diff options
Diffstat (limited to 'arch/x86/xen/enlighten.c')
-rw-r--r-- | arch/x86/xen/enlighten.c | 1146 |
1 files changed, 1146 insertions, 0 deletions
diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c new file mode 100644 index 000000000000..f01bfcd4bdee --- /dev/null +++ b/arch/x86/xen/enlighten.c | |||
@@ -0,0 +1,1146 @@ | |||
1 | /* | ||
2 | * Core of Xen paravirt_ops implementation. | ||
3 | * | ||
4 | * This file contains the xen_paravirt_ops structure itself, and the | ||
5 | * implementations for: | ||
6 | * - privileged instructions | ||
7 | * - interrupt flags | ||
8 | * - segment operations | ||
9 | * - booting and setup | ||
10 | * | ||
11 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/preempt.h> | ||
18 | #include <linux/hardirq.h> | ||
19 | #include <linux/percpu.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/start_kernel.h> | ||
22 | #include <linux/sched.h> | ||
23 | #include <linux/bootmem.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/mm.h> | ||
26 | #include <linux/page-flags.h> | ||
27 | #include <linux/highmem.h> | ||
28 | #include <linux/smp.h> | ||
29 | |||
30 | #include <xen/interface/xen.h> | ||
31 | #include <xen/interface/physdev.h> | ||
32 | #include <xen/interface/vcpu.h> | ||
33 | #include <xen/interface/sched.h> | ||
34 | #include <xen/features.h> | ||
35 | #include <xen/page.h> | ||
36 | |||
37 | #include <asm/paravirt.h> | ||
38 | #include <asm/page.h> | ||
39 | #include <asm/xen/hypercall.h> | ||
40 | #include <asm/xen/hypervisor.h> | ||
41 | #include <asm/fixmap.h> | ||
42 | #include <asm/processor.h> | ||
43 | #include <asm/setup.h> | ||
44 | #include <asm/desc.h> | ||
45 | #include <asm/pgtable.h> | ||
46 | #include <asm/tlbflush.h> | ||
47 | #include <asm/reboot.h> | ||
48 | |||
49 | #include "xen-ops.h" | ||
50 | #include "mmu.h" | ||
51 | #include "multicalls.h" | ||
52 | |||
53 | EXPORT_SYMBOL_GPL(hypercall_page); | ||
54 | |||
55 | DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode); | ||
56 | |||
57 | DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); | ||
58 | DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | ||
59 | DEFINE_PER_CPU(unsigned long, xen_cr3); | ||
60 | |||
61 | struct start_info *xen_start_info; | ||
62 | EXPORT_SYMBOL_GPL(xen_start_info); | ||
63 | |||
64 | static /* __initdata */ struct shared_info dummy_shared_info; | ||
65 | |||
66 | /* | ||
67 | * Point at some empty memory to start with. We map the real shared_info | ||
68 | * page as soon as fixmap is up and running. | ||
69 | */ | ||
70 | struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info; | ||
71 | |||
72 | /* | ||
73 | * Flag to determine whether vcpu info placement is available on all | ||
74 | * VCPUs. We assume it is to start with, and then set it to zero on | ||
75 | * the first failure. This is because it can succeed on some VCPUs | ||
76 | * and not others, since it can involve hypervisor memory allocation, | ||
77 | * or because the guest failed to guarantee all the appropriate | ||
78 | * constraints on all VCPUs (ie buffer can't cross a page boundary). | ||
79 | * | ||
80 | * Note that any particular CPU may be using a placed vcpu structure, | ||
81 | * but we can only optimise if the all are. | ||
82 | * | ||
83 | * 0: not available, 1: available | ||
84 | */ | ||
85 | static int have_vcpu_info_placement = 1; | ||
86 | |||
87 | static void __init xen_vcpu_setup(int cpu) | ||
88 | { | ||
89 | struct vcpu_register_vcpu_info info; | ||
90 | int err; | ||
91 | struct vcpu_info *vcpup; | ||
92 | |||
93 | per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; | ||
94 | |||
95 | if (!have_vcpu_info_placement) | ||
96 | return; /* already tested, not available */ | ||
97 | |||
98 | vcpup = &per_cpu(xen_vcpu_info, cpu); | ||
99 | |||
100 | info.mfn = virt_to_mfn(vcpup); | ||
101 | info.offset = offset_in_page(vcpup); | ||
102 | |||
103 | printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n", | ||
104 | cpu, vcpup, info.mfn, info.offset); | ||
105 | |||
106 | /* Check to see if the hypervisor will put the vcpu_info | ||
107 | structure where we want it, which allows direct access via | ||
108 | a percpu-variable. */ | ||
109 | err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); | ||
110 | |||
111 | if (err) { | ||
112 | printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); | ||
113 | have_vcpu_info_placement = 0; | ||
114 | } else { | ||
115 | /* This cpu is using the registered vcpu info, even if | ||
116 | later ones fail to. */ | ||
117 | per_cpu(xen_vcpu, cpu) = vcpup; | ||
118 | |||
119 | printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n", | ||
120 | cpu, vcpup); | ||
121 | } | ||
122 | } | ||
123 | |||
124 | static void __init xen_banner(void) | ||
125 | { | ||
126 | printk(KERN_INFO "Booting paravirtualized kernel on %s\n", | ||
127 | paravirt_ops.name); | ||
128 | printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic); | ||
