diff options
Diffstat (limited to 'arch/x86/xen')
-rw-r--r-- | arch/x86/xen/Kconfig | 2 | ||||
-rw-r--r-- | arch/x86/xen/Makefile | 3 | ||||
-rw-r--r-- | arch/x86/xen/enlighten.c | 806 | ||||
-rw-r--r-- | arch/x86/xen/irq.c | 39 | ||||
-rw-r--r-- | arch/x86/xen/mmu.c | 750 | ||||
-rw-r--r-- | arch/x86/xen/mmu.h | 3 | ||||
-rw-r--r-- | arch/x86/xen/multicalls.c | 15 | ||||
-rw-r--r-- | arch/x86/xen/multicalls.h | 2 | ||||
-rw-r--r-- | arch/x86/xen/smp.c | 41 | ||||
-rw-r--r-- | arch/x86/xen/suspend.c | 1 | ||||
-rw-r--r-- | arch/x86/xen/xen-asm.S | 142 | ||||
-rw-r--r-- | arch/x86/xen/xen-asm.h | 12 | ||||
-rw-r--r-- | arch/x86/xen/xen-asm_32.S | 343 | ||||
-rw-r--r-- | arch/x86/xen/xen-asm_64.S | 252 | ||||
-rw-r--r-- | arch/x86/xen/xen-head.S | 2 | ||||
-rw-r--r-- | arch/x86/xen/xen-ops.h | 10 |
16 files changed, 1186 insertions, 1237 deletions
diff --git a/arch/x86/xen/Kconfig b/arch/x86/xen/Kconfig index 87b9ab166423..b83e119fbeb0 100644 --- a/arch/x86/xen/Kconfig +++ b/arch/x86/xen/Kconfig | |||
@@ -6,7 +6,7 @@ config XEN | |||
6 | bool "Xen guest support" | 6 | bool "Xen guest support" |
7 | select PARAVIRT | 7 | select PARAVIRT |
8 | select PARAVIRT_CLOCK | 8 | select PARAVIRT_CLOCK |
9 | depends on X86_64 || (X86_32 && X86_PAE && !(X86_VISWS || X86_VOYAGER)) | 9 | depends on X86_64 || (X86_32 && X86_PAE && !X86_VISWS) |
10 | depends on X86_CMPXCHG && X86_TSC | 10 | depends on X86_CMPXCHG && X86_TSC |
11 | help | 11 | help |
12 | This is the Linux Xen port. Enabling this will allow the | 12 | This is the Linux Xen port. Enabling this will allow the |
diff --git a/arch/x86/xen/Makefile b/arch/x86/xen/Makefile index 6dcefba7836f..3b767d03fd6a 100644 --- a/arch/x86/xen/Makefile +++ b/arch/x86/xen/Makefile | |||
@@ -6,7 +6,8 @@ CFLAGS_REMOVE_irq.o = -pg | |||
6 | endif | 6 | endif |
7 | 7 | ||
8 | obj-y := enlighten.o setup.o multicalls.o mmu.o irq.o \ | 8 | obj-y := enlighten.o setup.o multicalls.o mmu.o irq.o \ |
9 | time.o xen-asm_$(BITS).o grant-table.o suspend.o | 9 | time.o xen-asm.o xen-asm_$(BITS).o \ |
10 | grant-table.o suspend.o | ||
10 | 11 | ||
11 | obj-$(CONFIG_SMP) += smp.o spinlock.o | 12 | obj-$(CONFIG_SMP) += smp.o spinlock.o |
12 | obj-$(CONFIG_XEN_DEBUG_FS) += debugfs.o \ No newline at end of file | 13 | obj-$(CONFIG_XEN_DEBUG_FS) += debugfs.o \ No newline at end of file |
diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c index bea215230b20..86497d5f44cd 100644 --- a/arch/x86/xen/enlighten.c +++ b/arch/x86/xen/enlighten.c | |||
@@ -61,40 +61,13 @@ DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | |||
61 | enum xen_domain_type xen_domain_type = XEN_NATIVE; | 61 | enum xen_domain_type xen_domain_type = XEN_NATIVE; |
62 | EXPORT_SYMBOL_GPL(xen_domain_type); | 62 | EXPORT_SYMBOL_GPL(xen_domain_type); |
63 | 63 | ||
64 | /* | ||
65 | * Identity map, in addition to plain kernel map. This needs to be | ||
66 | * large enough to allocate page table pages to allocate the rest. | ||
67 | * Each page can map 2MB. | ||
68 | */ | ||
69 | static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss; | ||
70 | |||
71 | #ifdef CONFIG_X86_64 | ||
72 | /* l3 pud for userspace vsyscall mapping */ | ||
73 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | ||
74 | #endif /* CONFIG_X86_64 */ | ||
75 | |||
76 | /* | ||
77 | * Note about cr3 (pagetable base) values: | ||
78 | * | ||
79 | * xen_cr3 contains the current logical cr3 value; it contains the | ||
80 | * last set cr3. This may not be the current effective cr3, because | ||
81 | * its update may be being lazily deferred. However, a vcpu looking | ||
82 | * at its own cr3 can use this value knowing that it everything will | ||
83 | * be self-consistent. | ||
84 | * | ||
85 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | ||
86 | * hypercall to set the vcpu cr3 is complete (so it may be a little | ||
87 | * out of date, but it will never be set early). If one vcpu is | ||
88 | * looking at another vcpu's cr3 value, it should use this variable. | ||
89 | */ | ||
90 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | ||
91 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | ||
92 | |||
93 | struct start_info *xen_start_info; | 64 | struct start_info *xen_start_info; |
94 | EXPORT_SYMBOL_GPL(xen_start_info); | 65 | EXPORT_SYMBOL_GPL(xen_start_info); |
95 | 66 | ||
96 | struct shared_info xen_dummy_shared_info; | 67 | struct shared_info xen_dummy_shared_info; |
97 | 68 | ||
69 | void *xen_initial_gdt; | ||
70 | |||
98 | /* | 71 | /* |
99 | * Point at some empty memory to start with. We map the real shared_info | 72 | * Point at some empty memory to start with. We map the real shared_info |
100 | * page as soon as fixmap is up and running. | 73 | * page as soon as fixmap is up and running. |
@@ -114,14 +87,7 @@ struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; | |||
114 | * | 87 | * |
115 | * 0: not available, 1: available | 88 | * 0: not available, 1: available |
116 | */ | 89 | */ |
117 | static int have_vcpu_info_placement = | 90 | static int have_vcpu_info_placement = 1; |
118 | #ifdef CONFIG_X86_32 | ||
119 | 1 | ||
120 | #else | ||
121 | 0 | ||
122 | #endif | ||
123 | ; | ||
124 | |||
125 | 91 | ||
126 | static void xen_vcpu_setup(int cpu) | 92 | static void xen_vcpu_setup(int cpu) |
127 | { | 93 | { |
@@ -237,7 +203,7 @@ static unsigned long xen_get_debugreg(int reg) | |||
237 | return HYPERVISOR_get_debugreg(reg); | 203 | return HYPERVISOR_get_debugreg(reg); |
238 | } | 204 | } |
239 | 205 | ||
240 | static void xen_leave_lazy(void) | 206 | void xen_leave_lazy(void) |
241 | { | 207 | { |
242 | paravirt_leave_lazy(paravirt_get_lazy_mode()); | 208 | paravirt_leave_lazy(paravirt_get_lazy_mode()); |
243 | xen_mc_flush(); | 209 | xen_mc_flush(); |
@@ -357,13 +323,14 @@ static void load_TLS_descriptor(struct thread_struct *t, | |||
357 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | 323 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) |
358 | { | 324 | { |
359 | /* | 325 | /* |
360 | * XXX sleazy hack: If we're being called in a lazy-cpu zone, | 326 | * XXX sleazy hack: If we're being called in a lazy-cpu zone |
361 | * it means we're in a context switch, and %gs has just been | 327 | * and lazy gs handling is enabled, it means we're in a |
362 | * saved. This means we can zero it out to prevent faults on | 328 | * context switch, and %gs has just been saved. This means we |
363 | * exit from the hypervisor if the next process has no %gs. | 329 | * can zero it out to prevent faults on exit from the |
364 | * Either way, it has been saved, and the new value will get | 330 | * hypervisor if the next process has no %gs. Either way, it |
365 | * loaded properly. This will go away as soon as Xen has been | 331 | * has been saved, and the new value will get loaded properly. |
366 | * modified to not save/restore %gs for normal hypercalls. | 332 | * This will go away as soon as Xen has been modified to not |
333 | * save/restore %gs for normal hypercalls. | ||
367 | * | 334 | * |
368 | * On x86_64, this hack is not used for %gs, because gs points | 335 | * On x86_64, this hack is not used for %gs, because gs points |
369 | * to KERNEL_GS_BASE (and uses it for PDA references), so we | 336 | * to KERNEL_GS_BASE (and uses it for PDA references), so we |
@@ -375,7 +342,7 @@ static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | |||
375 | */ | 342 | */ |
376 | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { | 343 | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { |
377 | #ifdef CONFIG_X86_32 | 344 | #ifdef CONFIG_X86_32 |
378 | loadsegment(gs, 0); | 345 | lazy_load_gs(0); |
379 | #else | 346 | #else |
380 | loadsegment(fs, 0); | 347 | loadsegment(fs, 0); |
381 | #endif | 348 | #endif |
@@ -587,94 +554,18 @@ static u32 xen_safe_apic_wait_icr_idle(void) | |||
587 | return 0; | 554 | return 0; |
588 | } | 555 | } |
589 | 556 | ||
590 | static struct apic_ops xen_basic_apic_ops = { | 557 | static void set_xen_basic_apic_ops(void) |
591 | .read = xen_apic_read, | ||
592 | .write = xen_apic_write, | ||
593 | .icr_read = xen_apic_icr_read, | ||
594 | .icr_write = xen_apic_icr_write, | ||
595 | .wait_icr_idle = xen_apic_wait_icr_idle, | ||
596 | .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle, | ||
597 | }; | ||
598 | |||
599 | #endif | ||
600 | |||
601 | static void xen_flush_tlb(void) | ||
602 | { | 558 | { |
603 | struct mmuext_op *op; | 559 | apic->read = xen_apic_read; |
604 | struct multicall_space mcs; | 560 | apic->write = xen_apic_write; |
605 | 561 | apic->icr_read = xen_apic_icr_read; | |
606 | preempt_disable(); | 562 | apic->icr_write = xen_apic_icr_write; |
607 | 563 | apic->wait_icr_idle = xen_apic_wait_icr_idle; | |
608 | mcs = xen_mc_entry(sizeof(*op)); | 564 | apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; |
609 | |||
610 | op = mcs.args; | ||
611 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | ||
612 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
613 | |||
614 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
615 | |||
616 | preempt_enable(); | ||
617 | } | 565 | } |
618 | 566 | ||
619 | static void xen_flush_tlb_single(unsigned long addr) | 567 | #endif |
620 | { | ||
621 | struct mmuext_op *op; | ||
622 | struct multicall_space mcs; | ||
623 | |||
624 | preempt_disable(); | ||
625 | |||
626 | mcs = xen_mc_entry(sizeof(*op)); | ||
627 | op = mcs.args; | ||
628 | op->cmd = MMUEXT_INVLPG_LOCAL; | ||
629 | op->arg1.linear_addr = addr & PAGE_MASK; | ||
630 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
631 | |||
632 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
633 | |||
634 | preempt_enable(); | ||
635 | } | ||
636 | |||
637 | static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, | ||
638 | unsigned long va) | ||
639 | { | ||
640 | struct { | ||
641 | struct mmuext_op op; | ||
642 | cpumask_t mask; | ||
643 | } *args; | ||
644 | cpumask_t cpumask = *cpus; | ||
645 | struct multicall_space mcs; | ||
646 | |||
647 | /* | ||
648 | * A couple of (to be removed) sanity checks: | ||
649 | * | ||
650 | * - current CPU must not be in mask | ||
651 | * - mask must exist :) | ||
652 | */ | ||
653 | BUG_ON(cpus_empty(cpumask)); | ||
654 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | ||
655 | BUG_ON(!mm); | ||
656 | |||
657 | /* If a CPU which we ran on has gone down, OK. */ | ||
658 | cpus_and(cpumask, cpumask, cpu_online_map); | ||
659 | if (cpus_empty(cpumask)) | ||
660 | return; | ||
661 | |||
662 | mcs = xen_mc_entry(sizeof(*args)); | ||
663 | args = mcs.args; | ||
664 | args->mask = cpumask; | ||
665 | args->op.arg2.vcpumask = &args->mask; | ||
666 | |||
667 | if (va == TLB_FLUSH_ALL) { | ||
668 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | ||
669 | } else { | ||
670 | args->op.cmd = MMUEXT_INVLPG_MULTI; | ||
671 | args->op.arg1.linear_addr = va; | ||
672 | } | ||
673 | |||
674 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | ||
675 | 568 | ||
676 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
677 | } | ||
678 | 569 | ||
679 | static void xen_clts(void) | 570 | static void xen_clts(void) |
680 | { | 571 | { |
@@ -700,21 +591,6 @@ static void xen_write_cr0(unsigned long cr0) | |||
700 | xen_mc_issue(PARAVIRT_LAZY_CPU); | 591 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
701 | } | 592 | } |
702 | 593 | ||
703 | static void xen_write_cr2(unsigned long cr2) | ||
704 | { | ||
705 | x86_read_percpu(xen_vcpu)->arch.cr2 = cr2; | ||
706 | } | ||
707 | |||
708 | static unsigned long xen_read_cr2(void) | ||
709 | { | ||
710 | return x86_read_percpu(xen_vcpu)->arch.cr2; | ||
711 | } | ||
712 | |||
713 | static unsigned long xen_read_cr2_direct(void) | ||
714 | { | ||
715 | return x86_read_percpu(xen_vcpu_info.arch.cr2); | ||
716 | } | ||
717 | |||
718 | static void xen_write_cr4(unsigned long cr4) | 594 | static void xen_write_cr4(unsigned long cr4) |
719 | { | 595 | { |
720 | cr4 &= ~X86_CR4_PGE; | 596 | cr4 &= ~X86_CR4_PGE; |
@@ -723,71 +599,6 @@ static void xen_write_cr4(unsigned long cr4) | |||
723 | native_write_cr4(cr4); | 599 | native_write_cr4(cr4); |
724 | } | 600 | } |
725 | 601 | ||
726 | static unsigned long xen_read_cr3(void) | ||
727 | { | ||
728 | return x86_read_percpu(xen_cr3); | ||
729 | } | ||
730 | |||
731 | static void set_current_cr3(void *v) | ||
732 | { | ||
733 | x86_write_percpu(xen_current_cr3, (unsigned long)v); | ||
734 | } | ||
735 | |||
736 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | ||
737 | { | ||
738 | struct mmuext_op *op; | ||
739 | struct multicall_space mcs; | ||
740 | unsigned long mfn; | ||
741 | |||
742 | if (cr3) | ||
743 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | ||
744 | else | ||
745 | mfn = 0; | ||
746 | |||
747 | WARN_ON(mfn == 0 && kernel); | ||
748 | |||
749 | mcs = __xen_mc_entry(sizeof(*op)); | ||
750 | |||
751 | op = mcs.args; | ||
752 | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | ||
753 | op->arg1.mfn = mfn; | ||
754 | |||
755 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
756 | |||
757 | if (kernel) { | ||
758 | x86_write_percpu(xen_cr3, cr3); | ||
759 | |||
760 | /* Update xen_current_cr3 once the batch has actually | ||
761 | been submitted. */ | ||
762 | xen_mc_callback(set_current_cr3, (void *)cr3); | ||
763 | } | ||
764 | } | ||
765 | |||
766 | static void xen_write_cr3(unsigned long cr3) | ||
767 | { | ||
768 | BUG_ON(preemptible()); | ||
769 | |||
770 | xen_mc_batch(); /* disables interrupts */ | ||
771 | |||
772 | /* Update while interrupts are disabled, so its atomic with | ||
773 | respect to ipis */ | ||
774 | x86_write_percpu(xen_cr3, cr3); | ||
775 | |||
776 | __xen_write_cr3(true, cr3); | ||
777 | |||
778 | #ifdef CONFIG_X86_64 | ||
779 | { | ||
780 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | ||
781 | if (user_pgd) | ||
782 | __xen_write_cr3(false, __pa(user_pgd)); | ||
783 | else | ||
784 | __xen_write_cr3(false, 0); | ||
785 | } | ||
786 | #endif | ||
787 | |||
788 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | ||
789 | } | ||
790 | |||
791 | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | 602 | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) |
792 | { | 603 | { |
793 | int ret; | 604 | int ret; |
@@ -829,185 +640,6 @@ static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | |||
829 | return ret; | 640 | return ret; |
830 | } | 641 | } |
831 | 642 | ||
832 | /* Early in boot, while setting up the initial pagetable, assume | ||
833 | everything is pinned. */ | ||
834 | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | ||
835 | { | ||
836 | #ifdef CONFIG_FLATMEM | ||
837 | BUG_ON(mem_map); /* should only be used early */ | ||
838 | #endif | ||
839 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
840 | } | ||
841 | |||
842 | /* Early release_pte assumes that all pts are pinned, since there's | ||
843 | only init_mm and anything attached to that is pinned. */ | ||
844 | static void xen_release_pte_init(unsigned long pfn) | ||
845 | { | ||
846 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
847 | } | ||
848 | |||
849 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | ||
850 | { | ||
851 | struct mmuext_op op; | ||
