diff options
Diffstat (limited to 'arch/x86/mm')
-rw-r--r-- | arch/x86/mm/Makefile | 4 | ||||
-rw-r--r-- | arch/x86/mm/extable.c | 6 | ||||
-rw-r--r-- | arch/x86/mm/fault.c | 1333 | ||||
-rw-r--r-- | arch/x86/mm/highmem_32.c | 34 | ||||
-rw-r--r-- | arch/x86/mm/init.c | 49 | ||||
-rw-r--r-- | arch/x86/mm/init_32.c | 196 | ||||
-rw-r--r-- | arch/x86/mm/init_64.c | 37 | ||||
-rw-r--r-- | arch/x86/mm/ioremap.c | 2 | ||||
-rw-r--r-- | arch/x86/mm/memtest.c | 156 | ||||
-rw-r--r-- | arch/x86/mm/mmap.c | 2 | ||||
-rw-r--r-- | arch/x86/mm/numa_32.c | 28 | ||||
-rw-r--r-- | arch/x86/mm/numa_64.c | 217 | ||||
-rw-r--r-- | arch/x86/mm/pageattr.c | 7 | ||||
-rw-r--r-- | arch/x86/mm/pat.c | 77 | ||||
-rw-r--r-- | arch/x86/mm/pgtable.c | 18 | ||||
-rw-r--r-- | arch/x86/mm/pgtable_32.c | 18 | ||||
-rw-r--r-- | arch/x86/mm/srat_64.c | 3 | ||||
-rw-r--r-- | arch/x86/mm/tlb.c | 295 |
18 files changed, 1620 insertions, 862 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile index d8cc96a2738f..08537747cb58 100644 --- a/arch/x86/mm/Makefile +++ b/arch/x86/mm/Makefile | |||
@@ -1,6 +1,8 @@ | |||
1 | obj-y := init_$(BITS).o fault.o ioremap.o extable.o pageattr.o mmap.o \ | 1 | obj-y := init.o init_$(BITS).o fault.o ioremap.o extable.o pageattr.o mmap.o \ |
2 | pat.o pgtable.o gup.o | 2 | pat.o pgtable.o gup.o |
3 | 3 | ||
4 | obj-$(CONFIG_SMP) += tlb.o | ||
5 | |||
4 | obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o | 6 | obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o |
5 | 7 | ||
6 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o | 8 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o |
diff --git a/arch/x86/mm/extable.c b/arch/x86/mm/extable.c index 7e8db53528a7..61b41ca3b5a2 100644 --- a/arch/x86/mm/extable.c +++ b/arch/x86/mm/extable.c | |||
@@ -23,6 +23,12 @@ int fixup_exception(struct pt_regs *regs) | |||
23 | 23 | ||
24 | fixup = search_exception_tables(regs->ip); | 24 | fixup = search_exception_tables(regs->ip); |
25 | if (fixup) { | 25 | if (fixup) { |
26 | /* If fixup is less than 16, it means uaccess error */ | ||
27 | if (fixup->fixup < 16) { | ||
28 | current_thread_info()->uaccess_err = -EFAULT; | ||
29 | regs->ip += fixup->fixup; | ||
30 | return 1; | ||
31 | } | ||
26 | regs->ip = fixup->fixup; | 32 | regs->ip = fixup->fixup; |
27 | return 1; | 33 | return 1; |
28 | } | 34 | } |
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index c76ef1d701c9..a03b7279efa0 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c | |||
@@ -1,73 +1,79 @@ | |||
1 | /* | 1 | /* |
2 | * Copyright (C) 1995 Linus Torvalds | 2 | * Copyright (C) 1995 Linus Torvalds |
3 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | 3 | * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. |
4 | * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar | ||
4 | */ | 5 | */ |
5 | |||
6 | #include <linux/signal.h> | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/errno.h> | ||
10 | #include <linux/string.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/ptrace.h> | ||
13 | #include <linux/mmiotrace.h> | ||
14 | #include <linux/mman.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/interrupt.h> | 6 | #include <linux/interrupt.h> |
18 | #include <linux/init.h> | 7 | #include <linux/mmiotrace.h> |
19 | #include <linux/tty.h> | 8 | #include <linux/bootmem.h> |
20 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
21 | #include <linux/compiler.h> | 9 | #include <linux/compiler.h> |
22 | #include <linux/highmem.h> | 10 | #include <linux/highmem.h> |
23 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
24 | #include <linux/vmalloc.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/kprobes.h> | 11 | #include <linux/kprobes.h> |
27 | #include <linux/uaccess.h> | 12 | #include <linux/uaccess.h> |
13 | #include <linux/vmalloc.h> | ||
14 | #include <linux/vt_kern.h> | ||
15 | #include <linux/signal.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/ptrace.h> | ||
18 | #include <linux/string.h> | ||
19 | #include <linux/module.h> | ||
28 | #include <linux/kdebug.h> | 20 | #include <linux/kdebug.h> |
21 | #include <linux/errno.h> | ||
22 | #include <linux/magic.h> | ||
23 | #include <linux/sched.h> | ||
24 | #include <linux/types.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/mman.h> | ||
27 | #include <linux/tty.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/mm.h> | ||
30 | |||
31 | #include <asm-generic/sections.h> | ||
29 | 32 | ||
30 | #include <asm/system.h> | ||
31 | #include <asm/desc.h> | ||
32 | #include <asm/segment.h> | ||
33 | #include <asm/pgalloc.h> | ||
34 | #include <asm/smp.h> | ||
35 | #include <asm/tlbflush.h> | 33 | #include <asm/tlbflush.h> |
34 | #include <asm/pgalloc.h> | ||
35 | #include <asm/segment.h> | ||
36 | #include <asm/system.h> | ||
36 | #include <asm/proto.h> | 37 | #include <asm/proto.h> |
37 | #include <asm-generic/sections.h> | ||
38 | #include <asm/traps.h> | 38 | #include <asm/traps.h> |
39 | #include <asm/desc.h> | ||
39 | 40 | ||
40 | /* | 41 | /* |
41 | * Page fault error code bits | 42 | * Page fault error code bits: |
42 | * bit 0 == 0 means no page found, 1 means protection fault | 43 | * |
43 | * bit 1 == 0 means read, 1 means write | 44 | * bit 0 == 0: no page found 1: protection fault |
44 | * bit 2 == 0 means kernel, 1 means user-mode | 45 | * bit 1 == 0: read access 1: write access |
45 | * bit 3 == 1 means use of reserved bit detected | 46 | * bit 2 == 0: kernel-mode access 1: user-mode access |
46 | * bit 4 == 1 means fault was an instruction fetch | 47 | * bit 3 == 1: use of reserved bit detected |
48 | * bit 4 == 1: fault was an instruction fetch | ||
47 | */ | 49 | */ |
48 | #define PF_PROT (1<<0) | 50 | enum x86_pf_error_code { |
49 | #define PF_WRITE (1<<1) | 51 | |
50 | #define PF_USER (1<<2) | 52 | PF_PROT = 1 << 0, |
51 | #define PF_RSVD (1<<3) | 53 | PF_WRITE = 1 << 1, |
52 | #define PF_INSTR (1<<4) | 54 | PF_USER = 1 << 2, |
55 | PF_RSVD = 1 << 3, | ||
56 | PF_INSTR = 1 << 4, | ||
57 | }; | ||
53 | 58 | ||
59 | /* | ||
60 | * Returns 0 if mmiotrace is disabled, or if the fault is not | ||
61 | * handled by mmiotrace: | ||
62 | */ | ||
54 | static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) | 63 | static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) |
55 | { | 64 | { |
56 | #ifdef CONFIG_MMIOTRACE | ||
57 | if (unlikely(is_kmmio_active())) | 65 | if (unlikely(is_kmmio_active())) |
58 | if (kmmio_handler(regs, addr) == 1) | 66 | if (kmmio_handler(regs, addr) == 1) |
59 | return -1; | 67 | return -1; |
60 | #endif | ||
61 | return 0; | 68 | return 0; |
62 | } | 69 | } |
63 | 70 | ||
64 | static inline int notify_page_fault(struct pt_regs *regs) | 71 | static inline int notify_page_fault(struct pt_regs *regs) |
65 | { | 72 | { |
66 | #ifdef CONFIG_KPROBES | ||