129 | } | ||
130 | |||
131 | static void xen_cpuid(unsigned int *eax, unsigned int *ebx, | ||
132 | unsigned int *ecx, unsigned int *edx) | ||
133 | { | ||
134 | unsigned maskedx = ~0; | ||
135 | |||
136 | /* | ||
137 | * Mask out inconvenient features, to try and disable as many | ||
138 | * unsupported kernel subsystems as possible. | ||
139 | */ | ||
140 | if (*eax == 1) | ||
141 | maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */ | ||
142 | (1 << X86_FEATURE_ACPI) | /* disable ACPI */ | ||
143 | (1 << X86_FEATURE_ACC)); /* thermal monitoring */ | ||
144 | |||
145 | asm(XEN_EMULATE_PREFIX "cpuid" | ||
146 | : "=a" (*eax), | ||
147 | "=b" (*ebx), | ||
148 | "=c" (*ecx), | ||
149 | "=d" (*edx) | ||
150 | : "0" (*eax), "2" (*ecx)); | ||
151 | *edx &= maskedx; | ||
152 | } | ||
153 | |||
154 | static void xen_set_debugreg(int reg, unsigned long val) | ||
155 | { | ||
156 | HYPERVISOR_set_debugreg(reg, val); | ||
157 | } | ||
158 | |||
159 | static unsigned long xen_get_debugreg(int reg) | ||
160 | { | ||
161 | return HYPERVISOR_get_debugreg(reg); | ||
162 | } | ||
163 | |||
164 | static unsigned long xen_save_fl(void) | ||
165 | { | ||
166 | struct vcpu_info *vcpu; | ||
167 | unsigned long flags; | ||
168 | |||
169 | vcpu = x86_read_percpu(xen_vcpu); | ||
170 | |||
171 | /* flag has opposite sense of mask */ | ||
172 | flags = !vcpu->evtchn_upcall_mask; | ||
173 | |||
174 | /* convert to IF type flag | ||
175 | -0 -> 0x00000000 | ||
176 | -1 -> 0xffffffff | ||
177 | */ | ||
178 | return (-flags) & X86_EFLAGS_IF; | ||
179 | } | ||
180 | |||
181 | static void xen_restore_fl(unsigned long flags) | ||
182 | { | ||
183 | struct vcpu_info *vcpu; | ||
184 | |||
185 | /* convert from IF type flag */ | ||
186 | flags = !(flags & X86_EFLAGS_IF); | ||
187 | |||
188 | /* There's a one instruction preempt window here. We need to | ||
189 | make sure we're don't switch CPUs between getting the vcpu | ||
190 | pointer and updating the mask. */ | ||
191 | preempt_disable(); | ||
192 | vcpu = x86_read_percpu(xen_vcpu); | ||
193 | vcpu->evtchn_upcall_mask = flags; | ||
194 | preempt_enable_no_resched(); | ||
195 | |||
196 | /* Doesn't matter if we get preempted here, because any | ||
197 | pending event will get dealt with anyway. */ | ||
198 | |||
199 | if (flags == 0) { | ||
200 | preempt_check_resched(); | ||
201 | barrier(); /* unmask then check (avoid races) */ | ||
202 | if (unlikely(vcpu->evtchn_upcall_pending)) | ||
203 | force_evtchn_callback(); | ||
204 | } | ||
205 | } | ||
206 | |||
207 | static void xen_irq_disable(void) | ||
208 | { | ||
209 | /* There's a one instruction preempt window here. We need to | ||
210 | make sure we're don't switch CPUs between getting the vcpu | ||
211 | pointer and updating the mask. */ | ||
212 | preempt_disable(); | ||
213 | x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1; | ||
214 | preempt_enable_no_resched(); | ||
215 | } | ||
216 | |||
217 | static void xen_irq_enable(void) | ||
218 | { | ||
219 | struct vcpu_info *vcpu; | ||
220 | |||
221 | /* There's a one instruction preempt window here. We need to | ||
222 | make sure we're don't switch CPUs between getting the vcpu | ||
223 | pointer and updating the mask. */ | ||
224 | preempt_disable(); | ||
225 | vcpu = x86_read_percpu(xen_vcpu); | ||
226 | vcpu->evtchn_upcall_mask = 0; | ||
227 | preempt_enable_no_resched(); | ||
228 | |||
229 | /* Doesn't matter if we get preempted here, because any | ||
230 | pending event will get dealt with anyway. */ | ||
231 | |||
232 | barrier(); /* unmask then check (avoid races) */ | ||
233 | if (unlikely(vcpu->evtchn_upcall_pending)) | ||
234 | force_evtchn_callback(); | ||
235 | } | ||
236 | |||
237 | static void xen_safe_halt(void) | ||
238 | { | ||
239 | /* Blocking includes an implicit local_irq_enable(). */ | ||
240 | if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0) | ||
241 | BUG(); | ||
242 | } | ||
243 | |||
244 | static void xen_halt(void) | ||
245 | { | ||
246 | if (irqs_disabled()) | ||
247 | HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); | ||
248 | else | ||
249 | xen_safe_halt(); | ||
250 | } | ||
251 | |||
252 | static void xen_set_lazy_mode(enum paravirt_lazy_mode mode) | ||
253 | { | ||
254 | BUG_ON(preemptible()); | ||
255 | |||
256 | switch (mode) { | ||
257 | case PARAVIRT_LAZY_NONE: | ||
258 | BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE); | ||
259 | break; | ||
260 | |||
261 | case PARAVIRT_LAZY_MMU: | ||
262 | case PARAVIRT_LAZY_CPU: | ||
263 | BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE); | ||
264 | break; | ||
265 | |||
266 | case PARAVIRT_LAZY_FLUSH: | ||
267 | /* flush if necessary, but don't change state */ | ||
268 | if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE) | ||
269 | xen_mc_flush(); | ||
270 | return; | ||
271 | } | ||
272 | |||
273 | xen_mc_flush(); | ||
