsigned long convert_rip_to_linear(struct task_struct *child, struct pt_regs *regs) |
diff --git a/arch/x86/mm/fault_32.c b/arch/x86/mm/fault_32.c index 421e276770ad..b92922a1d65f 100644 --- a/arch/x86/mm/fault_32.c +++ b/arch/x86/mm/fault_32.c | |||
@@ -61,83 +61,6 @@ static inline int notify_page_fault(struct pt_regs *regs) | |||
61 | #endif | 61 | #endif |
62 | } | 62 | } |
63 | 63 | ||
64 | #ifdef CONFIG_X86_32 | ||
65 | /* | ||
66 | * Return EIP plus the CS segment base. The segment limit is also | ||
67 | * adjusted, clamped to the kernel/user address space (whichever is | ||
68 | * appropriate), and returned in *eip_limit. | ||
69 | * | ||
70 | * The segment is checked, because it might have been changed by another | ||
71 | * task between the original faulting instruction and here. | ||
72 | * | ||
73 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
74 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
75 | * then the returned value will be greater than *eip_limit. | ||
76 | * | ||
77 | * This is slow, but is very rarely executed. | ||
78 | */ | ||
79 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
80 | unsigned long *eip_limit) | ||
81 | { | ||
82 | unsigned long ip = regs->ip; | ||
83 | unsigned seg = regs->cs & 0xffff; | ||
84 | u32 seg_ar, seg_limit, base, *desc; | ||
85 | |||
86 | /* Unlikely, but must come before segment checks. */ | ||
87 | if (unlikely(regs->flags & VM_MASK)) { | ||
88 | base = seg << 4; | ||
89 | *eip_limit = base + 0xffff; | ||
90 | return base + (ip & 0xffff); | ||
91 | } | ||
92 | |||
93 | /* The standard kernel/user address space limit. */ | ||
94 | *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | ||
95 | |||
96 | /* By far the most common cases. */ | ||
97 | if (likely(SEGMENT_IS_FLAT_CODE(seg))) | ||
98 | return ip; | ||
99 | |||
100 | /* Check the segment exists, is within the current LDT/GDT size, | ||
101 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
102 | that it's a code segment, and get the limit. */ | ||
103 | __asm__ ("larl %3,%0; lsll %3,%1" | ||
104 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
105 | if ((~seg_ar & 0x9800) || ip > seg_limit) { | ||
106 | *eip_limit = 0; | ||
107 | return 1; /* So that returned ip > *eip_limit. */ | ||
108 | } | ||
109 | |||
110 | /* Get the GDT/LDT descriptor base. | ||
111 | When you look for races in this code remember that | ||
112 | LDT and other horrors are only used in user space. */ | ||
113 | if (seg & (1<<2)) { | ||
114 | /* Must lock the LDT while reading it. */ | ||
115 | mutex_lock(¤t->mm->context.lock); | ||
116 | desc = current->mm->context.ldt; | ||
117 | desc = (void *)desc + (seg & ~7); | ||
118 | } else { | ||
119 | /* Must disable preemption while reading the GDT. */ | ||
120 | desc = (u32 *)get_cpu_gdt_table(get_cpu()); | ||
121 | desc = (void *)desc + (seg & ~7); | ||
122 | } | ||
123 | |||
124 | /* Decode the code segment base from the descriptor */ | ||
125 | base = get_desc_base((struct desc_struct *)desc); | ||
126 | |||
127 | if (seg & (1<<2)) | ||
128 | mutex_unlock(¤t->mm->context.lock); | ||
129 | else | ||
130 | put_cpu(); | ||
131 | |||
132 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
133 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
134 | seg_limit += base; | ||
135 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
136 | *eip_limit = seg_limit; | ||
137 | return ip + base; | ||
138 | } | ||
139 | #endif | ||
140 | |||
141 | /* | 64 | /* |
142 | * X86_32 | 65 | * X86_32 |
143 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 66 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. |