852 | op.cmd = cmd; | ||
853 | op.arg1.mfn = pfn_to_mfn(pfn); | ||
854 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | ||
855 | BUG(); | ||
856 | } | ||
857 | |||
858 | /* This needs to make sure the new pte page is pinned iff its being | ||
859 | attached to a pinned pagetable. */ | ||
860 | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | ||
861 | { | ||
862 | struct page *page = pfn_to_page(pfn); | ||
863 | |||
864 | if (PagePinned(virt_to_page(mm->pgd))) { | ||
865 | SetPagePinned(page); | ||
866 | |||
867 | vm_unmap_aliases(); | ||
868 | if (!PageHighMem(page)) { | ||
869 | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | ||
870 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
871 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | ||
872 | } else { | ||
873 | /* make sure there are no stray mappings of | ||
874 | this page */ | ||
875 | kmap_flush_unused(); | ||
876 | } | ||
877 | } | ||
878 | } | ||
879 | |||
880 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | ||
881 | { | ||
882 | xen_alloc_ptpage(mm, pfn, PT_PTE); | ||
883 | } | ||
884 | |||
885 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | ||
886 | { | ||
887 | xen_alloc_ptpage(mm, pfn, PT_PMD); | ||
888 | } | ||
889 | |||
890 | static int xen_pgd_alloc(struct mm_struct *mm) | ||
891 | { | ||
892 | pgd_t *pgd = mm->pgd; | ||
893 | int ret = 0; | ||
894 | |||
895 | BUG_ON(PagePinned(virt_to_page(pgd))); | ||
896 | |||
897 | #ifdef CONFIG_X86_64 | ||
898 | { | ||
899 | struct page *page = virt_to_page(pgd); | ||
900 | pgd_t *user_pgd; | ||
901 | |||
902 | BUG_ON(page->private != 0); | ||
903 | |||
904 | ret = -ENOMEM; | ||
905 | |||
906 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | ||
907 | page->private = (unsigned long)user_pgd; | ||
908 | |||
909 | if (user_pgd != NULL) { | ||
910 | user_pgd[pgd_index(VSYSCALL_START)] = | ||
911 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | ||
912 | ret = 0; | ||
913 | } | ||
914 | |||
915 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | ||
916 | } | ||
917 | #endif | ||
918 | |||
919 | return ret; | ||
920 | } | ||
921 | |||
922 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | ||
923 | { | ||
924 | #ifdef CONFIG_X86_64 | ||
925 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | ||
926 | |||
927 | if (user_pgd) | ||
928 | free_page((unsigned long)user_pgd); | ||
929 | #endif | ||
930 | } | ||
931 | |||
932 | /* This should never happen until we're OK to use struct page */ | ||
933 | static void xen_release_ptpage(unsigned long pfn, unsigned level) | ||
934 | { | ||
935 | struct page *page = pfn_to_page(pfn); | ||
936 | |||
937 | if (PagePinned(page)) { | ||
938 | if (!PageHighMem(page)) { | ||
939 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
940 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | ||
941 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
942 | } | ||
943 | ClearPagePinned(page); | ||
944 | } | ||
945 | } | ||
946 | |||
947 | static void xen_release_pte(unsigned long pfn) | ||
948 | { | ||
949 | xen_release_ptpage(pfn, PT_PTE); | ||
950 | } | ||
951 | |||
952 | static void xen_release_pmd(unsigned long pfn) | ||
953 | { | ||
954 | xen_release_ptpage(pfn, PT_PMD); | ||
955 | } | ||
956 | |||
957 | #if PAGETABLE_LEVELS == 4 | ||
958 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | ||
959 | { | ||
960 | xen_alloc_ptpage(mm, pfn, PT_PUD); | ||
961 | } | ||
962 | |||
963 | static void xen_release_pud(unsigned long pfn) | ||
964 | { | ||
965 | xen_release_ptpage(pfn, PT_PUD); | ||
966 | } | ||
967 | #endif | ||
968 | |||
969 | #ifdef CONFIG_HIGHPTE | ||
970 | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | ||
971 | { | ||
972 | pgprot_t prot = PAGE_KERNEL; | ||
973 | |||
974 | if (PagePinned(page)) | ||
975 | prot = PAGE_KERNEL_RO; | ||
976 | |||
977 | if (0 && PageHighMem(page)) | ||
978 | printk("mapping highpte %lx type %d prot %s\n", | ||
979 | page_to_pfn(page), type, | ||
980 | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | ||
981 | |||
982 | return kmap_atomic_prot(page, type, prot); | ||
983 | } | ||
984 | #endif | ||
985 | |||
986 | #ifdef CONFIG_X86_32 | ||
987 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | ||
988 | { | ||
989 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | ||
990 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | ||
991 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | ||
992 | pte_val_ma(pte)); | ||
993 | |||
994 | return pte; | ||
995 | } | ||
996 | |||
997 | /* Init-time set_pte while constructing initial pagetables, which | ||
998 | doesn't allow RO pagetable pages to be remapped RW */ | ||
999 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | ||
1000 | { | ||
1001 | pte = mask_rw_pte(ptep, pte); | ||
1002 | |||
1003 | xen_set_pte(ptep, pte); | ||
1004 | } | ||
1005 | #endif | ||
1006 | |||
1007 | static __init void xen_pagetable_setup_start(pgd_t *base) | ||
1008 | { | ||
1009 | } | ||
1010 | |||
1011 | void xen_setup_shared_info(void) | 643 | void xen_setup_shared_info(void) |
1012 | { | 644 | { |
1013 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | 645 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
@@ -1028,37 +660,6 @@ void xen_setup_shared_info(void) | |||
1028 | xen_setup_mfn_list_list(); | 660 | xen_setup_mfn_list_list(); |
1029 | } | 661 | } |
1030 | 662 | ||
1031 | static __init void xen_pagetable_setup_done(pgd_t *base) | ||
1032 | { | ||
1033 | xen_setup_shared_info(); | ||
1034 | } | ||
1035 | |||
1036 | static __init void xen_post_allocator_init(void) | ||
1037 | { | ||
1038 | pv_mmu_ops.set_pte = xen_set_pte; | ||
1039 | pv_mmu_ops.set_pmd = xen_set_pmd; | ||
1040 | pv_mmu_ops.set_pud = xen_set_pud; | ||
1041 | #if PAGETABLE_LEVELS == 4 | ||
1042 | pv_mmu_ops.set_pgd = xen_set_pgd; | ||
1043 | #endif | ||
1044 | |||
1045 | /* This will work as long as patching hasn't happened yet | ||
1046 | (which it hasn't) */ | ||
1047 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | ||
1048 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | ||
1049 | pv_mmu_ops.release_pte = xen_release_pte; | ||
1050 | pv_mmu_ops.release_pmd = xen_release_pmd; | ||
1051 | #if PAGETABLE_LEVELS == 4 | ||
1052 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | ||
1053 | pv_mmu_ops.release_pud = xen_release_pud; | ||
1054 | #endif | ||
1055 | |||
1056 | #ifdef CONFIG_X86_64 | ||
1057 | SetPagePinned(virt_to_page(level3_user_vsyscall)); | ||
1058 | #endif | ||
1059 | xen_mark_init_mm_pinned(); | ||
1060 | } | ||
1061 | |||
1062 | /* This is called once we have the cpu_possible_map */ | 663 | /* This is called once we have the cpu_possible_map */ |
1063 | void xen_setup_vcpu_info_placement(void) | 664 | void xen_setup_vcpu_info_placement(void) |
1064 | { | 665 | { |
@@ -1072,10 +673,10 @@ void xen_setup_vcpu_info_placement(void) | |||
1072 | if (have_vcpu_info_placement) { | 673 | if (have_vcpu_info_placement) { |
1073 | printk(KERN_INFO "Xen: using vcpu_info placement\n"); | 674 | printk(KERN_INFO "Xen: using vcpu_info placement\n"); |
1074 | 675 | ||
1075 | pv_irq_ops.save_fl = xen_save_fl_direct; | 676 | pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); |
1076 | pv_irq_ops.restore_fl = xen_restore_fl_direct; | 677 | pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); |
1077 | pv_irq_ops.irq_disable = xen_irq_disable_direct; | 678 | pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); |
1078 | pv_irq_ops.irq_enable = xen_irq_enable_direct; | 679 | pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); |
1079 | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; | 680 | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; |
1080 | } | 681 | } |
1081 | } | 682 | } |
@@ -1133,49 +734,6 @@ static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, | |||
1133 | return ret; | 734 | return ret; |
1134 | } | 735 | } |
1135 | 736 | ||
1136 | static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot) | ||
1137 | { | ||
1138 | pte_t pte; | ||
1139 | |||
1140 | phys >>= PAGE_SHIFT; | ||
1141 | |||
1142 | switch (idx) { | ||
1143 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | ||
1144 | #ifdef CONFIG_X86_F00F_BUG | ||
1145 | case FIX_F00F_IDT: | ||
1146 | #endif | ||
1147 | #ifdef CONFIG_X86_32 | ||
1148 | case FIX_WP_TEST: | ||
1149 | case FIX_VDSO: | ||
1150 | # ifdef CONFIG_HIGHMEM | ||
1151 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | ||
1152 | # endif | ||
1153 | #else | ||
1154 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | ||
1155 | #endif | ||
1156 | #ifdef CONFIG_X86_LOCAL_APIC | ||
1157 | case FIX_APIC_BASE: /* maps dummy local APIC */ | ||
1158 | #endif | ||
1159 | pte = pfn_pte(phys, prot); | ||
1160 | break; | ||
1161 | |||
1162 | default: | ||
1163 | pte = mfn_pte(phys, prot); | ||
1164 | break; | ||
1165 | } | ||
1166 | |||
1167 | __native_set_fixmap(idx, pte); | ||
1168 | |||
1169 | #ifdef CONFIG_X86_64 | ||
1170 | /* Replicate changes to map the vsyscall page into the user | ||
1171 | pagetable vsyscall mapping. */ | ||
1172 | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | ||
1173 | unsigned long vaddr = __fix_to_virt(idx); | ||
1174 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | ||
1175 | } | ||
1176 | #endif | ||
1177 | } | ||
1178 | |||
1179 | static const struct pv_info xen_info __initdata = { | 737 | static const struct pv_info xen_info __initdata = { |
1180 | .paravirt_enabled = 1, | 738 | .paravirt_enabled = 1, |
1181 | .shared_kernel_pmd = 0, | 739 | .shared_kernel_pmd = 0, |
@@ -1271,87 +829,6 @@ static const struct pv_apic_ops xen_apic_ops __initdata = { | |||
1271 | #endif | 829 | #endif |
1272 | }; | 830 | }; |
1273 | 831 | ||
1274 | static const struct pv_mmu_ops xen_mmu_ops __initdata = { | ||
1275 | .pagetable_setup_start = xen_pagetable_setup_start, | ||
1276 | .pagetable_setup_done = xen_pagetable_setup_done, | ||
1277 | |||
1278 | .read_cr2 = xen_read_cr2, | ||
1279 | .write_cr2 = xen_write_cr2, | ||
1280 | |||
1281 | .read_cr3 = xen_read_cr3, | ||
1282 | .write_cr3 = xen_write_cr3, | ||
1283 | |||
1284 | .flush_tlb_user = xen_flush_tlb, | ||
1285 | .flush_tlb_kernel = xen_flush_tlb, | ||
1286 | .flush_tlb_single = xen_flush_tlb_single, | ||
1287 | .flush_tlb_others = xen_flush_tlb_others, | ||
1288 | |||
1289 | .pte_update = paravirt_nop, | ||
1290 | .pte_update_defer = paravirt_nop, | ||
1291 | |||
1292 | .pgd_alloc = xen_pgd_alloc, | ||
1293 | .pgd_free = xen_pgd_free, | ||
1294 | |||
1295 | .alloc_pte = xen_alloc_pte_init, | ||
1296 | .release_pte = xen_release_pte_init, | ||
1297 | .alloc_pmd = xen_alloc_pte_init, | ||
1298 | .alloc_pmd_clone = paravirt_nop, | ||
1299 | .release_pmd = xen_release_pte_init, | ||
1300 | |||
1301 | #ifdef CONFIG_HIGHPTE | ||
1302 | .kmap_atomic_pte = xen_kmap_atomic_pte, | ||
1303 | #endif | ||
1304 | |||
1305 | #ifdef CONFIG_X86_64 | ||
1306 | .set_pte = xen_set_pte, | ||
1307 | #else | ||
1308 | .set_pte = xen_set_pte_init, | ||
1309 | #endif | ||
1310 | .set_pte_at = xen_set_pte_at, | ||
1311 | .set_pmd = xen_set_pmd_hyper, | ||
1312 | |||
1313 | .ptep_modify_prot_start = __ptep_modify_prot_start, | ||
1314 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | ||
1315 | |||
1316 | .pte_val = xen_pte_val, | ||
1317 | .pte_flags = native_pte_flags, | ||
1318 | .pgd_val = xen_pgd_val, | ||
1319 | |||
1320 | .make_pte = xen_make_pte, | ||
1321 | .make_pgd = xen_make_pgd, | ||
1322 | |||
1323 | #ifdef CONFIG_X86_PAE | ||
1324 | .set_pte_atomic = xen_set_pte_atomic, | ||
1325 | .set_pte_present = xen_set_pte_at, | ||
1326 | .pte_clear = xen_pte_clear, | ||
1327 | .pmd_clear = xen_pmd_clear, | ||
1328 | #endif /* CONFIG_X86_PAE */ | ||
1329 | .set_pud = xen_set_pud_hyper, | ||
1330 | |||
1331 | .make_pmd = xen_make_pmd, | ||
1332 | .pmd_val = xen_pmd_val, | ||
1333 | |||
1334 | #if PAGETABLE_LEVELS == 4 | ||
1335 | .pud_val = xen_pud_val, | ||
1336 | .make_pud = xen_make_pud, | ||
1337 | .set_pgd = xen_set_pgd_hyper, | ||
1338 | |||
1339 | .alloc_pud = xen_alloc_pte_init, | ||
1340 | .release_pud = xen_release_pte_init, | ||
1341 | #endif /* PAGETABLE_LEVELS == 4 */ | ||
1342 | |||
1343 | .activate_mm = xen_activate_mm, | ||
1344 | .dup_mmap = xen_dup_mmap, | ||
1345 | .exit_mmap = xen_exit_mmap, | ||
1346 | |||
1347 | .lazy_mode = { | ||
1348 | .enter = paravirt_enter_lazy_mmu, | ||
1349 | .leave = xen_leave_lazy, | ||
1350 | }, | ||
1351 | |||
1352 | .set_fixmap = xen_set_fixmap, | ||
1353 | }; | ||
1354 | |||
1355 | static void xen_reboot(int reason) | 832 | static void xen_reboot(int reason) |
1356 | { | 833 | { |
1357 | struct sched_shutdown r = { .reason = reason }; | 834 | struct sched_shutdown r = { .reason = reason }; |
@@ -1394,223 +871,6 @@ static const struct machine_ops __initdata xen_machine_ops = { | |||
1394 | }; | 871 | }; |
1395 | 872 | ||
1396 | 873 | ||
1397 | static void __init xen_reserve_top(void) | ||
1398 | { | ||
1399 | #ifdef CONFIG_X86_32 | ||
1400 | unsigned long top = HYPERVISOR_VIRT_START; | ||
1401 | struct xen_platform_parameters pp; | ||
1402 | |||
1403 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | ||
1404 | top = pp.virt_start; | ||
1405 | |||
1406 | reserve_top_address(-top); | ||
1407 | #endif /* CONFIG_X86_32 */ | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1411 | * Like __va(), but returns address in the kernel mapping (which is | ||
1412 | * all we have until the physical memory mapping has been set up. | ||
1413 | */ | ||
1414 | static void *__ka(phys_addr_t paddr) | ||
1415 | { | ||
1416 | #ifdef CONFIG_X86_64 | ||
1417 | return (void *)(paddr + __START_KERNEL_map); | ||
1418 | #else | ||
1419 | return __va(paddr); | ||
1420 | #endif | ||
1421 | } | ||
1422 | |||
1423 | /* Convert a machine address to physical address */ | ||
1424 | static unsigned long m2p(phys_addr_t maddr) | ||
1425 | { | ||
1426 | phys_addr_t paddr; | ||
1427 | |||
1428 | maddr &= PTE_PFN_MASK; | ||
1429 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | ||
1430 | |||
1431 | return paddr; | ||
1432 | } | ||
1433 | |||
1434 | /* Convert a machine address to kernel virtual */ | ||
1435 | static void *m2v(phys_addr_t maddr) | ||
1436 | { | ||
1437 | return __ka(m2p(maddr)); | ||
1438 | } | ||
1439 | |||
1440 | static void set_page_prot(void *addr, pgprot_t prot) | ||
1441 | { | ||
1442 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | ||
1443 | pte_t pte = pfn_pte(pfn, prot); | ||
1444 | |||
1445 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | ||
1446 | BUG(); | ||
1447 | } | ||
1448 | |||
1449 | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | ||
1450 | { | ||
1451 | unsigned pmdidx, pteidx; | ||
1452 | unsigned ident_pte; | ||
1453 | unsigned long pfn; | ||
1454 | |||
1455 | ident_pte = 0; | ||
1456 | pfn = 0; | ||
1457 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | ||
1458 | pte_t *pte_page; | ||
1459 | |||
1460 | /* Reuse or allocate a page of ptes */ | ||
1461 | if (pmd_present(pmd[pmdidx])) | ||
1462 | pte_page = m2v(pmd[pmdidx].pmd); | ||
1463 | else { | ||
1464 | /* Check for free pte pages */ | ||
1465 | if (ident_pte == ARRAY_SIZE(level1_ident_pgt)) | ||
1466 | break; | ||
1467 | |||