274 | x86_write_percpu(xen_lazy_mode, mode); | ||
275 | } | ||
276 | |||
277 | static unsigned long xen_store_tr(void) | ||
278 | { | ||
279 | return 0; | ||
280 | } | ||
281 | |||
282 | static void xen_set_ldt(const void *addr, unsigned entries) | ||
283 | { | ||
284 | unsigned long linear_addr = (unsigned long)addr; | ||
285 | struct mmuext_op *op; | ||
286 | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | ||
287 | |||
288 | op = mcs.args; | ||
289 | op->cmd = MMUEXT_SET_LDT; | ||
290 | if (linear_addr) { | ||
291 | /* ldt my be vmalloced, use arbitrary_virt_to_machine */ | ||
292 | xmaddr_t maddr; | ||
293 | maddr = arbitrary_virt_to_machine((unsigned long)addr); | ||
294 | linear_addr = (unsigned long)maddr.maddr; | ||
295 | } | ||
296 | op->arg1.linear_addr = linear_addr; | ||
297 | op->arg2.nr_ents = entries; | ||
298 | |||
299 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
300 | |||
301 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
302 | } | ||
303 | |||
304 | static void xen_load_gdt(const struct Xgt_desc_struct *dtr) | ||
305 | { | ||
306 | unsigned long *frames; | ||
307 | unsigned long va = dtr->address; | ||
308 | unsigned int size = dtr->size + 1; | ||
309 | unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; | ||
310 | int f; | ||
311 | struct multicall_space mcs; | ||
312 | |||
313 | /* A GDT can be up to 64k in size, which corresponds to 8192 | ||
314 | 8-byte entries, or 16 4k pages.. */ | ||
315 | |||
316 | BUG_ON(size > 65536); | ||
317 | BUG_ON(va & ~PAGE_MASK); | ||
318 | |||
319 | mcs = xen_mc_entry(sizeof(*frames) * pages); | ||
320 | frames = mcs.args; | ||
321 | |||
322 | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { | ||
323 | frames[f] = virt_to_mfn(va); | ||
324 | make_lowmem_page_readonly((void *)va); | ||
325 | } | ||
326 | |||
327 | MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); | ||
328 | |||
329 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
330 | } | ||
331 | |||
332 | static void load_TLS_descriptor(struct thread_struct *t, | ||
333 | unsigned int cpu, unsigned int i) | ||
334 | { | ||
335 | struct desc_struct *gdt = get_cpu_gdt_table(cpu); | ||
336 | xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); | ||
337 | struct multicall_space mc = __xen_mc_entry(0); | ||
338 | |||
339 | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); | ||
340 | } | ||
341 | |||
342 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | ||
343 | { | ||
344 | xen_mc_batch(); | ||
345 | |||
346 | load_TLS_descriptor(t, cpu, 0); | ||
347 | load_TLS_descriptor(t, cpu, 1); | ||
348 | load_TLS_descriptor(t, cpu, 2); | ||
349 | |||
350 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
351 | |||
352 | /* | ||
353 | * XXX sleazy hack: If we're being called in a lazy-cpu zone, | ||
354 | * it means we're in a context switch, and %gs has just been | ||
355 | * saved. This means we can zero it out to prevent faults on | ||
356 | * exit from the hypervisor if the next process has no %gs. | ||
357 | * Either way, it has been saved, and the new value will get | ||
358 | * loaded properly. This will go away as soon as Xen has been | ||
359 | * modified to not save/restore %gs for normal hypercalls. | ||
360 | */ | ||
361 | if (xen_get_lazy_mode() == PARAVIRT_LAZY_CPU) | ||
362 | loadsegment(gs, 0); | ||
363 | } | ||
364 | |||
365 | static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, | ||
366 | u32 low, u32 high) | ||
367 | { | ||
368 | unsigned long lp = (unsigned long)&dt[entrynum]; | ||
369 | xmaddr_t mach_lp = virt_to_machine(lp); | ||
370 | u64 entry = (u64)high << 32 | low; | ||
371 | |||
372 | preempt_disable(); | ||
373 | |||
374 | xen_mc_flush(); | ||
375 | if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) | ||
376 | BUG(); | ||
377 | |||
378 | preempt_enable(); | ||
379 | } | ||
380 | |||
381 | static int cvt_gate_to_trap(int vector, u32 low, u32 high, | ||
382 | struct trap_info *info) | ||
383 | { | ||
384 | u8 type, dpl; | ||
385 | |||
386 | type = (high >> 8) & 0x1f; | ||
387 | dpl = (high >> 13) & 3; | ||
388 | |||
389 | if (type != 0xf && type != 0xe) | ||
390 | return 0; | ||
391 | |||
392 | info->vector = vector; | ||
393 | info->address = (high & 0xffff0000) | (low & 0x0000ffff); | ||
394 | info->cs = low >> 16; | ||
395 | info->flags = dpl; | ||
396 | /* interrupt gates clear IF */ | ||
397 | if (type == 0xe) | ||
398 | info->flags |= 4; | ||
399 | |||
400 | return 1; | ||
401 | } | ||
402 | |||
403 | /* Locations of each CPU's IDT */ | ||
404 | static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc); | ||
405 | |||
406 | /* Set an IDT entry. If the entry is part of the current IDT, then | ||
407 | also update Xen. */ | ||
408 | static void xen_write_idt_entry(struct desc_struct *dt, int entrynum, | ||
409 | u32 low, u32 high) | ||
410 | { | ||
411 | unsigned long p = (unsigned long)&dt[entrynum]; | ||
412 | unsigned long start, end; | ||