67 | int ret = 0; | 73 | int ret = 0; |
68 | 74 | ||
69 | /* kprobe_running() needs smp_processor_id() */ | 75 | /* kprobe_running() needs smp_processor_id() */ |
70 | if (!user_mode_vm(regs)) { | 76 | if (kprobes_built_in() && !user_mode_vm(regs)) { |
71 | preempt_disable(); | 77 | preempt_disable(); |
72 | if (kprobe_running() && kprobe_fault_handler(regs, 14)) | 78 | if (kprobe_running() && kprobe_fault_handler(regs, 14)) |
73 | ret = 1; | 79 | ret = 1; |
@@ -75,29 +81,76 @@ static inline int notify_page_fault(struct pt_regs *regs) | |||
75 | } | 81 | } |
76 | 82 | ||
77 | return ret; | 83 | return ret; |
78 | #else | ||
79 | return 0; | ||
80 | #endif | ||
81 | } | 84 | } |
82 | 85 | ||
83 | /* | 86 | /* |
84 | * X86_32 | 87 | * Prefetch quirks: |
85 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 88 | * |
86 | * Check that here and ignore it. | 89 | * 32-bit mode: |
90 | * | ||
91 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
92 | * Check that here and ignore it. | ||
93 | * | ||
94 | * 64-bit mode: | ||
87 | * | 95 | * |
88 | * X86_64 | 96 | * Sometimes the CPU reports invalid exceptions on prefetch. |
89 | * Sometimes the CPU reports invalid exceptions on prefetch. | 97 | * Check that here and ignore it. |
90 | * Check that here and ignore it. | ||
91 | * | 98 | * |
92 | * Opcode checker based on code by Richard Brunner | 99 | * Opcode checker based on code by Richard Brunner. |
93 | */ | 100 | */ |
94 | static int is_prefetch(struct pt_regs *regs, unsigned long addr, | 101 | static inline int |
95 | unsigned long error_code) | 102 | check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, |
103 | unsigned char opcode, int *prefetch) | ||
96 | { | 104 | { |
105 | unsigned char instr_hi = opcode & 0xf0; | ||
106 | unsigned char instr_lo = opcode & 0x0f; | ||
107 | |||
108 | switch (instr_hi) { | ||
109 | case 0x20: | ||
110 | case 0x30: | ||
111 | /* | ||
112 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | ||
113 | * In X86_64 long mode, the CPU will signal invalid | ||
114 | * opcode if some of these prefixes are present so | ||
115 | * X86_64 will never get here anyway | ||
116 | */ | ||
117 | return ((instr_lo & 7) == 0x6); | ||
118 | #ifdef CONFIG_X86_64 | ||
119 | case 0x40: | ||
120 | /* | ||
121 | * In AMD64 long mode 0x40..0x4F are valid REX prefixes | ||
122 | * Need to figure out under what instruction mode the | ||
123 | * instruction was issued. Could check the LDT for lm, | ||
124 | * but for now it's good enough to assume that long | ||
125 | * mode only uses well known segments or kernel. | ||
126 | */ | ||
127 | return (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
128 | #endif | ||
129 | case 0x60: | ||
130 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
131 | return (instr_lo & 0xC) == 0x4; | ||
132 | case 0xF0: | ||
133 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | ||
134 | return !instr_lo || (instr_lo>>1) == 1; | ||
135 | case 0x00: | ||
136 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
137 | if (probe_kernel_address(instr, opcode)) | ||
138 | return 0; | ||
139 | |||
140 | *prefetch = (instr_lo == 0xF) && | ||
141 | (opcode == 0x0D || opcode == 0x18); | ||
142 | return 0; | ||
143 | default: | ||
144 | return 0; | ||
145 | } | ||
146 | } | ||
147 | |||
148 | static int | ||
149 | is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) | ||
150 | { | ||
151 | unsigned char *max_instr; | ||
97 | unsigned char *instr; | 152 | unsigned char *instr; |
98 | int scan_more = 1; | ||
99 | int prefetch = 0; | 153 | int prefetch = 0; |
100 | unsigned char *max_instr; | ||
101 | 154 | ||
102 | /* | 155 | /* |
103 | * If it was a exec (instruction fetch) fault on NX page, then | 156 | * If it was a exec (instruction fetch) fault on NX page, then |
@@ -106,106 +159,170 @@ static int is_prefetch(struct pt_regs *regs, unsigned long addr, | |||
106 | if (error_code & PF_INSTR) | 159 | if (error_code & PF_INSTR) |
107 | return 0; | 160 | return 0; |
108 | 161 | ||
109 | instr = (unsigned char *)convert_ip_to_linear(current, regs); | 162 | instr = (void *)convert_ip_to_linear(current, regs); |
110 | max_instr = instr + 15; | 163 | max_instr = instr + 15; |
111 | 164 | ||
112 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | 165 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) |
113 | return 0; | 166 | return 0; |
114 | 167 | ||
115 | while (scan_more && instr < max_instr) { | 168 | while (instr < max_instr) { |
116 | unsigned char opcode; | 169 | unsigned char opcode; |
117 | unsigned char instr_hi; | ||
118 | unsigned char instr_lo; | ||
119 | 170 | ||
120 | if (probe_kernel_address(instr, opcode)) | 171 | if (probe_kernel_address(instr, opcode)) |
121 | break; | 172 | break; |
122 | 173 | ||
123 | instr_hi = opcode & 0xf0; | ||
124 | instr_lo = opcode & 0x0f; | ||
125 | instr++; | 174 | instr++; |
126 | 175 | ||
127 | switch (instr_hi) { | 176 | if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) |
128 | case 0x20: | ||
129 | case 0x30: | ||
130 | /* | ||
131 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | ||
132 | * In X86_64 long mode, the CPU will signal invalid | ||
133 | * opcode if some of these prefixes are present so | ||
134 | * X86_64 will never get here anyway | ||
135 | */ | ||
136 | scan_more = ((instr_lo & 7) == 0x6); | ||
137 | break; | 177 | break; |
138 | #ifdef CONFIG_X86_64 | ||
139 | case 0x40: | ||
140 | /* | ||
141 | * In AMD64 long mode 0x40..0x4F are valid REX prefixes | ||
142 | * Need to figure out under what instruction mode the | ||
143 | * instruction was issued. Could check the LDT for lm, | ||
144 | * but for now it's good enough to assume that long | ||
145 | * mode only uses well known segments or kernel. | ||
146 | */ | ||
147 | scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
148 | break; | ||
149 | #endif | ||
150 | case 0x60: | ||
151 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
152 | scan_more = (instr_lo & 0xC) == 0x4; | ||
153 | break; | ||
154 | case 0xF0: | ||
155 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | ||
156 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
157 | break; | ||
158 | case 0x00: | ||
159 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
160 | scan_more = 0; | ||
161 | |||
162 | if (probe_kernel_address(instr, opcode)) | ||
163 | break; | ||
164 | prefetch = (instr_lo == 0xF) && | ||
165 | (opcode == 0x0D || opcode == 0x18); | ||
166 | break; | ||
167 | default: | ||
168 | scan_more = 0; | ||
169 | break; | ||
170 | } | ||
171 | } | 178 | } |
172 | return prefetch; | 179 | return prefetch; |
173 | } | 180 | } |
174 | 181 | ||
175 | static void force_sig_info_fault(int si_signo, int si_code, | 182 | static void |
176 | unsigned long address, struct task_struct *tsk) | 183 | force_sig_info_fault(int si_signo, int si_code, unsigned long address, |