1468 | pte_page = &level1_ident_pgt[ident_pte]; | ||
1469 | ident_pte += PTRS_PER_PTE; | ||
1470 | |||
1471 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | ||
1472 | } | ||
1473 | |||
1474 | /* Install mappings */ | ||
1475 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | ||
1476 | pte_t pte; | ||
1477 | |||
1478 | if (pfn > max_pfn_mapped) | ||
1479 | max_pfn_mapped = pfn; | ||
1480 | |||
1481 | if (!pte_none(pte_page[pteidx])) | ||
1482 | continue; | ||
1483 | |||
1484 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | ||
1485 | pte_page[pteidx] = pte; | ||
1486 | } | ||
1487 | } | ||
1488 | |||
1489 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | ||
1490 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | ||
1491 | |||
1492 | set_page_prot(pmd, PAGE_KERNEL_RO); | ||
1493 | } | ||
1494 | |||
1495 | #ifdef CONFIG_X86_64 | ||
1496 | static void convert_pfn_mfn(void *v) | ||
1497 | { | ||
1498 | pte_t *pte = v; | ||
1499 | int i; | ||
1500 | |||
1501 | /* All levels are converted the same way, so just treat them | ||
1502 | as ptes. */ | ||
1503 | for (i = 0; i < PTRS_PER_PTE; i++) | ||
1504 | pte[i] = xen_make_pte(pte[i].pte); | ||
1505 | } | ||
1506 | |||
1507 | /* | ||
1508 | * Set up the inital kernel pagetable. | ||
1509 | * | ||
1510 | * We can construct this by grafting the Xen provided pagetable into | ||
1511 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | ||
1512 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | ||
1513 | * means that only the kernel has a physical mapping to start with - | ||
1514 | * but that's enough to get __va working. We need to fill in the rest | ||
1515 | * of the physical mapping once some sort of allocator has been set | ||
1516 | * up. | ||
1517 | */ | ||
1518 | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
1519 | unsigned long max_pfn) | ||
1520 | { | ||
1521 | pud_t *l3; | ||
1522 | pmd_t *l2; | ||
1523 | |||
1524 | /* Zap identity mapping */ | ||
1525 | init_level4_pgt[0] = __pgd(0); | ||
1526 | |||
1527 | /* Pre-constructed entries are in pfn, so convert to mfn */ | ||
1528 | convert_pfn_mfn(init_level4_pgt); | ||
1529 | convert_pfn_mfn(level3_ident_pgt); | ||
1530 | convert_pfn_mfn(level3_kernel_pgt); | ||
1531 | |||
1532 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | ||
1533 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | ||
1534 | |||
1535 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1536 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1537 | |||
1538 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | ||
1539 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | ||
1540 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1541 | |||
1542 | /* Set up identity map */ | ||
1543 | xen_map_identity_early(level2_ident_pgt, max_pfn); | ||
1544 | |||
1545 | /* Make pagetable pieces RO */ | ||
1546 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | ||
1547 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | ||
1548 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | ||
1549 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | ||
1550 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
1551 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | ||
1552 | |||
1553 | /* Pin down new L4 */ | ||
1554 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | ||
1555 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | ||
1556 | |||
1557 | /* Unpin Xen-provided one */ | ||
1558 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
1559 | |||
1560 | /* Switch over */ | ||
1561 | pgd = init_level4_pgt; | ||
1562 | |||
1563 | /* | ||
1564 | * At this stage there can be no user pgd, and no page | ||
1565 | * structure to attach it to, so make sure we just set kernel | ||
1566 | * pgd. | ||
1567 | */ | ||
1568 | xen_mc_batch(); | ||
1569 | __xen_write_cr3(true, __pa(pgd)); | ||
1570 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
1571 | |||
1572 | reserve_early(__pa(xen_start_info->pt_base), | ||
1573 | __pa(xen_start_info->pt_base + | ||
1574 | xen_start_info->nr_pt_frames * PAGE_SIZE), | ||
1575 | "XEN PAGETABLES"); | ||
1576 | |||
1577 | return pgd; | ||
1578 | } | ||
1579 | #else /* !CONFIG_X86_64 */ | ||
1580 | static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss; | ||
1581 | |||
1582 | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
1583 | unsigned long max_pfn) | ||
1584 | { | ||
1585 | pmd_t *kernel_pmd; | ||
1586 | |||
1587 | init_pg_tables_start = __pa(pgd); | ||
1588 | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | ||
1589 | max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024); | ||
1590 | |||
1591 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | ||
1592 | memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1593 | |||
1594 | xen_map_identity_early(level2_kernel_pgt, max_pfn); | ||
1595 | |||
1596 | memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | ||
1597 | set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | ||
1598 | __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | ||
1599 | |||
1600 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
1601 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | ||
1602 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | ||
1603 | |||
1604 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
1605 | |||
1606 | xen_write_cr3(__pa(swapper_pg_dir)); | ||
1607 | |||
1608 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | ||
1609 | |||
1610 | return swapper_pg_dir; | ||
1611 | } | ||
1612 | #endif /* CONFIG_X86_64 */ | ||
1613 | |||
1614 | /* First C function to be called on Xen boot */ | 874 | /* First C function to be called on Xen boot */ |
1615 | asmlinkage void __init xen_start_kernel(void) | 875 | asmlinkage void __init xen_start_kernel(void) |
1616 | { | 876 | { |
@@ -1639,7 +899,7 @@ asmlinkage void __init xen_start_kernel(void) | |||
1639 | /* | 899 | /* |
1640 | * set up the basic apic ops. | 900 | * set up the basic apic ops. |
1641 | */ | 901 | */ |
1642 | apic_ops = &xen_basic_apic_ops; | 902 | set_xen_basic_apic_ops(); |
1643 | #endif | 903 | #endif |
1644 | 904 | ||
1645 | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { | 905 | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { |
@@ -1650,10 +910,18 @@ asmlinkage void __init xen_start_kernel(void) | |||
1650 | machine_ops = xen_machine_ops; | 910 | machine_ops = xen_machine_ops; |
1651 | 911 | ||
1652 | #ifdef CONFIG_X86_64 | 912 | #ifdef CONFIG_X86_64 |
1653 | /* Disable until direct per-cpu data access. */ | 913 | /* |
1654 | have_vcpu_info_placement = 0; | 914 | * Setup percpu state. We only need to do this for 64-bit |
1655 | x86_64_init_pda(); | 915 | * because 32-bit already has %fs set properly. |
916 | */ | ||
917 | load_percpu_segment(0); | ||
1656 | #endif | 918 | #endif |
919 | /* | ||
920 | * The only reliable way to retain the initial address of the | ||
921 | * percpu gdt_page is to remember it here, so we can go and | ||
922 | * mark it RW later, when the initial percpu area is freed. | ||
923 | */ | ||
924 | xen_initial_gdt = &per_cpu(gdt_page, 0); | ||
1657 | 925 | ||
1658 | xen_smp_init(); | 926 | xen_smp_init(); |
1659 | 927 | ||
diff --git a/arch/x86/xen/irq.c b/arch/x86/xen/irq.c index bb042608c602..cfd17799bd6d 100644 --- a/arch/x86/xen/irq.c +++ b/arch/x86/xen/irq.c | |||
@@ -19,27 +19,12 @@ void xen_force_evtchn_callback(void) | |||
19 | (void)HYPERVISOR_xen_version(0, NULL); | 19 | (void)HYPERVISOR_xen_version(0, NULL); |
20 | } | 20 | } |
21 | 21 | ||
22 | static void __init __xen_init_IRQ(void) | ||
23 | { | ||
24 | int i; | ||
25 | |||
26 | /* Create identity vector->irq map */ | ||
27 | for(i = 0; i < NR_VECTORS; i++) { | ||
28 | int cpu; | ||
29 | |||
30 | for_each_possible_cpu(cpu) | ||
31 | per_cpu(vector_irq, cpu)[i] = i; | ||
32 | } | ||
33 | |||
34 | xen_init_IRQ(); | ||
35 | } | ||
36 | |||
37 | static unsigned long xen_save_fl(void) | 22 | static unsigned long xen_save_fl(void) |
38 | { | 23 | { |
39 | struct vcpu_info *vcpu; | 24 | struct vcpu_info *vcpu; |
40 | unsigned long flags; | 25 | unsigned long flags; |
41 | 26 | ||
42 | vcpu = x86_read_percpu(xen_vcpu); | 27 | vcpu = percpu_read(xen_vcpu); |
43 | 28 | ||
44 | /* flag has opposite sense of mask */ | 29 | /* flag has opposite sense of mask */ |
45 | flags = !vcpu->evtchn_upcall_mask; | 30 | flags = !vcpu->evtchn_upcall_mask; |
@@ -50,6 +35,7 @@ static unsigned long xen_save_fl(void) | |||
50 | */ | 35 | */ |
51 | return (-flags) & X86_EFLAGS_IF; | 36 | return (-flags) & X86_EFLAGS_IF; |
52 | } | 37 | } |
38 | PV_CALLEE_SAVE_REGS_THUNK(xen_save_fl); | ||
53 | 39 | ||
54 | static void xen_restore_fl(unsigned long flags) | 40 | static void xen_restore_fl(unsigned long flags) |
55 | { | 41 | { |
@@ -62,7 +48,7 @@ static void xen_restore_fl(unsigned long flags) | |||
62 | make sure we're don't switch CPUs between getting the vcpu | 48 | make sure we're don't switch CPUs between getting the vcpu |
63 | pointer and updating the mask. */ | 49 | pointer and updating the mask. */ |
64 | preempt_disable(); | 50 | preempt_disable(); |
65 | vcpu = x86_read_percpu(xen_vcpu); | 51 | vcpu = percpu_read(xen_vcpu); |
66 | vcpu->evtchn_upcall_mask = flags; | 52 | vcpu->evtchn_upcall_mask = flags; |
67 | preempt_enable_no_resched(); | 53 | preempt_enable_no_resched(); |
68 | 54 | ||
@@ -76,6 +62,7 @@ static void xen_restore_fl(unsigned long flags) | |||
76 | xen_force_evtchn_callback(); | 62 | xen_force_evtchn_callback(); |
77 | } | 63 | } |
78 | } | 64 | } |
65 | PV_CALLEE_SAVE_REGS_THUNK(xen_restore_fl); | ||
79 | 66 | ||
80 | static void xen_irq_disable(void) | 67 | static void xen_irq_disable(void) |
81 | { | 68 | { |
@@ -83,9 +70,10 @@ static void xen_irq_disable(void) | |||
83 | make sure we're don't switch CPUs between getting the vcpu | 70 | make sure we're don't switch CPUs between getting the vcpu |
84 | pointer and updating the mask. */ | 71 | pointer and updating the mask. */ |
85 | preempt_disable(); | 72 | preempt_disable(); |
86 | x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1; | 73 | percpu_read(xen_vcpu)->evtchn_upcall_mask = 1; |
87 | preempt_enable_no_resched(); | 74 | preempt_enable_no_resched(); |
88 | } | 75 | } |
76 | PV_CALLEE_SAVE_REGS_THUNK(xen_irq_disable); | ||
89 | 77 | ||
90 | static void xen_irq_enable(void) | 78 | static void xen_irq_enable(void) |
91 | { | 79 | { |
@@ -96,7 +84,7 @@ static void xen_irq_enable(void) | |||
96 | the caller is confused and is trying to re-enable interrupts | 84 | the caller is confused and is trying to re-enable interrupts |
97 | on an indeterminate processor. */ | 85 | on an indeterminate processor. */ |
98 | 86 | ||
99 | vcpu = x86_read_percpu(xen_vcpu); | 87 | vcpu = percpu_read(xen_vcpu); |
100 | vcpu->evtchn_upcall_mask = 0; | 88 | vcpu->evtchn_upcall_mask = 0; |
101 | 89 | ||
102 | /* Doesn't matter if we get preempted here, because any | 90 | /* Doesn't matter if we get preempted here, because any |
@@ -106,6 +94,7 @@ static void xen_irq_enable(void) | |||
106 | if (unlikely(vcpu->evtchn_upcall_pending)) | 94 | if (unlikely(vcpu->evtchn_upcall_pending)) |
107 | xen_force_evtchn_callback(); | 95 | xen_force_evtchn_callback(); |
108 | } | 96 | } |
97 | PV_CALLEE_SAVE_REGS_THUNK(xen_irq_enable); | ||
109 | 98 | ||
110 | static void xen_safe_halt(void) | 99 | static void xen_safe_halt(void) |
111 | { | 100 | { |
@@ -123,11 +112,13 @@ static void xen_halt(void) | |||
123 | } | 112 | } |
124 | 113 | ||
125 | static const struct pv_irq_ops xen_irq_ops __initdata = { | 114 | static const struct pv_irq_ops xen_irq_ops __initdata = { |
126 | .init_IRQ = __xen_init_IRQ, | 115 | .init_IRQ = xen_init_IRQ, |
127 | .save_fl = xen_save_fl, | 116 | |
128 | .restore_fl = xen_restore_fl, | 117 | .save_fl = PV_CALLEE_SAVE(xen_save_fl), |
129 | .irq_disable = xen_irq_disable, | 118 | .restore_fl = PV_CALLEE_SAVE(xen_restore_fl), |
130 | .irq_enable = xen_irq_enable, | 119 | .irq_disable = PV_CALLEE_SAVE(xen_irq_disable), |
120 | .irq_enable = PV_CALLEE_SAVE(xen_irq_enable), | ||
121 | |||
131 | .safe_halt = xen_safe_halt, | 122 | .safe_halt = xen_safe_halt, |
132 | .halt = xen_halt, | 123 | .halt = xen_halt, |
133 | #ifdef CONFIG_X86_64 | 124 | #ifdef CONFIG_X86_64 |
diff --git a/arch/x86/xen/mmu.c b/arch/x86/xen/mmu.c index 503c240e26c7..319bd40a57c2 100644 --- a/arch/x86/xen/mmu.c +++ b/arch/x86/xen/mmu.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <asm/tlbflush.h> | 47 | #include <asm/tlbflush.h> |
48 | #include <asm/fixmap.h> | 48 | #include <asm/fixmap.h> |
49 | #include <asm/mmu_context.h> | 49 | #include <asm/mmu_context.h> |
50 | #include <asm/setup.h> | ||
50 | #include <asm/paravirt.h> | 51 | #include <asm/paravirt.h> |
51 | #include <asm/linkage.h> | 52 | #include <asm/linkage.h> |
52 | 53 | ||
@@ -55,6 +56,8 @@ | |||
55 | 56 | ||
56 | #include <xen/page.h> | 57 | #include <xen/page.h> |
57 | #include <xen/interface/xen.h> | 58 | #include <xen/interface/xen.h> |
59 | #include <xen/interface/version.h> | ||
60 | #include <xen/hvc-console.h> | ||
58 | 61 | ||
59 | #include "multicalls.h" | 62 | #include "multicalls.h" |
60 | #include "mmu.h" | 63 | #include "mmu.h" |
@@ -114,6 +117,37 @@ static inline void check_zero(void) | |||
114 | 117 | ||
115 | #endif /* CONFIG_XEN_DEBUG_FS */ | 118 | #endif /* CONFIG_XEN_DEBUG_FS */ |
116 | 119 | ||
120 | |||
121 | /* | ||
122 | * Identity map, in addition to plain kernel map. This needs to be | ||
123 | * large enough to allocate page table pages to allocate the rest. | ||
124 | * Each page can map 2MB. | ||
125 | */ | ||
126 | static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss; | ||
127 | |||
128 | #ifdef CONFIG_X86_64 | ||
129 | /* l3 pud for userspace vsyscall mapping */ | ||
130 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | ||
131 | #endif /* CONFIG_X86_64 */ | ||
132 | |||
133 | /* | ||
134 | * Note about cr3 (pagetable base) values: | ||
135 | * | ||
136 | * xen_cr3 contains the current logical cr3 value; it contains the | ||
137 | * last set cr3. This may not be the current effective cr3, because | ||
138 | * its update may be being lazily deferred. However, a vcpu looking | ||
139 | * at its own cr3 can use this value knowing that it everything will | ||
140 | * be self-consistent. | ||
141 | * | ||
142 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | ||
143 | * hypercall to set the vcpu cr3 is complete (so it may be a little | ||
144 | * out of date, but it will never be set early). If one vcpu is | ||
145 | * looking at another vcpu's cr3 value, it should use this variable. | ||
146 | */ | ||
147 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | ||
148 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | ||
149 | |||
150 | |||
117 | /* | 151 | /* |
118 | * Just beyond the highest usermode address. STACK_TOP_MAX has a | 152 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
119 | * redzone above it, so round it up to a PGD boundary. | 153 | * redzone above it, so round it up to a PGD boundary. |
@@ -458,28 +492,33 @@ pteval_t xen_pte_val(pte_t pte) | |||
458 | { | 492 | { |
459 | return pte_mfn_to_pfn(pte.pte); | 493 | return pte_mfn_to_pfn(pte.pte); |