413 | |||
414 | preempt_disable(); | ||
415 | |||
416 | start = __get_cpu_var(idt_desc).address; | ||
417 | end = start + __get_cpu_var(idt_desc).size + 1; | ||
418 | |||
419 | xen_mc_flush(); | ||
420 | |||
421 | write_dt_entry(dt, entrynum, low, high); | ||
422 | |||
423 | if (p >= start && (p + 8) <= end) { | ||
424 | struct trap_info info[2]; | ||
425 | |||
426 | info[1].address = 0; | ||
427 | |||
428 | if (cvt_gate_to_trap(entrynum, low, high, &info[0])) | ||
429 | if (HYPERVISOR_set_trap_table(info)) | ||
430 | BUG(); | ||
431 | } | ||
432 | |||
433 | preempt_enable(); | ||
434 | } | ||
435 | |||
436 | static void xen_convert_trap_info(const struct Xgt_desc_struct *desc, | ||
437 | struct trap_info *traps) | ||
438 | { | ||
439 | unsigned in, out, count; | ||
440 | |||
441 | count = (desc->size+1) / 8; | ||
442 | BUG_ON(count > 256); | ||
443 | |||
444 | for (in = out = 0; in < count; in++) { | ||
445 | const u32 *entry = (u32 *)(desc->address + in * 8); | ||
446 | |||
447 | if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out])) | ||
448 | out++; | ||
449 | } | ||
450 | traps[out].address = 0; | ||
451 | } | ||
452 | |||
453 | void xen_copy_trap_info(struct trap_info *traps) | ||
454 | { | ||
455 | const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc); | ||
456 | |||
457 | xen_convert_trap_info(desc, traps); | ||
458 | } | ||
459 | |||
460 | /* Load a new IDT into Xen. In principle this can be per-CPU, so we | ||
461 | hold a spinlock to protect the static traps[] array (static because | ||
462 | it avoids allocation, and saves stack space). */ | ||
463 | static void xen_load_idt(const struct Xgt_desc_struct *desc) | ||
464 | { | ||
465 | static DEFINE_SPINLOCK(lock); | ||
466 | static struct trap_info traps[257]; | ||
467 | |||
468 | spin_lock(&lock); | ||
469 | |||
470 | __get_cpu_var(idt_desc) = *desc; | ||
471 | |||
472 | xen_convert_trap_info(desc, traps); | ||
473 | |||
474 | xen_mc_flush(); | ||
475 | if (HYPERVISOR_set_trap_table(traps)) | ||
476 | BUG(); | ||
477 | |||
478 | spin_unlock(&lock); | ||
479 | } | ||
480 | |||
481 | /* Write a GDT descriptor entry. Ignore LDT descriptors, since | ||
482 | they're handled differently. */ | ||
483 | static void xen_write_gdt_entry(struct desc_struct *dt, int entry, | ||
484 | u32 low, u32 high) | ||
485 | { | ||
486 | preempt_disable(); | ||
487 | |||
488 | switch ((high >> 8) & 0xff) { | ||
489 | case DESCTYPE_LDT: | ||
490 | case DESCTYPE_TSS: | ||
491 | /* ignore */ | ||
492 | break; | ||
493 | |||
494 | default: { | ||
495 | xmaddr_t maddr = virt_to_machine(&dt[entry]); | ||
496 | u64 desc = (u64)high << 32 | low; | ||
497 | |||
498 | xen_mc_flush(); | ||
499 | if (HYPERVISOR_update_descriptor(maddr.maddr, desc)) | ||
500 | BUG(); | ||
501 | } | ||
502 | |||
503 | } | ||
504 | |||
505 | preempt_enable(); | ||
506 | } | ||
507 | |||
508 | static void xen_load_esp0(struct tss_struct *tss, | ||
509 | struct thread_struct *thread) | ||
510 | { | ||
511 | struct multicall_space mcs = xen_mc_entry(0); | ||
512 | MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0); | ||
513 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
514 | } | ||
515 | |||
516 | static void xen_set_iopl_mask(unsigned mask) | ||
517 | { | ||
518 | struct physdev_set_iopl set_iopl; | ||
519 | |||
520 | /* Force the change at ring 0. */ | ||
521 | set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; | ||
522 | HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); | ||
523 | } | ||
524 | |||
525 | static void xen_io_delay(void) | ||
526 | { | ||
527 | } | ||
528 | |||
529 | #ifdef CONFIG_X86_LOCAL_APIC | ||
530 | static unsigned long xen_apic_read(unsigned long reg) | ||
531 | { | ||
532 | return 0; | ||
533 | } | ||
534 | |||
535 | static void xen_apic_write(unsigned long reg, unsigned long val) | ||
536 | { | ||
537 | /* Warn to see if there's any stray references */ | ||
538 | WARN_ON(1); | ||
539 | } | ||
540 | #endif | ||
541 | |||
542 | static void xen_flush_tlb(void) | ||
543 | { | ||
544 | struct mmuext_op *op; | ||
545 | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | ||
546 | |||
547 | op = mcs.args; | ||
548 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | ||
549 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
550 | |||
551 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
552 | } | ||
553 | |||
554 | static void xen_flush_tlb_single(unsigned long addr) | ||
555 | { | ||
556 | struct mmuext_op *op; | ||
557 | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | ||
558 | |||
559 | op = mcs.args; | ||
560 | op->cmd = MMUEXT_INVLPG_LOCAL; | ||
561 | op->arg1.linear_addr = addr & PAGE_MASK; | ||
562 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
563 | |||
564 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
565 | } | ||
566 | |||
567 | static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, | ||
568 | unsigned long va) | ||