184 | struct task_struct *tsk) | ||
177 | { | 185 | { |
178 | siginfo_t info; | 186 | siginfo_t info; |
179 | 187 | ||
180 | info.si_signo = si_signo; | 188 | info.si_signo = si_signo; |
181 | info.si_errno = 0; | 189 | info.si_errno = 0; |
182 | info.si_code = si_code; | 190 | info.si_code = si_code; |
183 | info.si_addr = (void __user *)address; | 191 | info.si_addr = (void __user *)address; |
192 | |||
184 | force_sig_info(si_signo, &info, tsk); | 193 | force_sig_info(si_signo, &info, tsk); |
185 | } | 194 | } |
186 | 195 | ||
187 | #ifdef CONFIG_X86_64 | 196 | DEFINE_SPINLOCK(pgd_lock); |
188 | static int bad_address(void *p) | 197 | LIST_HEAD(pgd_list); |
198 | |||
199 | #ifdef CONFIG_X86_32 | ||
200 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
189 | { | 201 | { |
190 | unsigned long dummy; | 202 | unsigned index = pgd_index(address); |
191 | return probe_kernel_address((unsigned long *)p, dummy); | 203 | pgd_t *pgd_k; |
204 | pud_t *pud, *pud_k; | ||
205 | pmd_t *pmd, *pmd_k; | ||
206 | |||
207 | pgd += index; | ||
208 | pgd_k = init_mm.pgd + index; | ||
209 | |||
210 | if (!pgd_present(*pgd_k)) | ||
211 | return NULL; | ||
212 | |||
213 | /* | ||
214 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
215 | * and redundant with the set_pmd() on non-PAE. As would | ||
216 | * set_pud. | ||
217 | */ | ||
218 | pud = pud_offset(pgd, address); | ||
219 | pud_k = pud_offset(pgd_k, address); | ||
220 | if (!pud_present(*pud_k)) | ||
221 | return NULL; | ||
222 | |||
223 | pmd = pmd_offset(pud, address); | ||
224 | pmd_k = pmd_offset(pud_k, address); | ||
225 | if (!pmd_present(*pmd_k)) | ||
226 | return NULL; | ||
227 | |||
228 | if (!pmd_present(*pmd)) { | ||
229 | set_pmd(pmd, *pmd_k); | ||
230 | arch_flush_lazy_mmu_mode(); | ||
231 | } else { | ||
232 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
233 | } | ||
234 | |||
235 | return pmd_k; | ||
236 | } | ||
237 | |||
238 | void vmalloc_sync_all(void) | ||
239 | { | ||
240 | unsigned long address; | ||
241 | |||
242 | if (SHARED_KERNEL_PMD) | ||
243 | return; | ||
244 | |||
245 | for (address = VMALLOC_START & PMD_MASK; | ||
246 | address >= TASK_SIZE && address < FIXADDR_TOP; | ||
247 | address += PMD_SIZE) { | ||
248 | |||
249 | unsigned long flags; | ||
250 | struct page *page; | ||
251 | |||
252 | spin_lock_irqsave(&pgd_lock, flags); | ||
253 | list_for_each_entry(page, &pgd_list, lru) { | ||
254 | if (!vmalloc_sync_one(page_address(page), address)) | ||
255 | break; | ||
256 | } | ||
257 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
258 | } | ||
259 | } | ||
260 | |||
261 | /* | ||
262 | * 32-bit: | ||
263 | * | ||
264 | * Handle a fault on the vmalloc or module mapping area | ||
265 | */ | ||
266 | static noinline int vmalloc_fault(unsigned long address) | ||
267 | { | ||
268 | unsigned long pgd_paddr; | ||
269 | pmd_t *pmd_k; | ||
270 | pte_t *pte_k; | ||
271 | |||
272 | /* Make sure we are in vmalloc area: */ | ||
273 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | ||
274 | return -1; | ||
275 | |||
276 | /* | ||
277 | * Synchronize this task's top level page-table | ||
278 | * with the 'reference' page table. | ||
279 | * | ||
280 | * Do _not_ use "current" here. We might be inside | ||
281 | * an interrupt in the middle of a task switch.. | ||
282 | */ | ||
283 | pgd_paddr = read_cr3(); | ||
284 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
285 | if (!pmd_k) | ||
286 | return -1; | ||
287 | |||
288 | pte_k = pte_offset_kernel(pmd_k, address); | ||
289 | if (!pte_present(*pte_k)) | ||
290 | return -1; | ||
291 | |||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
297 | */ | ||
298 | static inline void | ||
299 | check_v8086_mode(struct pt_regs *regs, unsigned long address, | ||
300 | struct task_struct *tsk) | ||
301 | { | ||
302 | unsigned long bit; | ||
303 | |||
304 | if (!v8086_mode(regs)) | ||
305 | return; | ||
306 | |||
307 | bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
308 | if (bit < 32) | ||
309 | tsk->thread.screen_bitmap |= 1 << bit; | ||
192 | } | 310 | } |
193 | #endif | ||
194 | 311 | ||
195 | static void dump_pagetable(unsigned long address) | 312 | static void dump_pagetable(unsigned long address) |
196 | { | 313 | { |
197 | #ifdef CONFIG_X86_32 | ||
198 | __typeof__(pte_val(__pte(0))) page; | 314 | __typeof__(pte_val(__pte(0))) page; |
199 | 315 | ||
200 | page = read_cr3(); | 316 | page = read_cr3(); |
201 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | 317 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; |
318 | |||
202 | #ifdef CONFIG_X86_PAE | 319 | #ifdef CONFIG_X86_PAE |
203 | printk("*pdpt = %016Lx ", page); | 320 | printk("*pdpt = %016Lx ", page); |
204 | if ((page >> PAGE_SHIFT) < max_low_pfn | 321 | if ((page >> PAGE_SHIFT) < max_low_pfn |
205 | && page & _PAGE_PRESENT) { | 322 | && page & _PAGE_PRESENT) { |
206 | page &= PAGE_MASK; | 323 | page &= PAGE_MASK; |
207 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | 324 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) |
208 | & (PTRS_PER_PMD - 1)]; | 325 | & (PTRS_PER_PMD - 1)]; |
209 | printk(KERN_CONT "*pde = %016Lx ", page); | 326 | printk(KERN_CONT "*pde = %016Lx ", page); |
210 | page &= ~_PAGE_NX; | 327 | page &= ~_PAGE_NX; |
211 | } | 328 | } |
@@ -217,19 +334,145 @@ static void dump_pagetable(unsigned long address) | |||
217 | * We must not directly access the pte in the highpte | 334 | * We must not directly access the pte in the highpte |
218 | * case if the page table is located in highmem. | 335 | * case if the page table is located in highmem. |
219 | * And let's rather not kmap-atomic the pte, just in case | 336 | * And let's rather not kmap-atomic the pte, just in case |
220 | * it's allocated already. | 337 | * it's allocated already: |
221 | */ | 338 | */ |
222 | if ((page >> PAGE_SHIFT) < max_low_pfn | 339 | if ((page >> PAGE_SHIFT) < max_low_pfn |
223 | && (page & _PAGE_PRESENT) | 340 | && (page & _PAGE_PRESENT) |
224 | && !(page & _PAGE_PSE)) { | 341 | && !(page & _PAGE_PSE)) { |
342 | |||
225 | page &= PAGE_MASK; | 343 | page &= PAGE_MASK; |
226 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | 344 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) |
227 | & (PTRS_PER_PTE - 1)]; | 345 | & (PTRS_PER_PTE - 1)]; |
228 | printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); | 346 | printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); |
229 | } | 347 | } |
230 | 348 | ||
231 | printk("\n"); | 349 | printk("\n"); |
232 | #else /* CONFIG_X86_64 */ | 350 | } |
351 | |||
352 | #else /* CONFIG_X86_64: */ | ||
353 | |||
354 | void vmalloc_sync_all(void) | ||
355 | { | ||
356 | unsigned long address; | ||
357 | |||
358 | for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; | ||