460 | } | 494 | } |
495 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | ||
461 | 496 | ||
462 | pgdval_t xen_pgd_val(pgd_t pgd) | 497 | pgdval_t xen_pgd_val(pgd_t pgd) |
463 | { | 498 | { |
464 | return pte_mfn_to_pfn(pgd.pgd); | 499 | return pte_mfn_to_pfn(pgd.pgd); |
465 | } | 500 | } |
501 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | ||
466 | 502 | ||
467 | pte_t xen_make_pte(pteval_t pte) | 503 | pte_t xen_make_pte(pteval_t pte) |
468 | { | 504 | { |
469 | pte = pte_pfn_to_mfn(pte); | 505 | pte = pte_pfn_to_mfn(pte); |
470 | return native_make_pte(pte); | 506 | return native_make_pte(pte); |
471 | } | 507 | } |
508 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | ||
472 | 509 | ||
473 | pgd_t xen_make_pgd(pgdval_t pgd) | 510 | pgd_t xen_make_pgd(pgdval_t pgd) |
474 | { | 511 | { |
475 | pgd = pte_pfn_to_mfn(pgd); | 512 | pgd = pte_pfn_to_mfn(pgd); |
476 | return native_make_pgd(pgd); | 513 | return native_make_pgd(pgd); |
477 | } | 514 | } |
515 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | ||
478 | 516 | ||
479 | pmdval_t xen_pmd_val(pmd_t pmd) | 517 | pmdval_t xen_pmd_val(pmd_t pmd) |
480 | { | 518 | { |
481 | return pte_mfn_to_pfn(pmd.pmd); | 519 | return pte_mfn_to_pfn(pmd.pmd); |
482 | } | 520 | } |
521 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | ||
483 | 522 | ||
484 | void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 523 | void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
485 | { | 524 | { |
@@ -556,12 +595,14 @@ pmd_t xen_make_pmd(pmdval_t pmd) | |||
556 | pmd = pte_pfn_to_mfn(pmd); | 595 | pmd = pte_pfn_to_mfn(pmd); |
557 | return native_make_pmd(pmd); | 596 | return native_make_pmd(pmd); |
558 | } | 597 | } |
598 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | ||
559 | 599 | ||
560 | #if PAGETABLE_LEVELS == 4 | 600 | #if PAGETABLE_LEVELS == 4 |
561 | pudval_t xen_pud_val(pud_t pud) | 601 | pudval_t xen_pud_val(pud_t pud) |
562 | { | 602 | { |
563 | return pte_mfn_to_pfn(pud.pud); | 603 | return pte_mfn_to_pfn(pud.pud); |
564 | } | 604 | } |
605 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | ||
565 | 606 | ||
566 | pud_t xen_make_pud(pudval_t pud) | 607 | pud_t xen_make_pud(pudval_t pud) |
567 | { | 608 | { |
@@ -569,6 +610,7 @@ pud_t xen_make_pud(pudval_t pud) | |||
569 | 610 | ||
570 | return native_make_pud(pud); | 611 | return native_make_pud(pud); |
571 | } | 612 | } |
613 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | ||
572 | 614 | ||
573 | pgd_t *xen_get_user_pgd(pgd_t *pgd) | 615 | pgd_t *xen_get_user_pgd(pgd_t *pgd) |
574 | { | 616 | { |
@@ -1063,18 +1105,14 @@ static void drop_other_mm_ref(void *info) | |||
1063 | struct mm_struct *mm = info; | 1105 | struct mm_struct *mm = info; |
1064 | struct mm_struct *active_mm; | 1106 | struct mm_struct *active_mm; |
1065 | 1107 | ||
1066 | #ifdef CONFIG_X86_64 | 1108 | active_mm = percpu_read(cpu_tlbstate.active_mm); |
1067 | active_mm = read_pda(active_mm); | ||
1068 | #else | ||
1069 | active_mm = __get_cpu_var(cpu_tlbstate).active_mm; | ||
1070 | #endif | ||
1071 | 1109 | ||
1072 | if (active_mm == mm) | 1110 | if (active_mm == mm) |
1073 | leave_mm(smp_processor_id()); | 1111 | leave_mm(smp_processor_id()); |
1074 | 1112 | ||
1075 | /* If this cpu still has a stale cr3 reference, then make sure | 1113 | /* If this cpu still has a stale cr3 reference, then make sure |
1076 | it has been flushed. */ | 1114 | it has been flushed. */ |
1077 | if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) { | 1115 | if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) { |
1078 | load_cr3(swapper_pg_dir); | 1116 | load_cr3(swapper_pg_dir); |
1079 | arch_flush_lazy_cpu_mode(); | 1117 | arch_flush_lazy_cpu_mode(); |
1080 | } | 1118 | } |
@@ -1156,6 +1194,706 @@ void xen_exit_mmap(struct mm_struct *mm) | |||
1156 | spin_unlock(&mm->page_table_lock); | 1194 | spin_unlock(&mm->page_table_lock); |
1157 | } | 1195 | } |
1158 | 1196 | ||
1197 | static __init void xen_pagetable_setup_start(pgd_t *base) | ||
1198 | { | ||
1199 | } | ||
1200 | |||
1201 | static __init void xen_pagetable_setup_done(pgd_t *base) | ||
1202 | { | ||
1203 | xen_setup_shared_info(); | ||
1204 | } | ||
1205 | |||
1206 | static void xen_write_cr2(unsigned long cr2) | ||
1207 | { | ||
1208 | percpu_read(xen_vcpu)->arch.cr2 = cr2; | ||
1209 | } | ||
1210 | |||
1211 | static unsigned long xen_read_cr2(void) | ||
1212 | { | ||
1213 | return percpu_read(xen_vcpu)->arch.cr2; | ||
1214 | } | ||
1215 | |||
1216 | unsigned long xen_read_cr2_direct(void) | ||
1217 | { | ||
1218 | return percpu_read(xen_vcpu_info.arch.cr2); | ||
1219 | } | ||
1220 | |||
1221 | static void xen_flush_tlb(void) | ||
1222 | { | ||
1223 | struct mmuext_op *op; | ||
1224 | struct multicall_space mcs; | ||
1225 | |||
1226 | preempt_disable(); | ||
1227 | |||
1228 | mcs = xen_mc_entry(sizeof(*op)); | ||
1229 | |||
1230 | op = mcs.args; | ||
1231 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | ||
1232 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
1233 | |||
1234 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
1235 | |||
1236 | preempt_enable(); | ||
1237 | } | ||
1238 | |||
1239 | static void xen_flush_tlb_single(unsigned long addr) | ||
1240 | { | ||
1241 | struct mmuext_op *op; | ||
1242 | struct multicall_space mcs; | ||
1243 | |||
1244 | preempt_disable(); | ||
1245 | |||
1246 | mcs = xen_mc_entry(sizeof(*op)); | ||
1247 | op = mcs.args; | ||
1248 | op->cmd = MMUEXT_INVLPG_LOCAL; | ||
1249 | op->arg1.linear_addr = addr & PAGE_MASK; | ||
1250 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
1251 | |||
1252 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
1253 | |||
1254 | preempt_enable(); | ||
1255 | } | ||
1256 | |||
1257 | static void xen_flush_tlb_others(const struct cpumask *cpus, | ||
1258 | struct mm_struct *mm, unsigned long va) | ||
1259 | { | ||
1260 | struct { | ||
1261 | struct mmuext_op op; | ||
1262 | DECLARE_BITMAP(mask, NR_CPUS); | ||
1263 | } *args; | ||
1264 | struct multicall_space mcs; | ||
1265 | |||
1266 | BUG_ON(cpumask_empty(cpus)); | ||
1267 | BUG_ON(!mm); | ||
1268 | |||
1269 | mcs = xen_mc_entry(sizeof(*args)); | ||
1270 | args = mcs.args; | ||
1271 | args->op.arg2.vcpumask = to_cpumask(args->mask); | ||
1272 | |||
1273 | /* Remove us, and any offline CPUS. */ | ||
1274 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | ||
1275 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | ||
1276 | |||
1277 | if (va == TLB_FLUSH_ALL) { | ||
1278 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | ||
1279 | } else { | ||
1280 | args->op.cmd = MMUEXT_INVLPG_MULTI; | ||
1281 | args->op.arg1.linear_addr = va; | ||
1282 | } | ||
1283 | |||
1284 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | ||
1285 | |||
1286 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
1287 | } | ||
1288 | |||
1289 | static unsigned long xen_read_cr3(void) | ||
1290 | { | ||
1291 | return percpu_read(xen_cr3); | ||
1292 | } | ||
1293 | |||
1294 | static void set_current_cr3(void *v) | ||
1295 | { | ||
1296 | percpu_write(xen_current_cr3, (unsigned long)v); | ||
1297 | } | ||
1298 | |||
1299 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | ||
1300 | { | ||
1301 | struct mmuext_op *op; | ||
1302 | struct multicall_space mcs; | ||
1303 | unsigned long mfn; | ||
1304 | |||
1305 | if (cr3) | ||
1306 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | ||
1307 | else | ||
1308 | mfn = 0; | ||
1309 | |||
1310 | WARN_ON(mfn == 0 && kernel); | ||
1311 | |||
1312 | mcs = __xen_mc_entry(sizeof(*op)); | ||
1313 | |||
1314 | op = mcs.args; | ||
1315 | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | ||
1316 | op->arg1.mfn = mfn; | ||
1317 | |||
1318 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
1319 | |||
1320 | if (kernel) { | ||
1321 | percpu_write(xen_cr3, cr3); | ||
1322 | |||
1323 | /* Update xen_current_cr3 once the batch has actually | ||
1324 | been submitted. */ | ||
1325 | xen_mc_callback(set_current_cr3, (void *)cr3); | ||
1326 | } | ||
1327 | } | ||
1328 | |||
1329 | static void xen_write_cr3(unsigned long cr3) | ||
1330 | { | ||
1331 | BUG_ON(preemptible()); | ||
1332 | |||
1333 | xen_mc_batch(); /* disables interrupts */ | ||
1334 | |||
1335 | /* Update while interrupts are disabled, so its atomic with | ||
1336 | respect to ipis */ | ||
1337 | percpu_write(xen_cr3, cr3); | ||
1338 | |||
1339 | __xen_write_cr3(true, cr3); | ||
1340 | |||
1341 | #ifdef CONFIG_X86_64 | ||
1342 | { | ||
1343 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | ||
1344 | if (user_pgd) | ||
1345 | __xen_write_cr3(false, __pa(user_pgd)); | ||
1346 | else | ||
1347 | __xen_write_cr3(false, 0); | ||
1348 | } | ||
1349 | #endif | ||
1350 | |||
1351 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | ||
1352 | } | ||
1353 | |||
1354 | static int xen_pgd_alloc(struct mm_struct *mm) | ||
1355 | { | ||
1356 | pgd_t *pgd = mm->pgd; | ||
1357 | int ret = 0; | ||
1358 | |||
1359 | BUG_ON(PagePinned(virt_to_page(pgd))); | ||
1360 | |||
1361 | #ifdef CONFIG_X86_64 | ||
1362 | { | ||
1363 | struct page *page = virt_to_page(pgd); | ||
1364 | pgd_t *user_pgd; | ||
1365 | |||
1366 | BUG_ON(page->private != 0); | ||
1367 | |||
1368 | ret = -ENOMEM; | ||
1369 | |||
1370 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | ||
1371 | page->private = (unsigned long)user_pgd; | ||
1372 | |||
1373 | if (user_pgd != NULL) { | ||
1374 | user_pgd[pgd_index(VSYSCALL_START)] = | ||
1375 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | ||
1376 | ret = 0; | ||
1377 | } | ||
1378 | |||
1379 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | ||
1380 | } | ||
1381 | #endif | ||
1382 | |||
1383 | return ret; | ||
1384 | } | ||
1385 | |||
1386 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | ||
1387 | { | ||
1388 | #ifdef CONFIG_X86_64 | ||
1389 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | ||
1390 | |||
1391 | if (user_pgd) | ||
1392 | free_page((unsigned long)user_pgd); | ||
1393 | #endif | ||
1394 | } | ||
1395 | |||
1396 | #ifdef CONFIG_HIGHPTE | ||
1397 | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | ||
1398 | { | ||
1399 | pgprot_t prot = PAGE_KERNEL; | ||
1400 | |||
1401 | if (PagePinned(page)) | ||
1402 | prot = PAGE_KERNEL_RO; | ||
1403 | |||
1404 | if (0 && PageHighMem(page)) | ||
1405 | printk("mapping highpte %lx type %d prot %s\n", | ||
1406 | page_to_pfn(page), type, | ||
1407 | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | ||
1408 | |||
1409 | return kmap_atomic_prot(page, type, prot); | ||
1410 | } | ||
1411 | #endif | ||
1412 | |||
1413 | #ifdef CONFIG_X86_32 | ||
1414 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | ||
1415 | { | ||
1416 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | ||
1417 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | ||
1418 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | ||
1419 | pte_val_ma(pte)); | ||
1420 | |||
1421 | return pte; | ||
1422 | } | ||
1423 | |||
1424 | /* Init-time set_pte while constructing initial pagetables, which | ||
1425 | doesn't allow RO pagetable pages to be remapped RW */ | ||
1426 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | ||
1427 | { | ||
1428 | pte = mask_rw_pte(ptep, pte); | ||
1429 | |||
1430 | xen_set_pte(ptep, pte); | ||
1431 | } | ||
1432 | #endif | ||
1433 | |||
1434 | /* Early in boot, while setting up the initial pagetable, assume | ||
1435 | everything is pinned. */ | ||
1436 | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | ||
1437 | { | ||
1438 | #ifdef CONFIG_FLATMEM | ||
1439 | BUG_ON(mem_map); /* should only be used early */ | ||
1440 | #endif | ||
1441 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
1442 | } | ||
1443 | |||
1444 | /* Early release_pte assumes that all pts are pinned, since there's | ||
1445 | only init_mm and anything attached to that is pinned. */ | ||
1446 | static void xen_release_pte_init(unsigned long pfn) | ||
1447 | { | ||
1448 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
1449 | } | ||
1450 | |||
1451 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | ||
1452 | { | ||
1453 | struct mmuext_op op; | ||
1454 | op.cmd = cmd; | ||
1455 | op.arg1.mfn = pfn_to_mfn(pfn); | ||
1456 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | ||
1457 | BUG(); | ||
1458 | } | ||
1459 | |||
1460 | /* This needs to make sure the new pte page is pinned iff its being | ||
1461 | attached to a pinned pagetable. */ | ||
1462 | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | ||
1463 | { | ||
1464 | struct page *page = pfn_to_page(pfn); | ||
1465 | |||
1466 | if (PagePinned(virt_to_page(mm->pgd))) { | ||
1467 | SetPagePinned(page); | ||
1468 | |||
1469 | vm_unmap_aliases(); | ||
1470 | if (!PageHighMem(page)) { | ||
1471 | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | ||
1472 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
1473 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | ||
1474 | } else { | ||
1475 | /* make sure there are no stray mappings of | ||
1476 | this page */ | ||
1477 | kmap_flush_unused(); | ||
1478 | } | ||
1479 | } | ||
1480 | } | ||
1481 | |||
1482 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | ||
1483 | { | ||
1484 | xen_alloc_ptpage(mm, pfn, PT_PTE); | ||
1485 | } | ||
1486 | |||
1487 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | ||
1488 | { | ||
1489 | xen_alloc_ptpage(mm, pfn, PT_PMD); | ||
1490 | } | ||
1491 | |||
1492 | /* This should never happen until we're OK to use struct page */ | ||
1493 | static void xen_release_ptpage(unsigned long pfn, unsigned level) | ||
1494 | { | ||
1495 | struct page *page = pfn_to_page(pfn); | ||
1496 | |||
1497 | if (PagePinned(page)) { | ||
1498 | if (!PageHighMem(page)) { | ||
1499 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
1500 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | ||
1501 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
1502 | } | ||
1503 | ClearPagePinned(page); | ||
1504 | } | ||
1505 | } | ||
1506 | |||
1507 | static void xen_release_pte(unsigned long pfn) | ||
1508 | { | ||
1509 | xen_release_ptpage(pfn, PT_PTE); | ||
1510 | } | ||
1511 | |||
1512 | static void xen_release_pmd(unsigned long pfn) | ||
1513 | { | ||
1514 | xen_release_ptpage(pfn, PT_PMD); | ||
1515 | } | ||
1516 | |||
1517 | #if PAGETABLE_LEVELS == 4 | ||
1518 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | ||
1519 | { | ||
1520 | xen_alloc_ptpage(mm, pfn, PT_PUD); | ||
1521 | } | ||
1522 | |||
1523 | static void xen_release_pud(unsigned long pfn) | ||
1524 | { | ||
1525 | xen_release_ptpage(pfn, PT_PUD); | ||
1526 | } | ||
1527 | #endif | ||
1528 | |||
1529 | void __init xen_reserve_top(void) | ||
1530 | { | ||
1531 | #ifdef CONFIG_X86_32 | ||
1532 | unsigned long top = HYPERVISOR_VIRT_START; | ||
1533 | struct xen_platform_parameters pp; | ||
1534 | |||
1535 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | ||
1536 | top = pp.virt_start; | ||
1537 | |||
1538 | reserve_top_address(-top); | ||
1539 | #endif /* CONFIG_X86_32 */ | ||
1540 | } | ||
1541 | |||
1542 | /* | ||
1543 | * Like __va(), but returns address in the kernel mapping (which is | ||