569 | { | ||
570 | struct { | ||
571 | struct mmuext_op op; | ||
572 | cpumask_t mask; | ||
573 | } *args; | ||
574 | cpumask_t cpumask = *cpus; | ||
575 | struct multicall_space mcs; | ||
576 | |||
577 | /* | ||
578 | * A couple of (to be removed) sanity checks: | ||
579 | * | ||
580 | * - current CPU must not be in mask | ||
581 | * - mask must exist :) | ||
582 | */ | ||
583 | BUG_ON(cpus_empty(cpumask)); | ||
584 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | ||
585 | BUG_ON(!mm); | ||
586 | |||
587 | /* If a CPU which we ran on has gone down, OK. */ | ||
588 | cpus_and(cpumask, cpumask, cpu_online_map); | ||
589 | if (cpus_empty(cpumask)) | ||
590 | return; | ||
591 | |||
592 | mcs = xen_mc_entry(sizeof(*args)); | ||
593 | args = mcs.args; | ||
594 | args->mask = cpumask; | ||
595 | args->op.arg2.vcpumask = &args->mask; | ||
596 | |||
597 | if (va == TLB_FLUSH_ALL) { | ||
598 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | ||
599 | } else { | ||
600 | args->op.cmd = MMUEXT_INVLPG_MULTI; | ||
601 | args->op.arg1.linear_addr = va; | ||
602 | } | ||
603 | |||
604 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | ||
605 | |||
606 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
607 | } | ||
608 | |||
609 | static void xen_write_cr2(unsigned long cr2) | ||
610 | { | ||
611 | x86_read_percpu(xen_vcpu)->arch.cr2 = cr2; | ||
612 | } | ||
613 | |||
614 | static unsigned long xen_read_cr2(void) | ||
615 | { | ||
616 | return x86_read_percpu(xen_vcpu)->arch.cr2; | ||
617 | } | ||
618 | |||
619 | static unsigned long xen_read_cr2_direct(void) | ||
620 | { | ||
621 | return x86_read_percpu(xen_vcpu_info.arch.cr2); | ||
622 | } | ||
623 | |||
624 | static void xen_write_cr4(unsigned long cr4) | ||
625 | { | ||
626 | /* Just ignore cr4 changes; Xen doesn't allow us to do | ||
627 | anything anyway. */ | ||
628 | } | ||
629 | |||
630 | static unsigned long xen_read_cr3(void) | ||
631 | { | ||
632 | return x86_read_percpu(xen_cr3); | ||
633 | } | ||
634 | |||
635 | static void xen_write_cr3(unsigned long cr3) | ||
636 | { | ||
637 | BUG_ON(preemptible()); | ||
638 | |||
639 | if (cr3 == x86_read_percpu(xen_cr3)) { | ||
640 | /* just a simple tlb flush */ | ||
641 | xen_flush_tlb(); | ||
642 | return; | ||
643 | } | ||
644 | |||
645 | x86_write_percpu(xen_cr3, cr3); | ||
646 | |||
647 | |||
648 | { | ||
649 | struct mmuext_op *op; | ||
650 | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | ||
651 | unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3)); | ||
652 | |||
653 | op = mcs.args; | ||
654 | op->cmd = MMUEXT_NEW_BASEPTR; | ||
655 | op->arg1.mfn = mfn; | ||
656 | |||
657 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
658 | |||
659 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
660 | } | ||
661 | } | ||
662 | |||
663 | /* Early in boot, while setting up the initial pagetable, assume | ||
664 | everything is pinned. */ | ||
665 | static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn) | ||
666 | { | ||
667 | BUG_ON(mem_map); /* should only be used early */ | ||
668 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
669 | } | ||
670 | |||
671 | /* This needs to make sure the new pte page is pinned iff its being | ||
672 | attached to a pinned pagetable. */ | ||
673 | static void xen_alloc_pt(struct mm_struct *mm, u32 pfn) | ||
674 | { | ||
675 | struct page *page = pfn_to_page(pfn); | ||
676 | |||
677 | if (PagePinned(virt_to_page(mm->pgd))) { | ||
678 | SetPagePinned(page); | ||
679 | |||
680 | if (!PageHighMem(page)) | ||
681 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
682 | else | ||
683 | /* make sure there are no stray mappings of | ||
684 | this page */ | ||
685 | kmap_flush_unused(); | ||
686 | } | ||
687 | } | ||
688 | |||
689 | /* This should never happen until we're OK to use struct page */ | ||
690 | static void xen_release_pt(u32 pfn) | ||
691 | { | ||
692 | struct page *page = pfn_to_page(pfn); | ||
693 | |||
694 | if (PagePinned(page)) { | ||
695 | if (!PageHighMem(page)) | ||
696 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
697 | } | ||
698 | } | ||
699 | |||
700 | #ifdef CONFIG_HIGHPTE | ||
701 | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | ||
702 | { | ||
703 | pgprot_t prot = PAGE_KERNEL; | ||
704 | |||
705 | if (PagePinned(page)) | ||
706 | prot = PAGE_KERNEL_RO; | ||
707 | |||
708 | if (0 && PageHighMem(page)) | ||
709 | printk("mapping highpte %lx type %d prot %s\n", | ||
710 | page_to_pfn(page), type, | ||
711 | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | ||
712 | |||
713 | return kmap_atomic_prot(page, type, prot); | ||
714 | } | ||
715 | #endif | ||
716 | |||
717 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | ||
718 | { | ||
719 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | ||
720 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | ||
721 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | ||