359 | address += PGDIR_SIZE) { | ||
360 | |||
361 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
362 | unsigned long flags; | ||
363 | struct page *page; | ||
364 | |||
365 | if (pgd_none(*pgd_ref)) | ||
366 | continue; | ||
367 | |||
368 | spin_lock_irqsave(&pgd_lock, flags); | ||
369 | list_for_each_entry(page, &pgd_list, lru) { | ||
370 | pgd_t *pgd; | ||
371 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
372 | if (pgd_none(*pgd)) | ||
373 | set_pgd(pgd, *pgd_ref); | ||
374 | else | ||
375 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
376 | } | ||
377 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
378 | } | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * 64-bit: | ||
383 | * | ||
384 | * Handle a fault on the vmalloc area | ||
385 | * | ||
386 | * This assumes no large pages in there. | ||
387 | */ | ||
388 | static noinline int vmalloc_fault(unsigned long address) | ||
389 | { | ||
390 | pgd_t *pgd, *pgd_ref; | ||
391 | pud_t *pud, *pud_ref; | ||
392 | pmd_t *pmd, *pmd_ref; | ||
393 | pte_t *pte, *pte_ref; | ||
394 | |||
395 | /* Make sure we are in vmalloc area: */ | ||
396 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | ||
397 | return -1; | ||
398 | |||
399 | /* | ||
400 | * Copy kernel mappings over when needed. This can also | ||
401 | * happen within a race in page table update. In the later | ||
402 | * case just flush: | ||
403 | */ | ||
404 | pgd = pgd_offset(current->active_mm, address); | ||
405 | pgd_ref = pgd_offset_k(address); | ||
406 | if (pgd_none(*pgd_ref)) | ||
407 | return -1; | ||
408 | |||
409 | if (pgd_none(*pgd)) | ||
410 | set_pgd(pgd, *pgd_ref); | ||
411 | else | ||
412 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
413 | |||
414 | /* | ||
415 | * Below here mismatches are bugs because these lower tables | ||
416 | * are shared: | ||
417 | */ | ||
418 | |||
419 | pud = pud_offset(pgd, address); | ||
420 | pud_ref = pud_offset(pgd_ref, address); | ||
421 | if (pud_none(*pud_ref)) | ||
422 | return -1; | ||
423 | |||
424 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
425 | BUG(); | ||
426 | |||
427 | pmd = pmd_offset(pud, address); | ||
428 | pmd_ref = pmd_offset(pud_ref, address); | ||
429 | if (pmd_none(*pmd_ref)) | ||
430 | return -1; | ||
431 | |||
432 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
433 | BUG(); | ||
434 | |||
435 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
436 | if (!pte_present(*pte_ref)) | ||
437 | return -1; | ||
438 | |||
439 | pte = pte_offset_kernel(pmd, address); | ||
440 | |||
441 | /* | ||
442 | * Don't use pte_page here, because the mappings can point | ||
443 | * outside mem_map, and the NUMA hash lookup cannot handle | ||
444 | * that: | ||
445 | */ | ||
446 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
447 | BUG(); | ||
448 | |||
449 | return 0; | ||
450 | } | ||
451 | |||
452 | static const char errata93_warning[] = | ||
453 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
454 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
455 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
456 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
457 | |||
458 | /* | ||
459 | * No vm86 mode in 64-bit mode: | ||
460 | */ | ||
461 | static inline void | ||
462 | check_v8086_mode(struct pt_regs *regs, unsigned long address, | ||
463 | struct task_struct *tsk) | ||
464 | { | ||
465 | } | ||
466 | |||
467 | static int bad_address(void *p) | ||
468 | { | ||
469 | unsigned long dummy; | ||
470 | |||
471 | return probe_kernel_address((unsigned long *)p, dummy); | ||
472 | } | ||
473 | |||
474 | static void dump_pagetable(unsigned long address) | ||
475 | { | ||
233 | pgd_t *pgd; | 476 | pgd_t *pgd; |
234 | pud_t *pud; | 477 | pud_t *pud; |
235 | pmd_t *pmd; | 478 | pmd_t *pmd; |
@@ -238,102 +481,77 @@ static void dump_pagetable(unsigned long address) | |||
238 | pgd = (pgd_t *)read_cr3(); | 481 | pgd = (pgd_t *)read_cr3(); |
239 | 482 | ||
240 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | 483 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); |
484 | |||
241 | pgd += pgd_index(address); | 485 | pgd += pgd_index(address); |
242 | if (bad_address(pgd)) goto bad; | 486 | if (bad_address(pgd)) |
487 | goto bad; | ||
488 | |||
243 | printk("PGD %lx ", pgd_val(*pgd)); | 489 | printk("PGD %lx ", pgd_val(*pgd)); |
244 | if (!pgd_present(*pgd)) goto ret; | 490 | |
491 | if (!pgd_present(*pgd)) | ||
492 | goto out; | ||
245 | 493 | ||
246 | pud = pud_offset(pgd, address); | 494 | pud = pud_offset(pgd, address); |
247 | if (bad_address(pud)) goto bad; | 495 | if (bad_address(pud)) |
496 | goto bad; | ||
497 | |||
248 | printk("PUD %lx ", pud_val(*pud)); | 498 | printk("PUD %lx ", pud_val(*pud)); |
249 | if (!pud_present(*pud) || pud_large(*pud)) | 499 | if (!pud_present(*pud) || pud_large(*pud)) |
250 | goto ret; | 500 | goto out; |
251 | 501 | ||
252 | pmd = pmd_offset(pud, address); | 502 | pmd = pmd_offset(pud, address); |
253 | if (bad_address(pmd)) goto bad; | 503 | if (bad_address(pmd)) |
504 | goto bad; | ||
505 | |||
254 | printk("PMD %lx ", pmd_val(*pmd)); | 506 | printk("PMD %lx ", pmd_val(*pmd)); |
255 | if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; | 507 | if (!pmd_present(*pmd) || pmd_large(*pmd)) |
508 | goto out; | ||
256 | 509 | ||
257 | pte = pte_offset_kernel(pmd, address); | 510 | pte = pte_offset_kernel(pmd, address); |
258 | if (bad_address(pte)) goto bad; | 511 | if (bad_address(pte)) |
512 | goto bad; | ||
513 | |||
259 | printk("PTE %lx", pte_val(*pte)); | 514 | printk("PTE %lx", pte_val(*pte)); |
260 | ret: | 515 | out: |
261 | printk("\n"); | 516 | printk("\n"); |
262 | return; | 517 | return; |
263 | bad: | 518 | bad: |
264 | printk("BAD\n"); | 519 | printk("BAD\n"); |
265 | #endif | ||
266 | } | ||
267 | |||
268 | #ifdef CONFIG_X86_32 | ||
269 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
270 | { | ||
271 | unsigned index = pgd_index(address); | ||
272 | pgd_t *pgd_k; | ||
273 | pud_t *pud, *pud_k; | ||
274 | pmd_t *pmd, *pmd_k; | ||
275 | |||
276 | pgd += index; | ||
277 | pgd_k = init_mm.pgd + index; | ||
278 | |||
279 | if (!pgd_present(*pgd_k)) | ||
280 | return NULL; | ||
281 | |||
282 | /* | ||
283 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
284 | * and redundant with the set_pmd() on non-PAE. As would | ||
285 | * set_pud. | ||
286 | */ | ||
287 | |||
288 | pud = pud_offset(pgd, address); | ||
289 | pud_k = pud_offset(pgd_k, address); | ||
290 | if (!pud_present(*pud_k)) | ||
291 | return NULL; | ||
292 | |||
293 | pmd = pmd_offset(pud, address); | ||
294 | pmd_k = pmd_offset(pud_k, address); | ||
295 | if (!pmd_present(*pmd_k)) | ||
296 | return NULL; | ||
297 | if (!pmd_present(*pmd)) { | ||
298 | set_pmd(pmd, *pmd_k); | ||
299 | arch_flush_lazy_mmu_mode(); | ||
300 | } else | ||