1544 | * all we have until the physical memory mapping has been set up. | ||
1545 | */ | ||
1546 | static void *__ka(phys_addr_t paddr) | ||
1547 | { | ||
1548 | #ifdef CONFIG_X86_64 | ||
1549 | return (void *)(paddr + __START_KERNEL_map); | ||
1550 | #else | ||
1551 | return __va(paddr); | ||
1552 | #endif | ||
1553 | } | ||
1554 | |||
1555 | /* Convert a machine address to physical address */ | ||
1556 | static unsigned long m2p(phys_addr_t maddr) | ||
1557 | { | ||
1558 | phys_addr_t paddr; | ||
1559 | |||
1560 | maddr &= PTE_PFN_MASK; | ||
1561 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | ||
1562 | |||
1563 | return paddr; | ||
1564 | } | ||
1565 | |||
1566 | /* Convert a machine address to kernel virtual */ | ||
1567 | static void *m2v(phys_addr_t maddr) | ||
1568 | { | ||
1569 | return __ka(m2p(maddr)); | ||
1570 | } | ||
1571 | |||
1572 | static void set_page_prot(void *addr, pgprot_t prot) | ||
1573 | { | ||
1574 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | ||
1575 | pte_t pte = pfn_pte(pfn, prot); | ||
1576 | |||
1577 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | ||
1578 | BUG(); | ||
1579 | } | ||
1580 | |||
1581 | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | ||
1582 | { | ||
1583 | unsigned pmdidx, pteidx; | ||
1584 | unsigned ident_pte; | ||
1585 | unsigned long pfn; | ||
1586 | |||
1587 | ident_pte = 0; | ||
1588 | pfn = 0; | ||
1589 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | ||
1590 | pte_t *pte_page; | ||
1591 | |||
1592 | /* Reuse or allocate a page of ptes */ | ||
1593 | if (pmd_present(pmd[pmdidx])) | ||
1594 | pte_page = m2v(pmd[pmdidx].pmd); | ||
1595 | else { | ||
1596 | /* Check for free pte pages */ | ||
1597 | if (ident_pte == ARRAY_SIZE(level1_ident_pgt)) | ||
1598 | break; | ||
1599 | |||
1600 | pte_page = &level1_ident_pgt[ident_pte]; | ||
1601 | ident_pte += PTRS_PER_PTE; | ||
1602 | |||
1603 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | ||
1604 | } | ||
1605 | |||
1606 | /* Install mappings */ | ||
1607 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | ||
1608 | pte_t pte; | ||
1609 | |||
1610 | if (pfn > max_pfn_mapped) | ||
1611 | max_pfn_mapped = pfn; | ||
1612 | |||
1613 | if (!pte_none(pte_page[pteidx])) | ||
1614 | continue; | ||
1615 | |||
1616 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | ||
1617 | pte_page[pteidx] = pte; | ||
1618 | } | ||
1619 | } | ||
1620 | |||
1621 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | ||
1622 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | ||
1623 | |||
1624 | set_page_prot(pmd, PAGE_KERNEL_RO); | ||
1625 | } | ||
1626 | |||
1627 | #ifdef CONFIG_X86_64 | ||
1628 | static void convert_pfn_mfn(void *v) | ||
1629 | { | ||
1630 | pte_t *pte = v; | ||
1631 | int i; | ||
1632 | |||
1633 | /* All levels are converted the same way, so just treat them | ||
1634 | as ptes. */ | ||
1635 | for (i = 0; i < PTRS_PER_PTE; i++) | ||
1636 | pte[i] = xen_make_pte(pte[i].pte); | ||
1637 | } | ||
1638 | |||
1639 | /* | ||
1640 | * Set up the inital kernel pagetable. | ||
1641 | * | ||
1642 | * We can construct this by grafting the Xen provided pagetable into | ||
1643 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | ||
1644 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | ||
1645 | * means that only the kernel has a physical mapping to start with - | ||
1646 | * but that's enough to get __va working. We need to fill in the rest | ||
1647 | * of the physical mapping once some sort of allocator has been set | ||
1648 | * up. | ||
1649 | */ | ||
1650 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
1651 | unsigned long max_pfn) | ||
1652 | { | ||
1653 | pud_t *l3; | ||
1654 | pmd_t *l2; | ||
1655 | |||
1656 | /* Zap identity mapping */ | ||
1657 | init_level4_pgt[0] = __pgd(0); | ||
1658 | |||
1659 | /* Pre-constructed entries are in pfn, so convert to mfn */ | ||
1660 | convert_pfn_mfn(init_level4_pgt); | ||
1661 | convert_pfn_mfn(level3_ident_pgt); | ||
1662 | convert_pfn_mfn(level3_kernel_pgt); | ||
1663 | |||
1664 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | ||
1665 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | ||
1666 | |||
1667 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1668 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1669 | |||
1670 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | ||
1671 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | ||
1672 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1673 | |||
1674 | /* Set up identity map */ | ||
1675 | xen_map_identity_early(level2_ident_pgt, max_pfn); | ||
1676 | |||
1677 | /* Make pagetable pieces RO */ | ||
1678 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | ||
1679 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | ||
1680 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | ||
1681 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | ||
1682 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
1683 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | ||
1684 | |||
1685 | /* Pin down new L4 */ | ||
1686 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | ||
1687 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | ||
1688 | |||
1689 | /* Unpin Xen-provided one */ | ||
1690 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
1691 | |||
1692 | /* Switch over */ | ||
1693 | pgd = init_level4_pgt; | ||
1694 | |||
1695 | /* | ||
1696 | * At this stage there can be no user pgd, and no page | ||
1697 | * structure to attach it to, so make sure we just set kernel | ||
1698 | * pgd. | ||
1699 | */ | ||
1700 | xen_mc_batch(); | ||
1701 | __xen_write_cr3(true, __pa(pgd)); | ||
1702 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
1703 | |||
1704 | reserve_early(__pa(xen_start_info->pt_base), | ||
1705 | __pa(xen_start_info->pt_base + | ||
1706 | xen_start_info->nr_pt_frames * PAGE_SIZE), | ||
1707 | "XEN PAGETABLES"); | ||
1708 | |||
1709 | return pgd; | ||
1710 | } | ||
1711 | #else /* !CONFIG_X86_64 */ | ||
1712 | static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss; | ||
1713 | |||
1714 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
1715 | unsigned long max_pfn) | ||
1716 | { | ||
1717 | pmd_t *kernel_pmd; | ||
1718 | |||
1719 | init_pg_tables_start = __pa(pgd); | ||
1720 | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | ||
1721 | max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024); | ||
1722 | |||
1723 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | ||
1724 | memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | ||
1725 | |||
1726 | xen_map_identity_early(level2_kernel_pgt, max_pfn); | ||
1727 | |||
1728 | memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | ||
1729 | set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | ||
1730 | __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | ||
1731 | |||
1732 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
1733 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | ||
1734 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | ||
1735 | |||
1736 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
1737 | |||
1738 | xen_write_cr3(__pa(swapper_pg_dir)); | ||
1739 | |||
1740 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | ||
1741 | |||
1742 | return swapper_pg_dir; | ||
1743 | } | ||
1744 | #endif /* CONFIG_X86_64 */ | ||
1745 | |||
1746 | static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot) | ||
1747 | { | ||
1748 | pte_t pte; | ||
1749 | |||
1750 | phys >>= PAGE_SHIFT; | ||
1751 | |||
1752 | switch (idx) { | ||
1753 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | ||
1754 | #ifdef CONFIG_X86_F00F_BUG | ||
1755 | case FIX_F00F_IDT: | ||
1756 | #endif | ||
1757 | #ifdef CONFIG_X86_32 | ||
1758 | case FIX_WP_TEST: | ||
1759 | case FIX_VDSO: | ||
1760 | # ifdef CONFIG_HIGHMEM | ||
1761 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | ||
1762 | # endif | ||
1763 | #else | ||
1764 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | ||
1765 | #endif | ||
1766 | #ifdef CONFIG_X86_LOCAL_APIC | ||
1767 | case FIX_APIC_BASE: /* maps dummy local APIC */ | ||
1768 | #endif | ||
1769 | pte = pfn_pte(phys, prot); | ||
1770 | break; | ||
1771 | |||
1772 | default: | ||
1773 | pte = mfn_pte(phys, prot); | ||
1774 | break; | ||
1775 | } | ||
1776 | |||
1777 | __native_set_fixmap(idx, pte); | ||
1778 | |||
1779 | #ifdef CONFIG_X86_64 | ||
1780 | /* Replicate changes to map the vsyscall page into the user | ||
1781 | pagetable vsyscall mapping. */ | ||
1782 | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | ||
1783 | unsigned long vaddr = __fix_to_virt(idx); | ||
1784 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | ||
1785 | } | ||
1786 | #endif | ||
1787 | } | ||
1788 | |||
1789 | __init void xen_post_allocator_init(void) | ||
1790 | { | ||
1791 | pv_mmu_ops.set_pte = xen_set_pte; | ||
1792 | pv_mmu_ops.set_pmd = xen_set_pmd; | ||
1793 | pv_mmu_ops.set_pud = xen_set_pud; | ||
1794 | #if PAGETABLE_LEVELS == 4 | ||
1795 | pv_mmu_ops.set_pgd = xen_set_pgd; | ||
1796 | #endif | ||
1797 | |||
1798 | /* This will work as long as patching hasn't happened yet | ||
1799 | (which it hasn't) */ | ||
1800 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | ||
1801 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | ||
1802 | pv_mmu_ops.release_pte = xen_release_pte; | ||
1803 | pv_mmu_ops.release_pmd = xen_release_pmd; | ||
1804 | #if PAGETABLE_LEVELS == 4 | ||
1805 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | ||
1806 | pv_mmu_ops.release_pud = xen_release_pud; | ||
1807 | #endif | ||
1808 | |||
1809 | #ifdef CONFIG_X86_64 | ||
1810 | SetPagePinned(virt_to_page(level3_user_vsyscall)); | ||
1811 | #endif | ||
1812 | xen_mark_init_mm_pinned(); | ||
1813 | } | ||
1814 | |||
1815 | |||
1816 | const struct pv_mmu_ops xen_mmu_ops __initdata = { | ||
1817 | .pagetable_setup_start = xen_pagetable_setup_start, | ||
1818 | .pagetable_setup_done = xen_pagetable_setup_done, | ||
1819 | |||
1820 | .read_cr2 = xen_read_cr2, | ||
1821 | .write_cr2 = xen_write_cr2, | ||
1822 | |||
1823 | .read_cr3 = xen_read_cr3, | ||
1824 | .write_cr3 = xen_write_cr3, | ||
1825 | |||
1826 | .flush_tlb_user = xen_flush_tlb, | ||
1827 | .flush_tlb_kernel = xen_flush_tlb, | ||
1828 | .flush_tlb_single = xen_flush_tlb_single, | ||
1829 | .flush_tlb_others = xen_flush_tlb_others, | ||
1830 | |||
1831 | .pte_update = paravirt_nop, | ||
1832 | .pte_update_defer = paravirt_nop, | ||
1833 | |||
1834 | .pgd_alloc = xen_pgd_alloc, | ||
1835 | .pgd_free = xen_pgd_free, | ||
1836 | |||
1837 | .alloc_pte = xen_alloc_pte_init, | ||
1838 | .release_pte = xen_release_pte_init, | ||
1839 | .alloc_pmd = xen_alloc_pte_init, | ||
1840 | .alloc_pmd_clone = paravirt_nop, | ||
1841 | .release_pmd = xen_release_pte_init, | ||
1842 | |||
1843 | #ifdef CONFIG_HIGHPTE | ||
1844 | .kmap_atomic_pte = xen_kmap_atomic_pte, | ||
1845 | #endif | ||
1846 | |||
1847 | #ifdef CONFIG_X86_64 | ||
1848 | .set_pte = xen_set_pte, | ||
1849 | #else | ||
1850 | .set_pte = xen_set_pte_init, | ||
1851 | #endif | ||
1852 | .set_pte_at = xen_set_pte_at, | ||
1853 | .set_pmd = xen_set_pmd_hyper, | ||
1854 | |||
1855 | .ptep_modify_prot_start = __ptep_modify_prot_start, | ||
1856 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | ||
1857 | |||
1858 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), | ||
1859 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | ||
1860 | |||
1861 | .make_pte = PV_CALLEE_SAVE(xen_make_pte), | ||
1862 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | ||
1863 | |||
1864 | #ifdef CONFIG_X86_PAE | ||
1865 | .set_pte_atomic = xen_set_pte_atomic, | ||
1866 | .set_pte_present = xen_set_pte_at, | ||
1867 | .pte_clear = xen_pte_clear, | ||
1868 | .pmd_clear = xen_pmd_clear, | ||
1869 | #endif /* CONFIG_X86_PAE */ | ||
1870 | .set_pud = xen_set_pud_hyper, | ||
1871 | |||
1872 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | ||
1873 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | ||
1874 | |||
1875 | #if PAGETABLE_LEVELS == 4 | ||
1876 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), | ||
1877 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), | ||
1878 | .set_pgd = xen_set_pgd_hyper, | ||
1879 | |||
1880 | .alloc_pud = xen_alloc_pte_init, | ||
1881 | .release_pud = xen_release_pte_init, | ||
1882 | #endif /* PAGETABLE_LEVELS == 4 */ | ||
1883 | |||
1884 | .activate_mm = xen_activate_mm, | ||
1885 | .dup_mmap = xen_dup_mmap, | ||
1886 | .exit_mmap = xen_exit_mmap, | ||
1887 | |||
1888 | .lazy_mode = { | ||
1889 | .enter = paravirt_enter_lazy_mmu, | ||
1890 | .leave = xen_leave_lazy, | ||
1891 | }, | ||
1892 | |||
1893 | .set_fixmap = xen_set_fixmap, | ||
1894 | }; | ||
1895 | |||
1896 | |||
1159 | #ifdef CONFIG_XEN_DEBUG_FS | 1897 | #ifdef CONFIG_XEN_DEBUG_FS |
1160 | 1898 | ||
1161 | static struct dentry *d_mmu_debug; | 1899 | static struct dentry *d_mmu_debug; |
diff --git a/arch/x86/xen/mmu.h b/arch/x86/xen/mmu.h index 98d71659da5a..24d1b44a337d 100644 --- a/arch/x86/xen/mmu.h +++ b/arch/x86/xen/mmu.h | |||
@@ -54,4 +54,7 @@ pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t | |||
54 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 54 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
55 | pte_t *ptep, pte_t pte); | 55 | pte_t *ptep, pte_t pte); |
56 | 56 | ||
57 | unsigned long xen_read_cr2_direct(void); | ||
58 | |||
59 | extern const struct pv_mmu_ops xen_mmu_ops; | ||
57 | #endif /* _XEN_MMU_H */ | 60 | #endif /* _XEN_MMU_H */ |
diff --git a/arch/x86/xen/multicalls.c b/arch/x86/xen/multicalls.c index c738644b5435..8bff7e7c290b 100644 --- a/arch/x86/xen/multicalls.c +++ b/arch/x86/xen/multicalls.c | |||
@@ -39,6 +39,7 @@ struct mc_buffer { | |||
39 | struct multicall_entry entries[MC_BATCH]; | 39 | struct multicall_entry entries[MC_BATCH]; |
40 | #if MC_DEBUG | 40 | #if MC_DEBUG |
41 | struct multicall_entry debug[MC_BATCH]; | 41 | struct multicall_entry debug[MC_BATCH]; |
42 | void *caller[MC_BATCH]; | ||
42 | #endif | 43 | #endif |
43 | unsigned char args[MC_ARGS]; | 44 | unsigned char args[MC_ARGS]; |
44 | struct callback { | 45 | struct callback { |
@@ -154,11 +155,12 @@ void xen_mc_flush(void) | |||
154 | ret, smp_processor_id()); | 155 | ret, smp_processor_id()); |
155 | dump_stack(); | 156 | dump_stack(); |
156 | for (i = 0; i < b->mcidx; i++) { | 157 | for (i = 0; i < b->mcidx; i++) { |
157 | printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\n", | 158 | printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n", |
158 | i+1, b->mcidx, | 159 | i+1, b->mcidx, |
159 | b->debug[i].op, | 160 | b->debug[i].op, |
160 | b->debug[i].args[0], | 161 | b->debug[i].args[0], |
161 | b->entries[i].result); | 162 | b->entries[i].result, |
163 | b->caller[i]); | ||
162 | } | 164 | } |
163 | } | 165 | } |
164 | #endif | 166 | #endif |
@@ -168,8 +170,6 @@ void xen_mc_flush(void) | |||
168 | } else | 170 | } else |
169 | BUG_ON(b->argidx != 0); | 171 | BUG_ON(b->argidx != 0); |
170 | 172 | ||
171 | local_irq_restore(flags); | ||
172 | |||
173 | for (i = 0; i < b->cbidx; i++) { | 173 | for (i = 0; i < b->cbidx; i++) { |
174 | struct callback *cb = &b->callbacks[i]; | 174 | struct callback *cb = &b->callbacks[i]; |