722 | pte_val_ma(pte)); | ||
723 | |||
724 | return pte; | ||
725 | } | ||
726 | |||
727 | /* Init-time set_pte while constructing initial pagetables, which | ||
728 | doesn't allow RO pagetable pages to be remapped RW */ | ||
729 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | ||
730 | { | ||
731 | pte = mask_rw_pte(ptep, pte); | ||
732 | |||
733 | xen_set_pte(ptep, pte); | ||
734 | } | ||
735 | |||
736 | static __init void xen_pagetable_setup_start(pgd_t *base) | ||
737 | { | ||
738 | pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base; | ||
739 | |||
740 | /* special set_pte for pagetable initialization */ | ||
741 | paravirt_ops.set_pte = xen_set_pte_init; | ||
742 | |||
743 | init_mm.pgd = base; | ||
744 | /* | ||
745 | * copy top-level of Xen-supplied pagetable into place. For | ||
746 | * !PAE we can use this as-is, but for PAE it is a stand-in | ||
747 | * while we copy the pmd pages. | ||
748 | */ | ||
749 | memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t)); | ||
750 | |||
751 | if (PTRS_PER_PMD > 1) { | ||
752 | int i; | ||
753 | /* | ||
754 | * For PAE, need to allocate new pmds, rather than | ||
755 | * share Xen's, since Xen doesn't like pmd's being | ||
756 | * shared between address spaces. | ||
757 | */ | ||
758 | for (i = 0; i < PTRS_PER_PGD; i++) { | ||
759 | if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) { | ||
760 | pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE); | ||
761 | |||
762 | memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]), | ||
763 | PAGE_SIZE); | ||
764 | |||
765 | make_lowmem_page_readonly(pmd); | ||
766 | |||
767 | set_pgd(&base[i], __pgd(1 + __pa(pmd))); | ||
768 | } else | ||
769 | pgd_clear(&base[i]); | ||
770 | } | ||
771 | } | ||
772 | |||
773 | /* make sure zero_page is mapped RO so we can use it in pagetables */ | ||
774 | make_lowmem_page_readonly(empty_zero_page); | ||
775 | make_lowmem_page_readonly(base); | ||
776 | /* | ||
777 | * Switch to new pagetable. This is done before | ||
778 | * pagetable_init has done anything so that the new pages | ||
779 | * added to the table can be prepared properly for Xen. | ||
780 | */ | ||
781 | xen_write_cr3(__pa(base)); | ||
782 | } | ||
783 | |||
784 | static __init void xen_pagetable_setup_done(pgd_t *base) | ||
785 | { | ||
786 | /* This will work as long as patching hasn't happened yet | ||
787 | (which it hasn't) */ | ||
788 | paravirt_ops.alloc_pt = xen_alloc_pt; | ||
789 | paravirt_ops.set_pte = xen_set_pte; | ||
790 | |||
791 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | ||
792 | /* | ||
793 | * Create a mapping for the shared info page. | ||
794 | * Should be set_fixmap(), but shared_info is a machine | ||
795 | * address with no corresponding pseudo-phys address. | ||
796 | */ | ||
797 | set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP), | ||
798 | PFN_DOWN(xen_start_info->shared_info), | ||
799 | PAGE_KERNEL); | ||
800 | |||
801 | HYPERVISOR_shared_info = | ||
802 | (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); | ||
803 | |||
804 | } else | ||
805 | HYPERVISOR_shared_info = | ||
806 | (struct shared_info *)__va(xen_start_info->shared_info); | ||
807 | |||
808 | /* Actually pin the pagetable down, but we can't set PG_pinned | ||
809 | yet because the page structures don't exist yet. */ | ||
810 | { | ||
811 | struct mmuext_op op; | ||
812 | #ifdef CONFIG_X86_PAE | ||
813 | op.cmd = MMUEXT_PIN_L3_TABLE; | ||
814 | #else | ||
815 | op.cmd = MMUEXT_PIN_L3_TABLE; | ||
816 | #endif | ||
817 | op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base))); | ||
818 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | ||
819 | BUG(); | ||
820 | } | ||
821 | } | ||
822 | |||
823 | /* This is called once we have the cpu_possible_map */ | ||
824 | void __init xen_setup_vcpu_info_placement(void) | ||
825 | { | ||
826 | int cpu; | ||
827 | |||
828 | for_each_possible_cpu(cpu) | ||
829 | xen_vcpu_setup(cpu); | ||
830 | |||
831 | /* xen_vcpu_setup managed to place the vcpu_info within the | ||
832 | percpu area for all cpus, so make use of it */ | ||
833 | if (have_vcpu_info_placement) { | ||
834 | printk(KERN_INFO "Xen: using vcpu_info placement\n"); | ||
835 | |||
836 | paravirt_ops.save_fl = xen_save_fl_direct; | ||
837 | paravirt_ops.restore_fl = xen_restore_fl_direct; | ||
838 | paravirt_ops.irq_disable = xen_irq_disable_direct; | ||
839 | paravirt_ops.irq_enable = xen_irq_enable_direct; | ||
840 | paravirt_ops.read_cr2 = xen_read_cr2_direct; | ||
841 | paravirt_ops.iret = xen_iret_direct; | ||
842 | } | ||
843 | } | ||
844 | |||
845 | static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, | ||
846 | unsigned long addr, unsigned len) | ||
847 | { | ||
848 | char *start, *end, *reloc; | ||
849 | unsigned ret; | ||
850 | |||
851 | start = end = reloc = NULL; | ||
852 | |||
853 | #define SITE(x) \ | ||
854 | case PARAVIRT_PATCH(x): \ | ||