301 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
302 | return pmd_k; | ||
303 | } | 520 | } |
304 | #endif | ||
305 | 521 | ||
306 | #ifdef CONFIG_X86_64 | 522 | #endif /* CONFIG_X86_64 */ |
307 | static const char errata93_warning[] = | ||
308 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
309 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
310 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
311 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
312 | #endif | ||
313 | 523 | ||
314 | /* Workaround for K8 erratum #93 & buggy BIOS. | 524 | /* |
315 | BIOS SMM functions are required to use a specific workaround | 525 | * Workaround for K8 erratum #93 & buggy BIOS. |
316 | to avoid corruption of the 64bit RIP register on C stepping K8. | 526 | * |
317 | A lot of BIOS that didn't get tested properly miss this. | 527 | * BIOS SMM functions are required to use a specific workaround |
318 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | 528 | * to avoid corruption of the 64bit RIP register on C stepping K8. |
319 | Try to work around it here. | 529 | * |
320 | Note we only handle faults in kernel here. | 530 | * A lot of BIOS that didn't get tested properly miss this. |
321 | Does nothing for X86_32 | 531 | * |
532 | * The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
533 | * Try to work around it here. | ||
534 | * | ||
535 | * Note we only handle faults in kernel here. | ||
536 | * Does nothing on 32-bit. | ||
322 | */ | 537 | */ |
323 | static int is_errata93(struct pt_regs *regs, unsigned long address) | 538 | static int is_errata93(struct pt_regs *regs, unsigned long address) |
324 | { | 539 | { |
325 | #ifdef CONFIG_X86_64 | 540 | #ifdef CONFIG_X86_64 |
326 | static int warned; | 541 | static int once; |
542 | |||
327 | if (address != regs->ip) | 543 | if (address != regs->ip) |
328 | return 0; | 544 | return 0; |
545 | |||
329 | if ((address >> 32) != 0) | 546 | if ((address >> 32) != 0) |
330 | return 0; | 547 | return 0; |
548 | |||
331 | address |= 0xffffffffUL << 32; | 549 | address |= 0xffffffffUL << 32; |
332 | if ((address >= (u64)_stext && address <= (u64)_etext) || | 550 | if ((address >= (u64)_stext && address <= (u64)_etext) || |
333 | (address >= MODULES_VADDR && address <= MODULES_END)) { | 551 | (address >= MODULES_VADDR && address <= MODULES_END)) { |
334 | if (!warned) { | 552 | if (!once) { |
335 | printk(errata93_warning); | 553 | printk(errata93_warning); |
336 | warned = 1; | 554 | once = 1; |
337 | } | 555 | } |
338 | regs->ip = address; | 556 | regs->ip = address; |
339 | return 1; | 557 | return 1; |
@@ -343,16 +561,17 @@ static int is_errata93(struct pt_regs *regs, unsigned long address) | |||
343 | } | 561 | } |
344 | 562 | ||
345 | /* | 563 | /* |
346 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal | 564 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps |
347 | * addresses >4GB. We catch this in the page fault handler because these | 565 | * to illegal addresses >4GB. |
348 | * addresses are not reachable. Just detect this case and return. Any code | 566 | * |
567 | * We catch this in the page fault handler because these addresses | ||
568 | * are not reachable. Just detect this case and return. Any code | ||
349 | * segment in LDT is compatibility mode. | 569 | * segment in LDT is compatibility mode. |
350 | */ | 570 | */ |
351 | static int is_errata100(struct pt_regs *regs, unsigned long address) | 571 | static int is_errata100(struct pt_regs *regs, unsigned long address) |
352 | { | 572 | { |
353 | #ifdef CONFIG_X86_64 | 573 | #ifdef CONFIG_X86_64 |
354 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | 574 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) |
355 | (address >> 32)) | ||
356 | return 1; | 575 | return 1; |
357 | #endif | 576 | #endif |
358 | return 0; | 577 | return 0; |
@@ -362,8 +581,9 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | |||
362 | { | 581 | { |
363 | #ifdef CONFIG_X86_F00F_BUG | 582 | #ifdef CONFIG_X86_F00F_BUG |
364 | unsigned long nr; | 583 | unsigned long nr; |
584 | |||
365 | /* | 585 | /* |
366 | * Pentium F0 0F C7 C8 bug workaround. | 586 | * Pentium F0 0F C7 C8 bug workaround: |
367 | */ | 587 | */ |
368 | if (boot_cpu_data.f00f_bug) { | 588 | if (boot_cpu_data.f00f_bug) { |
369 | nr = (address - idt_descr.address) >> 3; | 589 | nr = (address - idt_descr.address) >> 3; |
@@ -377,62 +597,277 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | |||
377 | return 0; | 597 | return 0; |
378 | } | 598 | } |
379 | 599 | ||
380 | static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, | 600 | static const char nx_warning[] = KERN_CRIT |
381 | unsigned long address) | 601 | "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; |
602 | |||
603 | static void | ||
604 | show_fault_oops(struct pt_regs *regs, unsigned long error_code, | ||
605 | unsigned long address) | ||
382 | { | 606 | { |
383 | #ifdef CONFIG_X86_32 | ||
384 | if (!oops_may_print()) | 607 | if (!oops_may_print()) |
385 | return; | 608 | return; |
386 | #endif | ||
387 | 609 | ||
388 | #ifdef CONFIG_X86_PAE | ||
389 | if (error_code & PF_INSTR) { | 610 | if (error_code & PF_INSTR) { |
390 | unsigned int level; | 611 | unsigned int level; |
612 | |||
391 | pte_t *pte = lookup_address(address, &level); | 613 | pte_t *pte = lookup_address(address, &level); |
392 | 614 | ||
393 | if (pte && pte_present(*pte) && !pte_exec(*pte)) | 615 | if (pte && pte_present(*pte) && !pte_exec(*pte)) |
394 | printk(KERN_CRIT "kernel tried to execute " | 616 | printk(nx_warning, current_uid()); |
395 | "NX-protected page - exploit attempt? " | ||
396 | "(uid: %d)\n", current_uid()); | ||
397 | } | 617 | } |
398 | #endif | ||
399 | 618 | ||
400 | printk(KERN_ALERT "BUG: unable to handle kernel "); | 619 | printk(KERN_ALERT "BUG: unable to handle kernel "); |
401 | if (address < PAGE_SIZE) | 620 | if (address < PAGE_SIZE) |
402 | printk(KERN_CONT "NULL pointer dereference"); | 621 | printk(KERN_CONT "NULL pointer dereference"); |
403 | else | 622 | else |
404 | printk(KERN_CONT "paging request"); | 623 | printk(KERN_CONT "paging request"); |
624 | |||
405 | printk(KERN_CONT " at %p\n", (void *) address); | 625 | printk(KERN_CONT " at %p\n", (void *) address); |
406 | printk(KERN_ALERT "IP:"); | 626 | printk(KERN_ALERT "IP:"); |
407 | printk_address(regs->ip, 1); | 627 | printk_address(regs->ip, 1); |
628 | |||
408 | dump_pagetable(address); | 629 | dump_pagetable(address); |
409 | } | 630 | } |
410 | 631 | ||
411 | #ifdef CONFIG_X86_64 | 632 | static noinline void |
412 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | 633 | pgtable_bad(struct pt_regs *regs, unsigned long error_code, |
413 | unsigned long error_code) | 634 | unsigned long address) |
414 | { | 635 | { |