175 | 175 | ||
@@ -177,7 +177,9 @@ void xen_mc_flush(void) | |||
177 | } | 177 | } |
178 | b->cbidx = 0; | 178 | b->cbidx = 0; |
179 | 179 | ||
180 | BUG_ON(ret); | 180 | local_irq_restore(flags); |
181 | |||
182 | WARN_ON(ret); | ||
181 | } | 183 | } |
182 | 184 | ||
183 | struct multicall_space __xen_mc_entry(size_t args) | 185 | struct multicall_space __xen_mc_entry(size_t args) |
@@ -197,6 +199,9 @@ struct multicall_space __xen_mc_entry(size_t args) | |||
197 | } | 199 | } |
198 | 200 | ||
199 | ret.mc = &b->entries[b->mcidx]; | 201 | ret.mc = &b->entries[b->mcidx]; |
202 | #ifdef MC_DEBUG | ||
203 | b->caller[b->mcidx] = __builtin_return_address(0); | ||
204 | #endif | ||
200 | b->mcidx++; | 205 | b->mcidx++; |
201 | ret.args = &b->args[argidx]; | 206 | ret.args = &b->args[argidx]; |
202 | b->argidx = argidx + args; | 207 | b->argidx = argidx + args; |
diff --git a/arch/x86/xen/multicalls.h b/arch/x86/xen/multicalls.h index fa3e10725d98..9e565da5d1f7 100644 --- a/arch/x86/xen/multicalls.h +++ b/arch/x86/xen/multicalls.h | |||
@@ -41,7 +41,7 @@ static inline void xen_mc_issue(unsigned mode) | |||
41 | xen_mc_flush(); | 41 | xen_mc_flush(); |
42 | 42 | ||
43 | /* restore flags saved in xen_mc_batch */ | 43 | /* restore flags saved in xen_mc_batch */ |
44 | local_irq_restore(x86_read_percpu(xen_mc_irq_flags)); | 44 | local_irq_restore(percpu_read(xen_mc_irq_flags)); |
45 | } | 45 | } |
46 | 46 | ||
47 | /* Set up a callback to be called when the current batch is flushed */ | 47 | /* Set up a callback to be called when the current batch is flushed */ |
diff --git a/arch/x86/xen/smp.c b/arch/x86/xen/smp.c index c44e2069c7c7..035582ae815d 100644 --- a/arch/x86/xen/smp.c +++ b/arch/x86/xen/smp.c | |||
@@ -50,11 +50,7 @@ static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); | |||
50 | */ | 50 | */ |
51 | static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) | 51 | static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) |
52 | { | 52 | { |
53 | #ifdef CONFIG_X86_32 | 53 | inc_irq_stat(irq_resched_count); |
54 | __get_cpu_var(irq_stat).irq_resched_count++; | ||
55 | #else | ||
56 | add_pda(irq_resched_count, 1); | ||
57 | #endif | ||
58 | 54 | ||
59 | return IRQ_HANDLED; | 55 | return IRQ_HANDLED; |
60 | } | 56 | } |
@@ -78,7 +74,7 @@ static __cpuinit void cpu_bringup(void) | |||
78 | xen_setup_cpu_clockevents(); | 74 | xen_setup_cpu_clockevents(); |
79 | 75 | ||
80 | cpu_set(cpu, cpu_online_map); | 76 | cpu_set(cpu, cpu_online_map); |
81 | x86_write_percpu(cpu_state, CPU_ONLINE); | 77 | percpu_write(cpu_state, CPU_ONLINE); |
82 | wmb(); | 78 | wmb(); |
83 | 79 | ||
84 | /* We can take interrupts now: we're officially "up". */ | 80 | /* We can take interrupts now: we're officially "up". */ |
@@ -174,7 +170,7 @@ static void __init xen_smp_prepare_boot_cpu(void) | |||
174 | 170 | ||
175 | /* We've switched to the "real" per-cpu gdt, so make sure the | 171 | /* We've switched to the "real" per-cpu gdt, so make sure the |
176 | old memory can be recycled */ | 172 | old memory can be recycled */ |
177 | make_lowmem_page_readwrite(&per_cpu_var(gdt_page)); | 173 | make_lowmem_page_readwrite(xen_initial_gdt); |
178 | 174 | ||
179 | xen_setup_vcpu_info_placement(); | 175 | xen_setup_vcpu_info_placement(); |
180 | } | 176 | } |
@@ -239,6 +235,8 @@ cpu_initialize_context(unsigned int cpu, struct task_struct *idle) | |||
239 | ctxt->user_regs.ss = __KERNEL_DS; | 235 | ctxt->user_regs.ss = __KERNEL_DS; |
240 | #ifdef CONFIG_X86_32 | 236 | #ifdef CONFIG_X86_32 |
241 | ctxt->user_regs.fs = __KERNEL_PERCPU; | 237 | ctxt->user_regs.fs = __KERNEL_PERCPU; |
238 | #else | ||
239 | ctxt->gs_base_kernel = per_cpu_offset(cpu); | ||
242 | #endif | 240 | #endif |
243 | ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; | 241 | ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; |
244 | ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ | 242 | ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ |
@@ -283,23 +281,14 @@ static int __cpuinit xen_cpu_up(unsigned int cpu) | |||
283 | struct task_struct *idle = idle_task(cpu); | 281 | struct task_struct *idle = idle_task(cpu); |
284 | int rc; | 282 | int rc; |
285 | 283 | ||
286 | #ifdef CONFIG_X86_64 | ||
287 | /* Allocate node local memory for AP pdas */ | ||
288 | WARN_ON(cpu == 0); | ||
289 | if (cpu > 0) { | ||
290 | rc = get_local_pda(cpu); | ||
291 | if (rc) | ||
292 | return rc; | ||
293 | } | ||
294 | #endif | ||
295 | |||
296 | #ifdef CONFIG_X86_32 | ||
297 | init_gdt(cpu); | ||
298 | per_cpu(current_task, cpu) = idle; | 284 | per_cpu(current_task, cpu) = idle; |
285 | #ifdef CONFIG_X86_32 | ||
299 | irq_ctx_init(cpu); | 286 | irq_ctx_init(cpu); |
300 | #else | 287 | #else |
301 | cpu_pda(cpu)->pcurrent = idle; | ||
302 | clear_tsk_thread_flag(idle, TIF_FORK); | 288 | clear_tsk_thread_flag(idle, TIF_FORK); |
289 | per_cpu(kernel_stack, cpu) = | ||
290 | (unsigned long)task_stack_page(idle) - | ||
291 | KERNEL_STACK_OFFSET + THREAD_SIZE; | ||
303 | #endif | 292 | #endif |
304 | xen_setup_timer(cpu); | 293 | xen_setup_timer(cpu); |
305 | xen_init_lock_cpu(cpu); | 294 | xen_init_lock_cpu(cpu); |
@@ -445,11 +434,7 @@ static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) | |||
445 | { | 434 | { |
446 | irq_enter(); | 435 | irq_enter(); |
447 | generic_smp_call_function_interrupt(); | 436 | generic_smp_call_function_interrupt(); |
448 | #ifdef CONFIG_X86_32 | 437 | inc_irq_stat(irq_call_count); |
449 | __get_cpu_var(irq_stat).irq_call_count++; | ||
450 | #else | ||
451 | add_pda(irq_call_count, 1); | ||
452 | #endif | ||
453 | irq_exit(); | 438 | irq_exit(); |
454 | 439 | ||
455 | return IRQ_HANDLED; | 440 | return IRQ_HANDLED; |
@@ -459,11 +444,7 @@ static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) | |||
459 | { | 444 | { |
460 | irq_enter(); | 445 | irq_enter(); |
461 | generic_smp_call_function_single_interrupt(); | 446 | generic_smp_call_function_single_interrupt(); |
462 | #ifdef CONFIG_X86_32 | 447 | inc_irq_stat(irq_call_count); |
463 | __get_cpu_var(irq_stat).irq_call_count++; | ||
464 | #else | ||
465 | add_pda(irq_call_count, 1); | ||
466 | #endif | ||
467 | irq_exit(); | 448 | irq_exit(); |
468 | 449 | ||
469 | return IRQ_HANDLED; | 450 | return IRQ_HANDLED; |
diff --git a/arch/x86/xen/suspend.c b/arch/x86/xen/suspend.c index 212ffe012b76..95be7b434724 100644 --- a/arch/x86/xen/suspend.c +++ b/arch/x86/xen/suspend.c | |||
@@ -6,6 +6,7 @@ | |||
6 | 6 | ||
7 | #include <asm/xen/hypercall.h> | 7 | #include <asm/xen/hypercall.h> |
8 | #include <asm/xen/page.h> | 8 | #include <asm/xen/page.h> |
9 | #include <asm/fixmap.h> | ||
9 | 10 | ||
10 | #include "xen-ops.h" | 11 | #include "xen-ops.h" |
11 | #include "mmu.h" | 12 | #include "mmu.h" |
diff --git a/arch/x86/xen/xen-asm.S b/arch/x86/xen/xen-asm.S new file mode 100644 index 000000000000..79d7362ad6d1 --- /dev/null +++ b/arch/x86/xen/xen-asm.S | |||
@@ -0,0 +1,142 @@ | |||
1 | /* | ||
2 | * Asm versions of Xen pv-ops, suitable for either direct use or | ||
3 | * inlining. The inline versions are the same as the direct-use | ||
4 | * versions, with the pre- and post-amble chopped off. | ||
5 | * | ||
6 | * This code is encoded for size rather than absolute efficiency, with | ||
7 | * a view to being able to inline as much as possible. | ||
8 | * | ||
9 | * We only bother with direct forms (ie, vcpu in percpu data) of the | ||
10 | * operations here; the indirect forms are better handled in C, since | ||
11 | * they're generally too large to inline anyway. | ||
12 | */ | ||
13 | |||
14 | #include <asm/asm-offsets.h> | ||
15 | #include <asm/percpu.h> | ||
16 | #include <asm/processor-flags.h> | ||
17 | |||
18 | #include "xen-asm.h" | ||
19 | |||
20 | /* | ||
21 | * Enable events. This clears the event mask and tests the pending | ||
22 | * event status with one and operation. If there are pending events, | ||
23 | * then enter the hypervisor to get them handled. | ||
24 | */ | ||
25 | ENTRY(xen_irq_enable_direct) | ||
26 | /* Unmask events */ | ||
27 | movb $0, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
28 | |||
29 | /* | ||
30 | * Preempt here doesn't matter because that will deal with any | ||
31 | * pending interrupts. The pending check may end up being run | ||
32 | * on the wrong CPU, but that doesn't hurt. | ||
33 | */ | ||
34 | |||
35 | /* Test for pending */ | ||
36 | testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending | ||
37 | jz 1f | ||
38 | |||
39 | 2: call check_events | ||
40 | 1: | ||
41 | ENDPATCH(xen_irq_enable_direct) | ||
42 | ret | ||
43 | ENDPROC(xen_irq_enable_direct) | ||
44 | RELOC(xen_irq_enable_direct, 2b+1) | ||
45 | |||
46 | |||
47 | /* | ||
48 | * Disabling events is simply a matter of making the event mask | ||
49 | * non-zero. | ||
50 | */ | ||
51 | ENTRY(xen_irq_disable_direct) | ||
52 | movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
53 | ENDPATCH(xen_irq_disable_direct) | ||
54 | ret | ||
55 | ENDPROC(xen_irq_disable_direct) | ||
56 | RELOC(xen_irq_disable_direct, 0) | ||
57 | |||
58 | /* | ||
59 | * (xen_)save_fl is used to get the current interrupt enable status. | ||
60 | * Callers expect the status to be in X86_EFLAGS_IF, and other bits | ||
61 | * may be set in the return value. We take advantage of this by | ||
62 | * making sure that X86_EFLAGS_IF has the right value (and other bits | ||
63 | * in that byte are 0), but other bits in the return value are | ||
64 | * undefined. We need to toggle the state of the bit, because Xen and | ||
65 | * x86 use opposite senses (mask vs enable). | ||
66 | */ | ||
67 | ENTRY(xen_save_fl_direct) | ||
68 | testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
69 | setz %ah | ||
70 | addb %ah, %ah | ||
71 | ENDPATCH(xen_save_fl_direct) | ||
72 | ret | ||
73 | ENDPROC(xen_save_fl_direct) | ||
74 | RELOC(xen_save_fl_direct, 0) | ||
75 | |||
76 | |||
77 | /* | ||
78 | * In principle the caller should be passing us a value return from | ||
79 | * xen_save_fl_direct, but for robustness sake we test only the | ||
80 | * X86_EFLAGS_IF flag rather than the whole byte. After setting the | ||
81 | * interrupt mask state, it checks for unmasked pending events and | ||
82 | * enters the hypervisor to get them delivered if so. | ||
83 | */ | ||
84 | ENTRY(xen_restore_fl_direct) | ||
85 | #ifdef CONFIG_X86_64 | ||
86 | testw $X86_EFLAGS_IF, %di | ||
87 | #else | ||
88 | testb $X86_EFLAGS_IF>>8, %ah | ||
89 | #endif | ||
90 | setz PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
91 | /* | ||
92 | * Preempt here doesn't matter because that will deal with any | ||
93 | * pending interrupts. The pending check may end up being run | ||
94 | * on the wrong CPU, but that doesn't hurt. | ||
95 | */ | ||
96 | |||
97 | /* check for unmasked and pending */ | ||
98 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending | ||
99 | jz 1f | ||
100 | 2: call check_events | ||
101 | 1: | ||
102 | ENDPATCH(xen_restore_fl_direct) | ||
103 | ret | ||
104 | ENDPROC(xen_restore_fl_direct) | ||
105 | RELOC(xen_restore_fl_direct, 2b+1) | ||
106 | |||
107 | |||
108 | /* | ||
109 | * Force an event check by making a hypercall, but preserve regs | ||
110 | * before making the call. | ||
111 | */ | ||
112 | check_events: | ||
113 | #ifdef CONFIG_X86_32 | ||
114 | push %eax | ||
115 | push %ecx | ||
116 | push %edx | ||
117 | call xen_force_evtchn_callback | ||
118 | pop %edx | ||
119 | pop %ecx | ||
120 | pop %eax | ||
121 | #else | ||
122 | push %rax | ||
123 | push %rcx | ||
124 | push %rdx | ||
125 | push %rsi | ||
126 | push %rdi | ||
127 | push %r8 | ||
128 | push %r9 | ||
129 | push %r10 | ||
130 | push %r11 | ||
131 | call xen_force_evtchn_callback | ||
132 | pop %r11 | ||
133 | pop %r10 | ||
134 | pop %r9 | ||
135 | pop %r8 | ||
136 | pop %rdi | ||
137 | pop %rsi | ||
138 | pop %rdx | ||
139 | pop %rcx | ||
140 | pop %rax | ||
141 | #endif | ||
142 | ret | ||
diff --git a/arch/x86/xen/xen-asm.h b/arch/x86/xen/xen-asm.h new file mode 100644 index 000000000000..465276467a47 --- /dev/null +++ b/arch/x86/xen/xen-asm.h | |||
@@ -0,0 +1,12 @@ | |||
1 | #ifndef _XEN_XEN_ASM_H | ||
2 | #define _XEN_XEN_ASM_H | ||
3 | |||
4 | #include <linux/linkage.h> | ||
5 | |||
6 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | ||
7 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
8 | |||
9 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
10 | #define XEN_EFLAGS_NMI 0x80000000 | ||
11 | |||
12 | #endif | ||
diff --git a/arch/x86/xen/xen-asm_32.S b/arch/x86/xen/xen-asm_32.S index 42786f59d9c0..88e15deb8b82 100644 --- a/arch/x86/xen/xen-asm_32.S +++ b/arch/x86/xen/xen-asm_32.S | |||
@@ -1,117 +1,43 @@ | |||
1 | /* | 1 | /* |
2 | Asm versions of Xen pv-ops, suitable for either direct use or inlining. | 2 | * Asm versions of Xen pv-ops, suitable for either direct use or |
3 | The inline versions are the same as the direct-use versions, with the | 3 | * inlining. The inline versions are the same as the direct-use |
4 | pre- and post-amble chopped off. | 4 | * versions, with the pre- and post-amble chopped off. |
5 | 5 | * | |
6 | This code is encoded for size rather than absolute efficiency, | 6 | * This code is encoded for size rather than absolute efficiency, with |
7 | with a view to being able to inline as much as possible. | 7 | * a view to being able to inline as much as possible. |
8 | 8 | * | |
9 | We only bother with direct forms (ie, vcpu in pda) of the operations | 9 | * We only bother with direct forms (ie, vcpu in pda) of the |
10 | here; the indirect forms are better handled in C, since they're | 10 | * operations here; the indirect forms are better handled in C, since |
11 | generally too large to inline anyway. | 11 | * they're generally too large to inline anyway. |
12 | */ | 12 | */ |
13 | 13 | ||
14 | #include <linux/linkage.h> | ||
15 | |||
16 | #include <asm/asm-offsets.h> | ||
17 | #include <asm/thread_info.h> | 14 | #include <asm/thread_info.h> |
18 | #include <asm/percpu.h> | ||
19 | #include <asm/processor-flags.h> | 15 | #include <asm/processor-flags.h> |
20 | #include <asm/segment.h> | 16 | #include <asm/segment.h> |
21 | 17 | ||
22 | #include <xen/interface/xen.h> | 18 | #include <xen/interface/xen.h> |
23 | 19 | ||
24 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | 20 | #include "xen-asm.h" |
25 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
26 | |||
27 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
28 | #define XEN_EFLAGS_NMI 0x80000000 | ||
29 | |||
30 | /* | ||
31 | Enable events. This clears the event mask and tests the pending | ||
32 | event status with one and operation. If there are pending | ||
33 | events, then enter the hypervisor to get them handled. | ||
34 | */ | ||
35 | ENTRY(xen_irq_enable_direct) | ||
36 | /* Unmask events */ | ||
37 | movb $0, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
38 | |||
39 | /* Preempt here doesn't matter because that will deal with | ||
40 | any pending interrupts. The pending check may end up being | ||
41 | run on the wrong CPU, but that doesn't hurt. */ | ||
42 | |||
43 | /* Test for pending */ | ||