855 | if (have_vcpu_info_placement) { \ | ||
856 | start = (char *)xen_##x##_direct; \ | ||
857 | end = xen_##x##_direct_end; \ | ||
858 | reloc = xen_##x##_direct_reloc; \ | ||
859 | } \ | ||
860 | goto patch_site | ||
861 | |||
862 | switch (type) { | ||
863 | SITE(irq_enable); | ||
864 | SITE(irq_disable); | ||
865 | SITE(save_fl); | ||
866 | SITE(restore_fl); | ||
867 | #undef SITE | ||
868 | |||
869 | patch_site: | ||
870 | if (start == NULL || (end-start) > len) | ||
871 | goto default_patch; | ||
872 | |||
873 | ret = paravirt_patch_insns(insnbuf, len, start, end); | ||
874 | |||
875 | /* Note: because reloc is assigned from something that | ||
876 | appears to be an array, gcc assumes it's non-null, | ||
877 | but doesn't know its relationship with start and | ||
878 | end. */ | ||
879 | if (reloc > start && reloc < end) { | ||
880 | int reloc_off = reloc - start; | ||
881 | long *relocp = (long *)(insnbuf + reloc_off); | ||
882 | long delta = start - (char *)addr; | ||
883 | |||
884 | *relocp += delta; | ||
885 | } | ||
886 | break; | ||
887 | |||
888 | default_patch: | ||
889 | default: | ||
890 | ret = paravirt_patch_default(type, clobbers, insnbuf, | ||
891 | addr, len); | ||
892 | break; | ||
893 | } | ||
894 | |||
895 | return ret; | ||
896 | } | ||
897 | |||
898 | static const struct paravirt_ops xen_paravirt_ops __initdata = { | ||
899 | .paravirt_enabled = 1, | ||
900 | .shared_kernel_pmd = 0, | ||
901 | |||
902 | .name = "Xen", | ||
903 | .banner = xen_banner, | ||
904 | |||
905 | .patch = xen_patch, | ||
906 | |||
907 | .memory_setup = xen_memory_setup, | ||
908 | .arch_setup = xen_arch_setup, | ||
909 | .init_IRQ = xen_init_IRQ, | ||
910 | .post_allocator_init = xen_mark_init_mm_pinned, | ||
911 | |||
912 | .time_init = xen_time_init, | ||
913 | .set_wallclock = xen_set_wallclock, | ||
914 | .get_wallclock = xen_get_wallclock, | ||
915 | .get_cpu_khz = xen_cpu_khz, | ||
916 | .sched_clock = xen_sched_clock, | ||
917 | |||
918 | .cpuid = xen_cpuid, | ||
919 | |||
920 | .set_debugreg = xen_set_debugreg, | ||
921 | .get_debugreg = xen_get_debugreg, | ||
922 | |||
923 | .clts = native_clts, | ||
924 | |||
925 | .read_cr0 = native_read_cr0, | ||
926 | .write_cr0 = native_write_cr0, | ||
927 | |||
928 | .read_cr2 = xen_read_cr2, | ||
929 | .write_cr2 = xen_write_cr2, | ||
930 | |||
931 | .read_cr3 = xen_read_cr3, | ||
932 | .write_cr3 = xen_write_cr3, | ||
933 | |||
934 | .read_cr4 = native_read_cr4, | ||
935 | .read_cr4_safe = native_read_cr4_safe, | ||
936 | .write_cr4 = xen_write_cr4, | ||
937 | |||
938 | .save_fl = xen_save_fl, | ||
939 | .restore_fl = xen_restore_fl, | ||
940 | .irq_disable = xen_irq_disable, | ||
941 | .irq_enable = xen_irq_enable, | ||
942 | .safe_halt = xen_safe_halt, | ||
943 | .halt = xen_halt, | ||
944 | .wbinvd = native_wbinvd, | ||
945 | |||
946 | .read_msr = native_read_msr_safe, | ||
947 | .write_msr = native_write_msr_safe, | ||
948 | .read_tsc = native_read_tsc, | ||
949 | .read_pmc = native_read_pmc, | ||
950 | |||
951 | .iret = (void *)&hypercall_page[__HYPERVISOR_iret], | ||
952 | .irq_enable_sysexit = NULL, /* never called */ | ||
953 | |||
954 | .load_tr_desc = paravirt_nop, | ||
955 | .set_ldt = xen_set_ldt, | ||
956 | .load_gdt = xen_load_gdt, | ||
957 | .load_idt = xen_load_idt, | ||
958 | .load_tls = xen_load_tls, | ||
959 | |||
960 | .store_gdt = native_store_gdt, | ||
961 | .store_idt = native_store_idt, | ||
962 | .store_tr = xen_store_tr, | ||
963 | |||
964 | .write_ldt_entry = xen_write_ldt_entry, | ||
965 | .write_gdt_entry = xen_write_gdt_entry, | ||
966 | .write_idt_entry = xen_write_idt_entry, | ||
967 | .load_esp0 = xen_load_esp0, | ||
968 | |||
969 | .set_iopl_mask = xen_set_iopl_mask, | ||
970 | .io_delay = xen_io_delay, | ||
971 | |||
972 | #ifdef CONFIG_X86_LOCAL_APIC | ||
973 | .apic_write = xen_apic_write, | ||
974 | .apic_write_atomic = xen_apic_write, | ||
975 | .apic_read = xen_apic_read, | ||
976 | .setup_boot_clock = paravirt_nop, | ||
977 | .setup_secondary_clock = paravirt_nop, | ||
978 | .startup_ipi_hook = paravirt_nop, | ||
979 | #endif | ||
980 | |||
981 | .flush_tlb_user = xen_flush_tlb, | ||
982 | .flush_tlb_kernel = xen_flush_tlb, | ||
983 | .flush_tlb_single = xen_flush_tlb_single, | ||
984 | .flush_tlb_others = xen_flush_tlb_others, | ||
985 | |||
986 | .pte_update = paravirt_nop, | ||
987 | .pte_update_defer = paravirt_nop, | ||
988 | |||
989 | .pagetable_setup_start = xen_pagetable_setup_start, | ||
990 | .pagetable_setup_done = xen_pagetable_setup_done, | ||
991 | |||
992 | .alloc_pt = xen_alloc_pt_init, | ||
993 | .release_pt = xen_release_pt, | ||
994 | .alloc_pd = paravirt_nop, | ||
995 | .alloc_pd_clone = paravirt_nop, | ||
996 | .release_pd = paravirt_nop, | ||
997 | |||
998 | #ifdef CONFIG_HIGHPTE | ||
999 | .kmap_atomic_pte = xen_kmap_atomic_pte, | ||
1000 | #endif | ||
1001 | |||
1002 | .set_pte = NULL, /* see xen_pagetable_setup_* */ | ||