415 | unsigned long flags = oops_begin(); | ||
416 | int sig = SIGKILL; | ||
417 | struct task_struct *tsk; | 636 | struct task_struct *tsk; |
637 | unsigned long flags; | ||
638 | int sig; | ||
639 | |||
640 | flags = oops_begin(); | ||
641 | tsk = current; | ||
642 | sig = SIGKILL; | ||
418 | 643 | ||
419 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | 644 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", |
420 | current->comm, address); | 645 | tsk->comm, address); |
421 | dump_pagetable(address); | 646 | dump_pagetable(address); |
422 | tsk = current; | 647 | |
423 | tsk->thread.cr2 = address; | 648 | tsk->thread.cr2 = address; |
424 | tsk->thread.trap_no = 14; | 649 | tsk->thread.trap_no = 14; |
425 | tsk->thread.error_code = error_code; | 650 | tsk->thread.error_code = error_code; |
651 | |||
426 | if (__die("Bad pagetable", regs, error_code)) | 652 | if (__die("Bad pagetable", regs, error_code)) |
427 | sig = 0; | 653 | sig = 0; |
654 | |||
428 | oops_end(flags, regs, sig); | 655 | oops_end(flags, regs, sig); |
429 | } | 656 | } |
430 | #endif | 657 | |
658 | static noinline void | ||
659 | no_context(struct pt_regs *regs, unsigned long error_code, | ||
660 | unsigned long address) | ||
661 | { | ||
662 | struct task_struct *tsk = current; | ||
663 | unsigned long *stackend; | ||
664 | unsigned long flags; | ||
665 | int sig; | ||
666 | |||
667 | /* Are we prepared to handle this kernel fault? */ | ||
668 | if (fixup_exception(regs)) | ||
669 | return; | ||
670 | |||
671 | /* | ||
672 | * 32-bit: | ||
673 | * | ||
674 | * Valid to do another page fault here, because if this fault | ||
675 | * had been triggered by is_prefetch fixup_exception would have | ||
676 | * handled it. | ||
677 | * | ||
678 | * 64-bit: | ||
679 | * | ||
680 | * Hall of shame of CPU/BIOS bugs. | ||
681 | */ | ||
682 | if (is_prefetch(regs, error_code, address)) | ||
683 | return; | ||
684 | |||
685 | if (is_errata93(regs, address)) | ||
686 | return; | ||
687 | |||
688 | /* | ||
689 | * Oops. The kernel tried to access some bad page. We'll have to | ||
690 | * terminate things with extreme prejudice: | ||
691 | */ | ||
692 | flags = oops_begin(); | ||
693 | |||
694 | show_fault_oops(regs, error_code, address); | ||
695 | |||
696 | stackend = end_of_stack(tsk); | ||
697 | if (*stackend != STACK_END_MAGIC) | ||
698 | printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); | ||
699 | |||
700 | tsk->thread.cr2 = address; | ||
701 | tsk->thread.trap_no = 14; | ||
702 | tsk->thread.error_code = error_code; | ||
703 | |||
704 | sig = SIGKILL; | ||
705 | if (__die("Oops", regs, error_code)) | ||
706 | sig = 0; | ||
707 | |||
708 | /* Executive summary in case the body of the oops scrolled away */ | ||
709 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
710 | |||
711 | oops_end(flags, regs, sig); | ||
712 | } | ||
713 | |||
714 | /* | ||
715 | * Print out info about fatal segfaults, if the show_unhandled_signals | ||
716 | * sysctl is set: | ||
717 | */ | ||
718 | static inline void | ||
719 | show_signal_msg(struct pt_regs *regs, unsigned long error_code, | ||
720 | unsigned long address, struct task_struct *tsk) | ||
721 | { | ||
722 | if (!unhandled_signal(tsk, SIGSEGV)) | ||
723 | return; | ||
724 | |||
725 | if (!printk_ratelimit()) | ||
726 | return; | ||
727 | |||
728 | printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", | ||
729 | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | ||
730 | tsk->comm, task_pid_nr(tsk), address, | ||
731 | (void *)regs->ip, (void *)regs->sp, error_code); | ||
732 | |||
733 | print_vma_addr(KERN_CONT " in ", regs->ip); | ||
734 | |||
735 | printk(KERN_CONT "\n"); | ||
736 | } | ||
737 | |||
738 | static void | ||
739 | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | ||
740 | unsigned long address, int si_code) | ||
741 | { | ||
742 | struct task_struct *tsk = current; | ||
743 | |||
744 | /* User mode accesses just cause a SIGSEGV */ | ||
745 | if (error_code & PF_USER) { | ||
746 | /* | ||
747 | * It's possible to have interrupts off here: | ||
748 | */ | ||
749 | local_irq_enable(); | ||
750 | |||
751 | /* | ||
752 | * Valid to do another page fault here because this one came | ||
753 | * from user space: | ||
754 | */ | ||
755 | if (is_prefetch(regs, error_code, address)) | ||
756 | return; | ||
757 | |||
758 | if (is_errata100(regs, address)) | ||
759 | return; | ||
760 | |||
761 | if (unlikely(show_unhandled_signals)) | ||
762 | show_signal_msg(regs, error_code, address, tsk); | ||
763 | |||
764 | /* Kernel addresses are always protection faults: */ | ||
765 | tsk->thread.cr2 = address; | ||
766 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
767 | tsk->thread.trap_no = 14; | ||
768 | |||
769 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
770 | |||
771 | return; | ||
772 | } | ||
773 | |||
774 | if (is_f00f_bug(regs, address)) | ||
775 | return; | ||
776 | |||
777 | no_context(regs, error_code, address); | ||
778 | } | ||
779 | |||
780 | static noinline void | ||
781 | bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | ||
782 | unsigned long address) | ||
783 | { | ||
784 | __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); | ||
785 | } | ||
786 | |||
787 | static void | ||
788 | __bad_area(struct pt_regs *regs, unsigned long error_code, | ||
789 | unsigned long address, int si_code) | ||
790 | { | ||
791 | struct mm_struct *mm = current->mm; | ||
792 | |||
793 | /* | ||
794 | * Something tried to access memory that isn't in our memory map.. | ||
795 | * Fix it, but check if it's kernel or user first.. | ||
796 | */ | ||
797 | up_read(&mm->mmap_sem); | ||
798 | |||
799 | __bad_area_nosemaphore(regs, error_code, address, si_code); | ||
800 | } | ||
801 | |||
802 | static noinline void | ||
803 | bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) | ||
804 | { | ||
805 | __bad_area(regs, error_code, address, SEGV_MAPERR); | ||
806 | } | ||
807 | |||
808 | static noinline void | ||
809 | bad_area_access_error(struct pt_regs *regs, unsigned long error_code, | ||
810 | unsigned long address) | ||
811 | { | ||
812 | __bad_area(regs, error_code, address, SEGV_ACCERR); | ||
813 | } | ||
814 | |||
815 | /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ | ||
816 | static void | ||
817 | out_of_memory(struct pt_regs *regs, unsigned long error_code, | ||
818 | unsigned long address) | ||
819 | { | ||
820 | /* | ||
821 | * We ran out of memory, call the OOM killer, and return the userspace | ||
822 | * (which will retry the fault, or kill us if we got oom-killed): | ||
823 | */ | ||
824 | up_read(¤t->mm->mmap_sem); | ||
825 | |||
826 | pagefault_out_of_memory(); | ||
827 | } | ||
828 | |||
829 | static void | ||
830 | do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) | ||
831 | { | ||