44 | testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending | ||
45 | jz 1f | ||
46 | |||
47 | 2: call check_events | ||
48 | 1: | ||
49 | ENDPATCH(xen_irq_enable_direct) | ||
50 | ret | ||
51 | ENDPROC(xen_irq_enable_direct) | ||
52 | RELOC(xen_irq_enable_direct, 2b+1) | ||
53 | |||
54 | |||
55 | /* | ||
56 | Disabling events is simply a matter of making the event mask | ||
57 | non-zero. | ||
58 | */ | ||
59 | ENTRY(xen_irq_disable_direct) | ||
60 | movb $1, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
61 | ENDPATCH(xen_irq_disable_direct) | ||
62 | ret | ||
63 | ENDPROC(xen_irq_disable_direct) | ||
64 | RELOC(xen_irq_disable_direct, 0) | ||
65 | 21 | ||
66 | /* | 22 | /* |
67 | (xen_)save_fl is used to get the current interrupt enable status. | 23 | * Force an event check by making a hypercall, but preserve regs |
68 | Callers expect the status to be in X86_EFLAGS_IF, and other bits | 24 | * before making the call. |
69 | may be set in the return value. We take advantage of this by | ||
70 | making sure that X86_EFLAGS_IF has the right value (and other bits | ||
71 | in that byte are 0), but other bits in the return value are | ||
72 | undefined. We need to toggle the state of the bit, because | ||
73 | Xen and x86 use opposite senses (mask vs enable). | ||
74 | */ | 25 | */ |
75 | ENTRY(xen_save_fl_direct) | 26 | check_events: |
76 | testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | 27 | push %eax |
77 | setz %ah | 28 | push %ecx |
78 | addb %ah,%ah | 29 | push %edx |
79 | ENDPATCH(xen_save_fl_direct) | 30 | call xen_force_evtchn_callback |
80 | ret | 31 | pop %edx |
81 | ENDPROC(xen_save_fl_direct) | 32 | pop %ecx |
82 | RELOC(xen_save_fl_direct, 0) | 33 | pop %eax |
83 | |||
84 | |||
85 | /* | ||
86 | In principle the caller should be passing us a value return | ||
87 | from xen_save_fl_direct, but for robustness sake we test only | ||
88 | the X86_EFLAGS_IF flag rather than the whole byte. After | ||
89 | setting the interrupt mask state, it checks for unmasked | ||
90 | pending events and enters the hypervisor to get them delivered | ||
91 | if so. | ||
92 | */ | ||
93 | ENTRY(xen_restore_fl_direct) | ||
94 | testb $X86_EFLAGS_IF>>8, %ah | ||
95 | setz PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
96 | /* Preempt here doesn't matter because that will deal with | ||
97 | any pending interrupts. The pending check may end up being | ||
98 | run on the wrong CPU, but that doesn't hurt. */ | ||
99 | |||
100 | /* check for unmasked and pending */ | ||
101 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending | ||
102 | jz 1f | ||
103 | 2: call check_events | ||
104 | 1: | ||
105 | ENDPATCH(xen_restore_fl_direct) | ||
106 | ret | 34 | ret |
107 | ENDPROC(xen_restore_fl_direct) | ||
108 | RELOC(xen_restore_fl_direct, 2b+1) | ||
109 | 35 | ||
110 | /* | 36 | /* |
111 | We can't use sysexit directly, because we're not running in ring0. | 37 | * We can't use sysexit directly, because we're not running in ring0. |
112 | But we can easily fake it up using iret. Assuming xen_sysexit | 38 | * But we can easily fake it up using iret. Assuming xen_sysexit is |
113 | is jumped to with a standard stack frame, we can just strip it | 39 | * jumped to with a standard stack frame, we can just strip it back to |
114 | back to a standard iret frame and use iret. | 40 | * a standard iret frame and use iret. |
115 | */ | 41 | */ |
116 | ENTRY(xen_sysexit) | 42 | ENTRY(xen_sysexit) |
117 | movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */ | 43 | movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */ |
@@ -122,33 +48,31 @@ ENTRY(xen_sysexit) | |||
122 | ENDPROC(xen_sysexit) | 48 | ENDPROC(xen_sysexit) |
123 | 49 | ||
124 | /* | 50 | /* |
125 | This is run where a normal iret would be run, with the same stack setup: | 51 | * This is run where a normal iret would be run, with the same stack setup: |
126 | 8: eflags | 52 | * 8: eflags |
127 | 4: cs | 53 | * 4: cs |
128 | esp-> 0: eip | 54 | * esp-> 0: eip |
129 | 55 | * | |
130 | This attempts to make sure that any pending events are dealt | 56 | * This attempts to make sure that any pending events are dealt with |
131 | with on return to usermode, but there is a small window in | 57 | * on return to usermode, but there is a small window in which an |
132 | which an event can happen just before entering usermode. If | 58 | * event can happen just before entering usermode. If the nested |
133 | the nested interrupt ends up setting one of the TIF_WORK_MASK | 59 | * interrupt ends up setting one of the TIF_WORK_MASK pending work |
134 | pending work flags, they will not be tested again before | 60 | * flags, they will not be tested again before returning to |
135 | returning to usermode. This means that a process can end up | 61 | * usermode. This means that a process can end up with pending work, |
136 | with pending work, which will be unprocessed until the process | 62 | * which will be unprocessed until the process enters and leaves the |
137 | enters and leaves the kernel again, which could be an | 63 | * kernel again, which could be an unbounded amount of time. This |
138 | unbounded amount of time. This means that a pending signal or | 64 | * means that a pending signal or reschedule event could be |
139 | reschedule event could be indefinitely delayed. | 65 | * indefinitely delayed. |
140 | 66 | * | |
141 | The fix is to notice a nested interrupt in the critical | 67 | * The fix is to notice a nested interrupt in the critical window, and |
142 | window, and if one occurs, then fold the nested interrupt into | 68 | * if one occurs, then fold the nested interrupt into the current |
143 | the current interrupt stack frame, and re-process it | 69 | * interrupt stack frame, and re-process it iteratively rather than |
144 | iteratively rather than recursively. This means that it will | 70 | * recursively. This means that it will exit via the normal path, and |
145 | exit via the normal path, and all pending work will be dealt | 71 | * all pending work will be dealt with appropriately. |
146 | with appropriately. | 72 | * |
147 | 73 | * Because the nested interrupt handler needs to deal with the current | |
148 | Because the nested interrupt handler needs to deal with the | 74 | * stack state in whatever form its in, we keep things simple by only |
149 | current stack state in whatever form its in, we keep things | 75 | * using a single register which is pushed/popped on the stack. |
150 | simple by only using a single register which is pushed/popped | ||
151 | on the stack. | ||
152 | */ | 76 | */ |
153 | ENTRY(xen_iret) | 77 | ENTRY(xen_iret) |
154 | /* test eflags for special cases */ | 78 | /* test eflags for special cases */ |
@@ -158,13 +82,15 @@ ENTRY(xen_iret) | |||
158 | push %eax | 82 | push %eax |
159 | ESP_OFFSET=4 # bytes pushed onto stack | 83 | ESP_OFFSET=4 # bytes pushed onto stack |
160 | 84 | ||
161 | /* Store vcpu_info pointer for easy access. Do it this | 85 | /* |
162 | way to avoid having to reload %fs */ | 86 | * Store vcpu_info pointer for easy access. Do it this way to |
87 | * avoid having to reload %fs | ||
88 | */ | ||
163 | #ifdef CONFIG_SMP | 89 | #ifdef CONFIG_SMP |
164 | GET_THREAD_INFO(%eax) | 90 | GET_THREAD_INFO(%eax) |
165 | movl TI_cpu(%eax),%eax | 91 | movl TI_cpu(%eax), %eax |
166 | movl __per_cpu_offset(,%eax,4),%eax | 92 | movl __per_cpu_offset(,%eax,4), %eax |
167 | mov per_cpu__xen_vcpu(%eax),%eax | 93 | mov per_cpu__xen_vcpu(%eax), %eax |
168 | #else | 94 | #else |
169 | movl per_cpu__xen_vcpu, %eax | 95 | movl per_cpu__xen_vcpu, %eax |
170 | #endif | 96 | #endif |
@@ -172,37 +98,46 @@ ENTRY(xen_iret) | |||
172 | /* check IF state we're restoring */ | 98 | /* check IF state we're restoring */ |
173 | testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) | 99 | testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) |
174 | 100 | ||
175 | /* Maybe enable events. Once this happens we could get a | 101 | /* |
176 | recursive event, so the critical region starts immediately | 102 | * Maybe enable events. Once this happens we could get a |
177 | afterwards. However, if that happens we don't end up | 103 | * recursive event, so the critical region starts immediately |
178 | resuming the code, so we don't have to be worried about | 104 | * afterwards. However, if that happens we don't end up |
179 | being preempted to another CPU. */ | 105 | * resuming the code, so we don't have to be worried about |
106 | * being preempted to another CPU. | ||
107 | */ | ||
180 | setz XEN_vcpu_info_mask(%eax) | 108 | setz XEN_vcpu_info_mask(%eax) |
181 | xen_iret_start_crit: | 109 | xen_iret_start_crit: |
182 | 110 | ||
183 | /* check for unmasked and pending */ | 111 | /* check for unmasked and pending */ |
184 | cmpw $0x0001, XEN_vcpu_info_pending(%eax) | 112 | cmpw $0x0001, XEN_vcpu_info_pending(%eax) |
185 | 113 | ||
186 | /* If there's something pending, mask events again so we | 114 | /* |
187 | can jump back into xen_hypervisor_callback */ | 115 | * If there's something pending, mask events again so we can |
116 | * jump back into xen_hypervisor_callback | ||
117 | */ | ||
188 | sete XEN_vcpu_info_mask(%eax) | 118 | sete XEN_vcpu_info_mask(%eax) |
189 | 119 | ||
190 | popl %eax | 120 | popl %eax |
191 | 121 | ||
192 | /* From this point on the registers are restored and the stack | 122 | /* |
193 | updated, so we don't need to worry about it if we're preempted */ | 123 | * From this point on the registers are restored and the stack |
124 | * updated, so we don't need to worry about it if we're | ||
125 | * preempted | ||
126 | */ | ||
194 | iret_restore_end: | 127 | iret_restore_end: |
195 | 128 | ||
196 | /* Jump to hypervisor_callback after fixing up the stack. | 129 | /* |
197 | Events are masked, so jumping out of the critical | 130 | * Jump to hypervisor_callback after fixing up the stack. |
198 | region is OK. */ | 131 | * Events are masked, so jumping out of the critical region is |
132 | * OK. | ||
133 | */ | ||
199 | je xen_hypervisor_callback | 134 | je xen_hypervisor_callback |
200 | 135 | ||
201 | 1: iret | 136 | 1: iret |
202 | xen_iret_end_crit: | 137 | xen_iret_end_crit: |
203 | .section __ex_table,"a" | 138 | .section __ex_table, "a" |
204 | .align 4 | 139 | .align 4 |
205 | .long 1b,iret_exc | 140 | .long 1b, iret_exc |
206 | .previous | 141 | .previous |
207 | 142 | ||
208 | hyper_iret: | 143 | hyper_iret: |
@@ -212,55 +147,55 @@ hyper_iret: | |||
212 | .globl xen_iret_start_crit, xen_iret_end_crit | 147 | .globl xen_iret_start_crit, xen_iret_end_crit |
213 | 148 | ||
214 | /* | 149 | /* |
215 | This is called by xen_hypervisor_callback in entry.S when it sees | 150 | * This is called by xen_hypervisor_callback in entry.S when it sees |
216 | that the EIP at the time of interrupt was between xen_iret_start_crit | 151 | * that the EIP at the time of interrupt was between |
217 | and xen_iret_end_crit. We're passed the EIP in %eax so we can do | 152 | * xen_iret_start_crit and xen_iret_end_crit. We're passed the EIP in |
218 | a more refined determination of what to do. | 153 | * %eax so we can do a more refined determination of what to do. |
219 | 154 | * | |
220 | The stack format at this point is: | 155 | * The stack format at this point is: |
221 | ---------------- | 156 | * ---------------- |
222 | ss : (ss/esp may be present if we came from usermode) | 157 | * ss : (ss/esp may be present if we came from usermode) |
223 | esp : | 158 | * esp : |
224 | eflags } outer exception info | 159 | * eflags } outer exception info |
225 | cs } | 160 | * cs } |
226 | eip } | 161 | * eip } |
227 | ---------------- <- edi (copy dest) | 162 | * ---------------- <- edi (copy dest) |
228 | eax : outer eax if it hasn't been restored | 163 | * eax : outer eax if it hasn't been restored |
229 | ---------------- | 164 | * ---------------- |
230 | eflags } nested exception info | 165 | * eflags } nested exception info |
231 | cs } (no ss/esp because we're nested | 166 | * cs } (no ss/esp because we're nested |
232 | eip } from the same ring) | 167 | * eip } from the same ring) |
233 | orig_eax }<- esi (copy src) | 168 | * orig_eax }<- esi (copy src) |
234 | - - - - - - - - | 169 | * - - - - - - - - |
235 | fs } | 170 | * fs } |
236 | es } | 171 | * es } |
237 | ds } SAVE_ALL state | 172 | * ds } SAVE_ALL state |
238 | eax } | 173 | * eax } |
239 | : : | 174 | * : : |
240 | ebx }<- esp | 175 | * ebx }<- esp |
241 | ---------------- | 176 | * ---------------- |
242 | 177 | * | |
243 | In order to deliver the nested exception properly, we need to shift | 178 | * In order to deliver the nested exception properly, we need to shift |
244 | everything from the return addr up to the error code so it | 179 | * everything from the return addr up to the error code so it sits |
245 | sits just under the outer exception info. This means that when we | 180 | * just under the outer exception info. This means that when we |
246 | handle the exception, we do it in the context of the outer exception | 181 | * handle the exception, we do it in the context of the outer |
247 | rather than starting a new one. | 182 | * exception rather than starting a new one. |
248 | 183 | * | |
249 | The only caveat is that if the outer eax hasn't been | 184 | * The only caveat is that if the outer eax hasn't been restored yet |
250 | restored yet (ie, it's still on stack), we need to insert | 185 | * (ie, it's still on stack), we need to insert its value into the |
251 | its value into the SAVE_ALL state before going on, since | 186 | * SAVE_ALL state before going on, since it's usermode state which we |
252 | it's usermode state which we eventually need to restore. | 187 | * eventually need to restore. |
253 | */ | 188 | */ |
254 | ENTRY(xen_iret_crit_fixup) | 189 | ENTRY(xen_iret_crit_fixup) |
255 | /* | 190 | /* |
256 | Paranoia: Make sure we're really coming from kernel space. | 191 | * Paranoia: Make sure we're really coming from kernel space. |
257 | One could imagine a case where userspace jumps into the | 192 | * One could imagine a case where userspace jumps into the |
258 | critical range address, but just before the CPU delivers a GP, | 193 | * critical range address, but just before the CPU delivers a |
259 | it decides to deliver an interrupt instead. Unlikely? | 194 | * GP, it decides to deliver an interrupt instead. Unlikely? |
260 | Definitely. Easy to avoid? Yes. The Intel documents | 195 | * Definitely. Easy to avoid? Yes. The Intel documents |
261 | explicitly say that the reported EIP for a bad jump is the | 196 | * explicitly say that the reported EIP for a bad jump is the |
262 | jump instruction itself, not the destination, but some virtual | 197 | * jump instruction itself, not the destination, but some |
263 | environments get this wrong. | 198 | * virtual environments get this wrong. |
264 | */ | 199 | */ |
265 | movl PT_CS(%esp), %ecx | 200 | movl PT_CS(%esp), %ecx |
266 | andl $SEGMENT_RPL_MASK, %ecx | 201 | andl $SEGMENT_RPL_MASK, %ecx |
@@ -270,15 +205,17 @@ ENTRY(xen_iret_crit_fixup) | |||
270 | lea PT_ORIG_EAX(%esp), %esi | 205 | lea PT_ORIG_EAX(%esp), %esi |