1003 | .set_pte_at = xen_set_pte_at, | ||
1004 | .set_pmd = xen_set_pmd, | ||
1005 | |||
1006 | .pte_val = xen_pte_val, | ||
1007 | .pgd_val = xen_pgd_val, | ||
1008 | |||
1009 | .make_pte = xen_make_pte, | ||
1010 | .make_pgd = xen_make_pgd, | ||
1011 | |||
1012 | #ifdef CONFIG_X86_PAE | ||
1013 | .set_pte_atomic = xen_set_pte_atomic, | ||
1014 | .set_pte_present = xen_set_pte_at, | ||
1015 | .set_pud = xen_set_pud, | ||
1016 | .pte_clear = xen_pte_clear, | ||
1017 | .pmd_clear = xen_pmd_clear, | ||
1018 | |||
1019 | .make_pmd = xen_make_pmd, | ||
1020 | .pmd_val = xen_pmd_val, | ||
1021 | #endif /* PAE */ | ||
1022 | |||
1023 | .activate_mm = xen_activate_mm, | ||
1024 | .dup_mmap = xen_dup_mmap, | ||
1025 | .exit_mmap = xen_exit_mmap, | ||
1026 | |||
1027 | .set_lazy_mode = xen_set_lazy_mode, | ||
1028 | }; | ||
1029 | |||
1030 | #ifdef CONFIG_SMP | ||
1031 | static const struct smp_ops xen_smp_ops __initdata = { | ||
1032 | .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, | ||
1033 | .smp_prepare_cpus = xen_smp_prepare_cpus, | ||
1034 | .cpu_up = xen_cpu_up, | ||
1035 | .smp_cpus_done = xen_smp_cpus_done, | ||
1036 | |||
1037 | .smp_send_stop = xen_smp_send_stop, | ||
1038 | .smp_send_reschedule = xen_smp_send_reschedule, | ||
1039 | .smp_call_function_mask = xen_smp_call_function_mask, | ||
1040 | }; | ||
1041 | #endif /* CONFIG_SMP */ | ||
1042 | |||
1043 | static void xen_reboot(int reason) | ||
1044 | { | ||
1045 | #ifdef CONFIG_SMP | ||
1046 | smp_send_stop(); | ||
1047 | #endif | ||
1048 | |||
1049 | if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason)) | ||
1050 | BUG(); | ||
1051 | } | ||
1052 | |||
1053 | static void xen_restart(char *msg) | ||
1054 | { | ||
1055 | xen_reboot(SHUTDOWN_reboot); | ||
1056 | } | ||
1057 | |||
1058 | static void xen_emergency_restart(void) | ||
1059 | { | ||
1060 | xen_reboot(SHUTDOWN_reboot); | ||
1061 | } | ||
1062 | |||
1063 | static void xen_machine_halt(void) | ||
1064 | { | ||
1065 | xen_reboot(SHUTDOWN_poweroff); | ||
1066 | } | ||
1067 | |||
1068 | static void xen_crash_shutdown(struct pt_regs *regs) | ||
1069 | { | ||
1070 | xen_reboot(SHUTDOWN_crash); | ||
1071 | } | ||
1072 | |||
1073 | static const struct machine_ops __initdata xen_machine_ops = { | ||
1074 | .restart = xen_restart, | ||
1075 | .halt = xen_machine_halt, | ||
1076 | .power_off = xen_machine_halt, | ||
1077 | .shutdown = xen_machine_halt, | ||
1078 | .crash_shutdown = xen_crash_shutdown, | ||
1079 | .emergency_restart = xen_emergency_restart, | ||
1080 | }; | ||
1081 | |||
1082 | |||
1083 | /* First C function to be called on Xen boot */ | ||
1084 | asmlinkage void __init xen_start_kernel(void) | ||
1085 | { | ||
1086 | pgd_t *pgd; | ||
1087 | |||
1088 | if (!xen_start_info) | ||
1089 | return; | ||
1090 | |||
1091 | BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0); | ||
1092 | |||
1093 | /* Install Xen paravirt ops */ | ||
1094 | paravirt_ops = xen_paravirt_ops; | ||
1095 | machine_ops = xen_machine_ops; | ||
1096 | |||
1097 | #ifdef CONFIG_SMP | ||
1098 | smp_ops = xen_smp_ops; | ||
1099 | #endif | ||
1100 | |||
1101 | xen_setup_features(); | ||
1102 | |||
1103 | /* Get mfn list */ | ||
1104 | if (!xen_feature(XENFEAT_auto_translated_physmap)) | ||
1105 | phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list; | ||
1106 | |||
1107 | pgd = (pgd_t *)xen_start_info->pt_base; | ||
1108 | |||
1109 | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | ||
1110 | |||
1111 | init_mm.pgd = pgd; /* use the Xen pagetables to start */ | ||
1112 | |||
1113 | /* keep using Xen gdt for now; no urgent need to change it */ | ||
1114 | |||
1115 | x86_write_percpu(xen_cr3, __pa(pgd)); | ||
1116 | |||
1117 | #ifdef CONFIG_SMP | ||
1118 | /* Don't do the full vcpu_info placement stuff until we have a | ||
1119 | possible map. */ | ||
1120 | per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; | ||
1121 | #else | ||
1122 | /* May as well do it now, since there's no good time to call | ||
1123 | it later on UP. */ | ||
1124 | xen_setup_vcpu_info_placement(); | ||
1125 | #endif | ||
1126 | |||
1127 | paravirt_ops.kernel_rpl = 1; | ||
1128 | if (xen_feature(XENFEAT_supervisor_mode_kernel)) | ||
1129 | paravirt_ops.kernel_rpl = 0; | ||
1130 | |||
1131 | /* set the limit of our address space */ | ||
1132 | reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE); | ||
1133 | |||
1134 | /* set up basic CPUID stuff */ | ||
1135 | cpu_detect(&new_cpu_data); | ||
1136 | new_cpu_data.hard_math = 1; | ||
1137 | new_cpu_data.x86_capability[0] = cpuid_edx(1); | ||
1138 | |||
1139 | /* Poke various useful things into boot_params */ | ||
1140 | LOADER_TYPE = (9 << 4) | 0; | ||
1141 | INITRD_START = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0; | ||
1142 | INITRD_SIZE = xen_start_info->mod_len; | ||
1143 | |||
1144 | /* Start the world */ | ||
1145 | start_kernel(); | ||
1146 | } | ||