832 | struct task_struct *tsk = current; | ||
833 | struct mm_struct *mm = tsk->mm; | ||
834 | |||
835 | up_read(&mm->mmap_sem); | ||
836 | |||
837 | /* Kernel mode? Handle exceptions or die: */ | ||
838 | if (!(error_code & PF_USER)) | ||
839 | no_context(regs, error_code, address); | ||
840 | |||
841 | /* User-space => ok to do another page fault: */ | ||
842 | if (is_prefetch(regs, error_code, address)) | ||
843 | return; | ||
844 | |||
845 | tsk->thread.cr2 = address; | ||
846 | tsk->thread.error_code = error_code; | ||
847 | tsk->thread.trap_no = 14; | ||
848 | |||
849 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
850 | } | ||
851 | |||
852 | static noinline void | ||
853 | mm_fault_error(struct pt_regs *regs, unsigned long error_code, | ||
854 | unsigned long address, unsigned int fault) | ||
855 | { | ||
856 | if (fault & VM_FAULT_OOM) { | ||
857 | out_of_memory(regs, error_code, address); | ||
858 | } else { | ||
859 | if (fault & VM_FAULT_SIGBUS) | ||
860 | do_sigbus(regs, error_code, address); | ||
861 | else | ||
862 | BUG(); | ||
863 | } | ||
864 | } | ||
431 | 865 | ||
432 | static int spurious_fault_check(unsigned long error_code, pte_t *pte) | 866 | static int spurious_fault_check(unsigned long error_code, pte_t *pte) |
433 | { | 867 | { |
434 | if ((error_code & PF_WRITE) && !pte_write(*pte)) | 868 | if ((error_code & PF_WRITE) && !pte_write(*pte)) |
435 | return 0; | 869 | return 0; |
870 | |||
436 | if ((error_code & PF_INSTR) && !pte_exec(*pte)) | 871 | if ((error_code & PF_INSTR) && !pte_exec(*pte)) |
437 | return 0; | 872 | return 0; |
438 | 873 | ||
@@ -440,21 +875,25 @@ static int spurious_fault_check(unsigned long error_code, pte_t *pte) | |||
440 | } | 875 | } |
441 | 876 | ||
442 | /* | 877 | /* |
443 | * Handle a spurious fault caused by a stale TLB entry. This allows | 878 | * Handle a spurious fault caused by a stale TLB entry. |
444 | * us to lazily refresh the TLB when increasing the permissions of a | 879 | * |
445 | * kernel page (RO -> RW or NX -> X). Doing it eagerly is very | 880 | * This allows us to lazily refresh the TLB when increasing the |
446 | * expensive since that implies doing a full cross-processor TLB | 881 | * permissions of a kernel page (RO -> RW or NX -> X). Doing it |
447 | * flush, even if no stale TLB entries exist on other processors. | 882 | * eagerly is very expensive since that implies doing a full |
883 | * cross-processor TLB flush, even if no stale TLB entries exist | ||
884 | * on other processors. | ||
885 | * | ||
448 | * There are no security implications to leaving a stale TLB when | 886 | * There are no security implications to leaving a stale TLB when |
449 | * increasing the permissions on a page. | 887 | * increasing the permissions on a page. |
450 | */ | 888 | */ |
451 | static int spurious_fault(unsigned long address, | 889 | static noinline int |
452 | unsigned long error_code) | 890 | spurious_fault(unsigned long error_code, unsigned long address) |
453 | { | 891 | { |
454 | pgd_t *pgd; | 892 | pgd_t *pgd; |
455 | pud_t *pud; | 893 | pud_t *pud; |
456 | pmd_t *pmd; | 894 | pmd_t *pmd; |
457 | pte_t *pte; | 895 | pte_t *pte; |
896 | int ret; | ||
458 | 897 | ||
459 | /* Reserved-bit violation or user access to kernel space? */ | 898 | /* Reserved-bit violation or user access to kernel space? */ |
460 | if (error_code & (PF_USER | PF_RSVD)) | 899 | if (error_code & (PF_USER | PF_RSVD)) |
@@ -482,127 +921,71 @@ static int spurious_fault(unsigned long address, | |||
482 | if (!pte_present(*pte)) | 921 | if (!pte_present(*pte)) |
483 | return 0; | 922 | return 0; |
484 | 923 | ||
485 | return spurious_fault_check(error_code, pte); | 924 | ret = spurious_fault_check(error_code, pte); |
486 | } | 925 | if (!ret) |
487 | 926 | return 0; | |
488 | /* | ||
489 | * X86_32 | ||
490 | * Handle a fault on the vmalloc or module mapping area | ||
491 | * | ||
492 | * X86_64 | ||
493 | * Handle a fault on the vmalloc area | ||
494 | * | ||
495 | * This assumes no large pages in there. | ||
496 | */ | ||
497 | static int vmalloc_fault(unsigned long address) | ||
498 | { | ||
499 | #ifdef CONFIG_X86_32 | ||
500 | unsigned long pgd_paddr; | ||
501 | pmd_t *pmd_k; | ||
502 | pte_t *pte_k; | ||
503 | |||
504 | /* Make sure we are in vmalloc area */ | ||
505 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | ||
506 | return -1; | ||
507 | 927 | ||
508 | /* | 928 | /* |
509 | * Synchronize this task's top level page-table | 929 | * Make sure we have permissions in PMD. |
510 | * with the 'reference' page table. | 930 | * If not, then there's a bug in the page tables: |
511 | * | ||
512 | * Do _not_ use "current" here. We might be inside | ||
513 | * an interrupt in the middle of a task switch.. | ||
514 | */ | 931 | */ |
515 | pgd_paddr = read_cr3(); | 932 | ret = spurious_fault_check(error_code, (pte_t *) pmd); |
516 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | 933 | WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); |
517 | if (!pmd_k) | ||
518 | return -1; | ||
519 | pte_k = pte_offset_kernel(pmd_k, address); | ||
520 | if (!pte_present(*pte_k)) | ||
521 | return -1; | ||
522 | return 0; | ||
523 | #else | ||
524 | pgd_t *pgd, *pgd_ref; | ||
525 | pud_t *pud, *pud_ref; | ||
526 | pmd_t *pmd, *pmd_ref; | ||
527 | pte_t *pte, *pte_ref; | ||
528 | 934 | ||
529 | /* Make sure we are in vmalloc area */ | 935 | return ret; |
530 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 936 | } |
531 | return -1; | ||
532 | 937 | ||
533 | /* Copy kernel mappings over when needed. This can also | 938 | int show_unhandled_signals = 1; |
534 | happen within a race in page table update. In the later | ||
535 | case just flush. */ | ||
536 | 939 | ||
537 | pgd = pgd_offset(current->active_mm, address); | 940 | static inline int |
538 | pgd_ref = pgd_offset_k(address); | 941 | access_error(unsigned long error_code, int write, struct vm_area_struct *vma) |
539 | if (pgd_none(*pgd_ref)) | 942 | { |
540 | return -1; | 943 | if (write) { |
541 | if (pgd_none(*pgd)) | 944 | /* write, present and write, not present: */ |
542 | set_pgd(pgd, *pgd_ref); | 945 | if (unlikely(!(vma->vm_flags & VM_WRITE))) |
543 | else | 946 | return 1; |
544 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | 947 | return 0; |
948 | } | ||
545 | 949 | ||
546 | /* Below here mismatches are bugs because these lower tables | 950 | /* read, present: */ |
547 | are shared */ | 951 | if (unlikely(error_code & PF_PROT)) |
952 | return 1; | ||
953 | |||
954 | /* read, not present: */ | ||
955 | if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) | ||
956 | return 1; | ||
548 | 957 | ||
549 | pud = pud_offset(pgd, address); | ||
550 | pud_ref = pud_offset(pgd_ref, address); | ||
551 | if (pud_none(*pud_ref)) | ||
552 | return -1; | ||