271 | lea PT_EFLAGS(%esp), %edi | 206 | lea PT_EFLAGS(%esp), %edi |
272 | 207 | ||
273 | /* If eip is before iret_restore_end then stack | 208 | /* |
274 | hasn't been restored yet. */ | 209 | * If eip is before iret_restore_end then stack |
210 | * hasn't been restored yet. | ||
211 | */ | ||
275 | cmp $iret_restore_end, %eax | 212 | cmp $iret_restore_end, %eax |
276 | jae 1f | 213 | jae 1f |
277 | 214 | ||
278 | movl 0+4(%edi),%eax /* copy EAX (just above top of frame) */ | 215 | movl 0+4(%edi), %eax /* copy EAX (just above top of frame) */ |
279 | movl %eax, PT_EAX(%esp) | 216 | movl %eax, PT_EAX(%esp) |
280 | 217 | ||
281 | lea ESP_OFFSET(%edi),%edi /* move dest up over saved regs */ | 218 | lea ESP_OFFSET(%edi), %edi /* move dest up over saved regs */ |
282 | 219 | ||
283 | /* set up the copy */ | 220 | /* set up the copy */ |
284 | 1: std | 221 | 1: std |
@@ -286,20 +223,6 @@ ENTRY(xen_iret_crit_fixup) | |||
286 | rep movsl | 223 | rep movsl |
287 | cld | 224 | cld |
288 | 225 | ||
289 | lea 4(%edi),%esp /* point esp to new frame */ | 226 | lea 4(%edi), %esp /* point esp to new frame */ |
290 | 2: jmp xen_do_upcall | 227 | 2: jmp xen_do_upcall |
291 | 228 | ||
292 | |||
293 | /* | ||
294 | Force an event check by making a hypercall, | ||
295 | but preserve regs before making the call. | ||
296 | */ | ||
297 | check_events: | ||
298 | push %eax | ||
299 | push %ecx | ||
300 | push %edx | ||
301 | call xen_force_evtchn_callback | ||
302 | pop %edx | ||
303 | pop %ecx | ||
304 | pop %eax | ||
305 | ret | ||
diff --git a/arch/x86/xen/xen-asm_64.S b/arch/x86/xen/xen-asm_64.S index 05794c566e87..02f496a8dbaa 100644 --- a/arch/x86/xen/xen-asm_64.S +++ b/arch/x86/xen/xen-asm_64.S | |||
@@ -1,174 +1,45 @@ | |||
1 | /* | 1 | /* |
2 | Asm versions of Xen pv-ops, suitable for either direct use or inlining. | 2 | * Asm versions of Xen pv-ops, suitable for either direct use or |
3 | The inline versions are the same as the direct-use versions, with the | 3 | * inlining. The inline versions are the same as the direct-use |
4 | pre- and post-amble chopped off. | 4 | * versions, with the pre- and post-amble chopped off. |
5 | 5 | * | |
6 | This code is encoded for size rather than absolute efficiency, | 6 | * This code is encoded for size rather than absolute efficiency, with |
7 | with a view to being able to inline as much as possible. | 7 | * a view to being able to inline as much as possible. |
8 | 8 | * | |
9 | We only bother with direct forms (ie, vcpu in pda) of the operations | 9 | * We only bother with direct forms (ie, vcpu in pda) of the |
10 | here; the indirect forms are better handled in C, since they're | 10 | * operations here; the indirect forms are better handled in C, since |
11 | generally too large to inline anyway. | 11 | * they're generally too large to inline anyway. |
12 | */ | 12 | */ |
13 | 13 | ||
14 | #include <linux/linkage.h> | ||
15 | |||
16 | #include <asm/asm-offsets.h> | ||
17 | #include <asm/processor-flags.h> | ||
18 | #include <asm/errno.h> | 14 | #include <asm/errno.h> |
15 | #include <asm/percpu.h> | ||
16 | #include <asm/processor-flags.h> | ||
19 | #include <asm/segment.h> | 17 | #include <asm/segment.h> |
20 | 18 | ||
21 | #include <xen/interface/xen.h> | 19 | #include <xen/interface/xen.h> |
22 | 20 | ||
23 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | 21 | #include "xen-asm.h" |
24 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
25 | |||
26 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
27 | #define XEN_EFLAGS_NMI 0x80000000 | ||
28 | |||
29 | #if 1 | ||
30 | /* | ||
31 | x86-64 does not yet support direct access to percpu variables | ||
32 | via a segment override, so we just need to make sure this code | ||
33 | never gets used | ||
34 | */ | ||
35 | #define BUG ud2a | ||
36 | #define PER_CPU_VAR(var, off) 0xdeadbeef | ||
37 | #endif | ||
38 | |||
39 | /* | ||
40 | Enable events. This clears the event mask and tests the pending | ||
41 | event status with one and operation. If there are pending | ||
42 | events, then enter the hypervisor to get them handled. | ||
43 | */ | ||
44 | ENTRY(xen_irq_enable_direct) | ||
45 | BUG | ||
46 | |||
47 | /* Unmask events */ | ||
48 | movb $0, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
49 | |||
50 | /* Preempt here doesn't matter because that will deal with | ||
51 | any pending interrupts. The pending check may end up being | ||
52 | run on the wrong CPU, but that doesn't hurt. */ | ||
53 | |||
54 | /* Test for pending */ | ||
55 | testb $0xff, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_pending) | ||
56 | jz 1f | ||
57 | |||
58 | 2: call check_events | ||
59 | 1: | ||
60 | ENDPATCH(xen_irq_enable_direct) | ||
61 | ret | ||
62 | ENDPROC(xen_irq_enable_direct) | ||
63 | RELOC(xen_irq_enable_direct, 2b+1) | ||
64 | |||
65 | /* | ||
66 | Disabling events is simply a matter of making the event mask | ||
67 | non-zero. | ||
68 | */ | ||
69 | ENTRY(xen_irq_disable_direct) | ||
70 | BUG | ||
71 | |||
72 | movb $1, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
73 | ENDPATCH(xen_irq_disable_direct) | ||
74 | ret | ||
75 | ENDPROC(xen_irq_disable_direct) | ||
76 | RELOC(xen_irq_disable_direct, 0) | ||
77 | |||
78 | /* | ||
79 | (xen_)save_fl is used to get the current interrupt enable status. | ||
80 | Callers expect the status to be in X86_EFLAGS_IF, and other bits | ||
81 | may be set in the return value. We take advantage of this by | ||
82 | making sure that X86_EFLAGS_IF has the right value (and other bits | ||
83 | in that byte are 0), but other bits in the return value are | ||
84 | undefined. We need to toggle the state of the bit, because | ||
85 | Xen and x86 use opposite senses (mask vs enable). | ||
86 | */ | ||
87 | ENTRY(xen_save_fl_direct) | ||
88 | BUG | ||
89 | |||
90 | testb $0xff, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
91 | setz %ah | ||
92 | addb %ah,%ah | ||
93 | ENDPATCH(xen_save_fl_direct) | ||
94 | ret | ||
95 | ENDPROC(xen_save_fl_direct) | ||
96 | RELOC(xen_save_fl_direct, 0) | ||
97 | |||
98 | /* | ||
99 | In principle the caller should be passing us a value return | ||
100 | from xen_save_fl_direct, but for robustness sake we test only | ||
101 | the X86_EFLAGS_IF flag rather than the whole byte. After | ||
102 | setting the interrupt mask state, it checks for unmasked | ||
103 | pending events and enters the hypervisor to get them delivered | ||
104 | if so. | ||
105 | */ | ||
106 | ENTRY(xen_restore_fl_direct) | ||
107 | BUG | ||
108 | |||
109 | testb $X86_EFLAGS_IF>>8, %ah | ||
110 | setz PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
111 | /* Preempt here doesn't matter because that will deal with | ||
112 | any pending interrupts. The pending check may end up being | ||
113 | run on the wrong CPU, but that doesn't hurt. */ | ||
114 | |||
115 | /* check for unmasked and pending */ | ||
116 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_pending) | ||
117 | jz 1f | ||
118 | 2: call check_events | ||
119 | 1: | ||
120 | ENDPATCH(xen_restore_fl_direct) | ||
121 | ret | ||
122 | ENDPROC(xen_restore_fl_direct) | ||
123 | RELOC(xen_restore_fl_direct, 2b+1) | ||
124 | |||
125 | |||
126 | /* | ||
127 | Force an event check by making a hypercall, | ||
128 | but preserve regs before making the call. | ||
129 | */ | ||
130 | check_events: | ||
131 | push %rax | ||
132 | push %rcx | ||
133 | push %rdx | ||
134 | push %rsi | ||
135 | push %rdi | ||
136 | push %r8 | ||
137 | push %r9 | ||
138 | push %r10 | ||
139 | push %r11 | ||
140 | call xen_force_evtchn_callback | ||
141 | pop %r11 | ||
142 | pop %r10 | ||
143 | pop %r9 | ||
144 | pop %r8 | ||
145 | pop %rdi | ||
146 | pop %rsi | ||
147 | pop %rdx | ||
148 | pop %rcx | ||
149 | pop %rax | ||
150 | ret | ||
151 | 22 | ||
152 | ENTRY(xen_adjust_exception_frame) | 23 | ENTRY(xen_adjust_exception_frame) |
153 | mov 8+0(%rsp),%rcx | 24 | mov 8+0(%rsp), %rcx |
154 | mov 8+8(%rsp),%r11 | 25 | mov 8+8(%rsp), %r11 |
155 | ret $16 | 26 | ret $16 |
156 | 27 | ||
157 | hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32 | 28 | hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32 |
158 | /* | 29 | /* |
159 | Xen64 iret frame: | 30 | * Xen64 iret frame: |
160 | 31 | * | |
161 | ss | 32 | * ss |
162 | rsp | 33 | * rsp |
163 | rflags | 34 | * rflags |
164 | cs | 35 | * cs |
165 | rip <-- standard iret frame | 36 | * rip <-- standard iret frame |
166 | 37 | * | |
167 | flags | 38 | * flags |
168 | 39 | * | |
169 | rcx } | 40 | * rcx } |
170 | r11 }<-- pushed by hypercall page | 41 | * r11 }<-- pushed by hypercall page |
171 | rsp -> rax } | 42 | * rsp->rax } |
172 | */ | 43 | */ |
173 | ENTRY(xen_iret) | 44 | ENTRY(xen_iret) |
174 | pushq $0 | 45 | pushq $0 |
@@ -177,8 +48,8 @@ ENDPATCH(xen_iret) | |||
177 | RELOC(xen_iret, 1b+1) | 48 | RELOC(xen_iret, 1b+1) |
178 | 49 | ||
179 | /* | 50 | /* |
180 | sysexit is not used for 64-bit processes, so it's | 51 | * sysexit is not used for 64-bit processes, so it's only ever used to |
181 | only ever used to return to 32-bit compat userspace. | 52 | * return to 32-bit compat userspace. |
182 | */ | 53 | */ |
183 | ENTRY(xen_sysexit) | 54 | ENTRY(xen_sysexit) |
184 | pushq $__USER32_DS | 55 | pushq $__USER32_DS |
@@ -193,13 +64,15 @@ ENDPATCH(xen_sysexit) | |||
193 | RELOC(xen_sysexit, 1b+1) | 64 | RELOC(xen_sysexit, 1b+1) |
194 | 65 | ||
195 | ENTRY(xen_sysret64) | 66 | ENTRY(xen_sysret64) |
196 | /* We're already on the usermode stack at this point, but still | 67 | /* |
197 | with the kernel gs, so we can easily switch back */ | 68 | * We're already on the usermode stack at this point, but |
198 | movq %rsp, %gs:pda_oldrsp | 69 | * still with the kernel gs, so we can easily switch back |
199 | movq %gs:pda_kernelstack,%rsp | 70 | */ |
71 | movq %rsp, PER_CPU_VAR(old_rsp) | ||
72 | movq PER_CPU_VAR(kernel_stack), %rsp | ||
200 | 73 | ||
201 | pushq $__USER_DS | 74 | pushq $__USER_DS |
202 | pushq %gs:pda_oldrsp | 75 | pushq PER_CPU_VAR(old_rsp) |
203 | pushq %r11 | 76 | pushq %r11 |
204 | pushq $__USER_CS | 77 | pushq $__USER_CS |
205 | pushq %rcx | 78 | pushq %rcx |
@@ -210,13 +83,15 @@ ENDPATCH(xen_sysret64) | |||
210 | RELOC(xen_sysret64, 1b+1) | 83 | RELOC(xen_sysret64, 1b+1) |
211 | 84 | ||
212 | ENTRY(xen_sysret32) | 85 | ENTRY(xen_sysret32) |
213 | /* We're already on the usermode stack at this point, but still | 86 | /* |
214 | with the kernel gs, so we can easily switch back */ | 87 | * We're already on the usermode stack at this point, but |
215 | movq %rsp, %gs:pda_oldrsp | 88 | * still with the kernel gs, so we can easily switch back |
216 | movq %gs:pda_kernelstack, %rsp | 89 | */ |
90 | movq %rsp, PER_CPU_VAR(old_rsp) | ||
91 | movq PER_CPU_VAR(kernel_stack), %rsp | ||
217 | 92 | ||
218 | pushq $__USER32_DS | 93 | pushq $__USER32_DS |
219 | pushq %gs:pda_oldrsp | 94 | pushq PER_CPU_VAR(old_rsp) |
220 | pushq %r11 | 95 | pushq %r11 |
221 | pushq $__USER32_CS | 96 | pushq $__USER32_CS |
222 | pushq %rcx | 97 | pushq %rcx |
@@ -227,28 +102,27 @@ ENDPATCH(xen_sysret32) | |||
227 | RELOC(xen_sysret32, 1b+1) | 102 | RELOC(xen_sysret32, 1b+1) |
228 | 103 | ||
229 | /* | 104 | /* |
230 | Xen handles syscall callbacks much like ordinary exceptions, | 105 | * Xen handles syscall callbacks much like ordinary exceptions, which |
231 | which means we have: | 106 | * means we have: |
232 | - kernel gs | 107 | * - kernel gs |
233 | - kernel rsp | 108 | * - kernel rsp |
234 | - an iret-like stack frame on the stack (including rcx and r11): | 109 | * - an iret-like stack frame on the stack (including rcx and r11): |
235 | ss | 110 | * ss |
236 | rsp | 111 | * rsp |
237 | rflags | 112 | * rflags |
238 | cs | 113 | * cs |
239 | rip | 114 | * rip |
240 | r11 | 115 | * r11 |
241 | rsp-> rcx | 116 | * rsp->rcx |
242 | 117 | * | |
243 | In all the entrypoints, we undo all that to make it look | 118 | * In all the entrypoints, we undo all that to make it look like a |
244 | like a CPU-generated syscall/sysenter and jump to the normal | 119 | * CPU-generated syscall/sysenter and jump to the normal entrypoint. |
245 | entrypoint. | ||
246 | */ | 120 | */ |
247 | 121 | ||
248 | .macro undo_xen_syscall | 122 | .macro undo_xen_syscall |
249 | mov 0*8(%rsp),%rcx | 123 | mov 0*8(%rsp), %rcx |
250 | mov 1*8(%rsp),%r11 | 124 | mov 1*8(%rsp), %r11 |
251 | mov 5*8(%rsp),%rsp | 125 | mov 5*8(%rsp), %rsp |
252 | .endm | 126 | .endm |
253 | 127 | ||
254 | /* Normal 64-bit system call target */ | 128 | /* Normal 64-bit system call target */ |
@@ -275,7 +149,7 @@ ENDPROC(xen_sysenter_target) | |||
275 | 149 | ||
276 | ENTRY(xen_syscall32_target) | 150 | ENTRY(xen_syscall32_target) |
277 | ENTRY(xen_sysenter_target) | 151 | ENTRY(xen_sysenter_target) |
278 | lea 16(%rsp), %rsp /* strip %rcx,%r11 */ | 152 | lea 16(%rsp), %rsp /* strip %rcx, %r11 */ |
279 | mov $-ENOSYS, %rax | 153 | mov $-ENOSYS, %rax |
280 | pushq $VGCF_in_syscall | 154 | pushq $VGCF_in_syscall |
281 | jmp hypercall_iret | 155 | jmp hypercall_iret |
diff --git a/arch/x86/xen/xen-head.S b/arch/x86/xen/xen-head.S index 63d49a523ed3..1a5ff24e29c0 100644 --- a/arch/x86/xen/xen-head.S +++ b/arch/x86/xen/xen-head.S | |||
@@ -8,7 +8,7 @@ | |||
8 | 8 | ||
9 | #include <asm/boot.h> | 9 | #include <asm/boot.h> |
10 | #include <asm/asm.h> | 10 | #include <asm/asm.h> |
11 | #include <asm/page.h> | 11 | #include <asm/page_types.h> |
12 | 12 | ||
13 | #include <xen/interface/elfnote.h> | 13 | #include <xen/interface/elfnote.h> |
14 | #include <asm/xen/interface.h> | 14 | #include <asm/xen/interface.h> |
diff --git a/arch/x86/xen/xen-ops.h b/arch/x86/xen/xen-ops.h index c1f8faf0a2c5..2f5ef2632ea2 100644 --- a/arch/x86/xen/xen-ops.h +++ b/arch/x86/xen/xen-ops.h | |||
@@ -10,9 +10,12 @@ | |||
10 | extern const char xen_hypervisor_callback[]; | 10 | extern const char xen_hypervisor_callback[]; |
11 | extern const char xen_failsafe_callback[]; | 11 | extern const char xen_failsafe_callback[]; |
12 | 12 | ||
13 | extern void *xen_initial_gdt; | ||
14 | |||
13 | struct trap_info; | 15 | struct trap_info; |
14 | void xen_copy_trap_info(struct trap_info *traps); | 16 | void xen_copy_trap_info(struct trap_info *traps); |
15 | 17 | ||
18 | DECLARE_PER_CPU(struct vcpu_info, xen_vcpu_info); | ||
16 | DECLARE_PER_CPU(unsigned long, xen_cr3); | 19 | DECLARE_PER_CPU(unsigned long, xen_cr3); |
17 | DECLARE_PER_CPU(unsigned long, xen_current_cr3); | 20 | DECLARE_PER_CPU(unsigned long, xen_current_cr3); |
18 | 21 | ||
@@ -22,6 +25,13 @@ extern struct shared_info *HYPERVISOR_shared_info; | |||
22 | 25 | ||
23 | void xen_setup_mfn_list_list(void); | 26 | void xen_setup_mfn_list_list(void); |
24 | void xen_setup_shared_info(void); | 27 | void xen_setup_shared_info(void); |
28 | void xen_setup_machphys_mapping(void); | ||
29 | pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn); | ||
30 | void xen_ident_map_ISA(void); | ||
31 | void xen_reserve_top(void); | ||
32 | |||
33 | void xen_leave_lazy(void); | ||
34 | void xen_post_allocator_init(void); | ||
25 | 35 | ||
26 | char * __init xen_memory_setup(void); | 36 | char * __init xen_memory_setup(void); |
27 | void __init xen_arch_setup(void); | 37 | void __init xen_arch_setup(void); |