diff --git a/arch/x86/mm/fault_64.c b/arch/x86/mm/fault_64.c index 95f142f5b5cc..e82832961d72 100644 --- a/arch/x86/mm/fault_64.c +++ b/arch/x86/mm/fault_64.c | |||
@@ -64,83 +64,6 @@ static inline int notify_page_fault(struct pt_regs *regs) | |||
64 | #endif | 64 | #endif |
65 | } | 65 | } |
66 | 66 | ||
67 | #ifdef CONFIG_X86_32 | ||
68 | /* | ||
69 | * Return EIP plus the CS segment base. The segment limit is also | ||
70 | * adjusted, clamped to the kernel/user address space (whichever is | ||
71 | * appropriate), and returned in *eip_limit. | ||
72 | * | ||
73 | * The segment is checked, because it might have been changed by another | ||
74 | * task between the original faulting instruction and here. | ||
75 | * | ||
76 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
77 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
78 | * then the returned value will be greater than *eip_limit. | ||
79 | * | ||
80 | * This is slow, but is very rarely executed. | ||
81 | */ | ||
82 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
83 | unsigned long *eip_limit) | ||
84 | { | ||
85 | unsigned long ip = regs->ip; | ||
86 | unsigned seg = regs->cs & 0xffff; | ||
87 | u32 seg_ar, seg_limit, base, *desc; | ||
88 | |||
89 | /* Unlikely, but must come before segment checks. */ | ||
90 | if (unlikely(regs->flags & VM_MASK)) { | ||
91 | base = seg << 4; | ||
92 | *eip_limit = base + 0xffff; | ||
93 | return base + (ip & 0xffff); | ||
94 | } | ||
95 | |||
96 | /* The standard kernel/user address space limit. */ | ||
97 | *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | ||
98 | |||
99 | /* By far the most common cases. */ | ||
100 | if (likely(SEGMENT_IS_FLAT_CODE(seg))) | ||
101 | return ip; | ||
102 | |||
103 | /* Check the segment exists, is within the current LDT/GDT size, | ||
104 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
105 | that it's a code segment, and get the limit. */ | ||
106 | __asm__("larl %3,%0; lsll %3,%1" | ||
107 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
108 | if ((~seg_ar & 0x9800) || ip > seg_limit) { | ||
109 | *eip_limit = 0; | ||
110 | return 1; /* So that returned ip > *eip_limit. */ | ||
111 | } | ||
112 | |||
113 | /* Get the GDT/LDT descriptor base. | ||
114 | When you look for races in this code remember that | ||
115 | LDT and other horrors are only used in user space. */ | ||
116 | if (seg & (1<<2)) { | ||
117 | /* Must lock the LDT while reading it. */ | ||
118 | mutex_lock(¤t->mm->context.lock); | ||
119 | desc = current->mm->context.ldt; | ||
120 | desc = (void *)desc + (seg & ~7); | ||
121 | } else { | ||
122 | /* Must disable preemption while reading the GDT. */ | ||
123 | desc = (u32 *)get_cpu_gdt_table(get_cpu()); | ||
124 | desc = (void *)desc + (seg & ~7); | ||
125 | } | ||
126 | |||
127 | /* Decode the code segment base from the descriptor */ | ||
128 | base = get_desc_base((struct desc_struct *)desc); | ||
129 | |||
130 | if (seg & (1<<2)) | ||
131 | mutex_unlock(¤t->mm->context.lock); | ||
132 | else | ||
133 | put_cpu(); | ||
134 | |||
135 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
136 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
137 | seg_limit += base; | ||
138 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
139 | *eip_limit = seg_limit; | ||
140 | return ip + base; | ||
141 | } | ||
142 | #endif | ||
143 | |||
144 | /* | 67 | /* |
145 | * X86_32 | 68 | * X86_32 |
146 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 69 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. |