553 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
554 | BUG(); | ||
555 | pmd = pmd_offset(pud, address); | ||
556 | pmd_ref = pmd_offset(pud_ref, address); | ||
557 | if (pmd_none(*pmd_ref)) | ||
558 | return -1; | ||
559 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
560 | BUG(); | ||
561 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
562 | if (!pte_present(*pte_ref)) | ||
563 | return -1; | ||
564 | pte = pte_offset_kernel(pmd, address); | ||
565 | /* Don't use pte_page here, because the mappings can point | ||
566 | outside mem_map, and the NUMA hash lookup cannot handle | ||
567 | that. */ | ||
568 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
569 | BUG(); | ||
570 | return 0; | 958 | return 0; |
571 | #endif | ||
572 | } | 959 | } |
573 | 960 | ||
574 | int show_unhandled_signals = 1; | 961 | static int fault_in_kernel_space(unsigned long address) |
962 | { | ||
963 | return address >= TASK_SIZE_MAX; | ||
964 | } | ||
575 | 965 | ||
576 | /* | 966 | /* |
577 | * This routine handles page faults. It determines the address, | 967 | * This routine handles page faults. It determines the address, |
578 | * and the problem, and then passes it off to one of the appropriate | 968 | * and the problem, and then passes it off to one of the appropriate |
579 | * routines. | 969 | * routines. |
580 | */ | 970 | */ |
581 | #ifdef CONFIG_X86_64 | 971 | dotraplinkage void __kprobes |
582 | asmlinkage | 972 | do_page_fault(struct pt_regs *regs, unsigned long error_code) |
583 | #endif | ||
584 | void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
585 | { | 973 | { |
586 | struct task_struct *tsk; | ||
587 | struct mm_struct *mm; | ||
588 | struct vm_area_struct *vma; | 974 | struct vm_area_struct *vma; |
975 | struct task_struct *tsk; | ||
589 | unsigned long address; | 976 | unsigned long address; |
590 | int write, si_code; | 977 | struct mm_struct *mm; |
978 | int write; | ||
591 | int fault; | 979 | int fault; |
592 | #ifdef CONFIG_X86_64 | ||
593 | unsigned long flags; | ||
594 | int sig; | ||
595 | #endif | ||
596 | 980 | ||
597 | tsk = current; | 981 | tsk = current; |
598 | mm = tsk->mm; | 982 | mm = tsk->mm; |
983 | |||
599 | prefetchw(&mm->mmap_sem); | 984 | prefetchw(&mm->mmap_sem); |
600 | 985 | ||
601 | /* get the address */ | 986 | /* Get the faulting address: */ |
602 | address = read_cr2(); | 987 | address = read_cr2(); |
603 | 988 | ||
604 | si_code = SEGV_MAPERR; | ||
605 | |||
606 | if (unlikely(kmmio_fault(regs, address))) | 989 | if (unlikely(kmmio_fault(regs, address))) |
607 | return; | 990 | return; |
608 | 991 | ||
@@ -619,319 +1002,147 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) | |||
619 | * (error_code & 4) == 0, and that the fault was not a | 1002 | * (error_code & 4) == 0, and that the fault was not a |
620 | * protection error (error_code & 9) == 0. | 1003 | * protection error (error_code & 9) == 0. |
621 | */ | 1004 | */ |
622 | #ifdef CONFIG_X86_32 | 1005 | if (unlikely(fault_in_kernel_space(address))) { |
623 | if (unlikely(address >= TASK_SIZE)) { | ||
624 | #else | ||
625 | if (unlikely(address >= TASK_SIZE64)) { | ||
626 | #endif | ||
627 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | 1006 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && |
628 | vmalloc_fault(address) >= 0) | 1007 | vmalloc_fault(address) >= 0) |
629 | return; | 1008 | return; |
630 | 1009 | ||
631 | /* Can handle a stale RO->RW TLB */ | 1010 | /* Can handle a stale RO->RW TLB: */ |
632 | if (spurious_fault(address, error_code)) | 1011 | if (spurious_fault(error_code, address)) |
633 | return; | 1012 | return; |
634 | 1013 | ||
635 | /* kprobes don't want to hook the spurious faults. */ | 1014 | /* kprobes don't want to hook the spurious faults: */ |
636 | if (notify_page_fault(regs)) | 1015 | if (notify_page_fault(regs)) |
637 | return; | 1016 | return; |
638 | /* | 1017 | /* |
639 | * Don't take the mm semaphore here. If we fixup a prefetch | 1018 | * Don't take the mm semaphore here. If we fixup a prefetch |
640 | * fault we could otherwise deadlock. | 1019 | * fault we could otherwise deadlock: |
641 | */ | 1020 | */ |
642 | goto bad_area_nosemaphore; | 1021 | bad_area_nosemaphore(regs, error_code, address); |
643 | } | ||
644 | 1022 | ||
645 | /* kprobes don't want to hook the spurious faults. */ | ||
646 | if (notify_page_fault(regs)) | ||
647 | return; | 1023 | return; |
1024 | } | ||
648 | 1025 | ||
1026 | /* kprobes don't want to hook the spurious faults: */ | ||
1027 | if (unlikely(notify_page_fault(regs))) | ||
1028 | return; | ||
649 | /* | 1029 | /* |
650 | * It's safe to allow irq's after cr2 has been saved and the | 1030 | * It's safe to allow irq's after cr2 has been saved and the |
651 | * vmalloc fault has been handled. | 1031 | * vmalloc fault has been handled. |
652 | * | 1032 | * |
653 | * User-mode registers count as a user access even for any | 1033 | * User-mode registers count as a user access even for any |
654 | * potential system fault or CPU buglet. | 1034 | * potential system fault or CPU buglet: |
655 | */ | 1035 | */ |
656 | if (user_mode_vm(regs)) { | 1036 | if (user_mode_vm(regs)) { |
657 | local_irq_enable(); | 1037 | local_irq_enable(); |
658 | error_code |= PF_USER; | 1038 | error_code |= PF_USER; |
659 | } else if (regs->flags & X86_EFLAGS_IF) | 1039 | } else { |
660 | local_irq_enable(); | 1040 | if (regs->flags & X86_EFLAGS_IF) |
1041 | local_irq_enable(); | ||
1042 | } | ||
661 | 1043 | ||
662 | #ifdef CONFIG_X86_64 | ||
663 | if (unlikely(error_code & PF_RSVD)) | 1044 | if (unlikely(error_code & PF_RSVD)) |
664 | pgtable_bad(address, regs, error_code); | 1045 | pgtable_bad(regs, error_code, address); |
665 | #endif | ||
666 | 1046 | ||
667 | /* | 1047 | /* |
668 | * If we're in an interrupt, have no user context or are running in an | 1048 | * If we're in an interrupt, have no user context or are running |
669 | * atomic region then we must not take the fault. | 1049 | * in an atomic region then we must not take the fault: |
670 | */ | 1050 | */ |
671 | if (unlikely(in_atomic() || !mm)) | 1051 | if (unlikely(in_atomic() || !mm)) { |
672 | goto bad_area_nosemaphore; | 1052 | bad_area_nosemaphore(regs, error_code, address); |
1053 | return; | ||
1054 | } | ||
673 | 1055 | ||
674 | /* | 1056 | /* |
675 | * When running in the kernel we expect faults to occur only to | 1057 | * When running in the kernel we expect faults to occur only to |
676 | * addresses in user space. All other faults represent errors in the | 1058 | * addresses in user space. All other faults represent errors in |
677 | * kernel and should generate an OOPS. Unfortunately, in the case of an | 1059 | * the kernel and should generate an OOPS. Unfortunately, in the |
678 | * erroneous fault occurring in a code path which already holds mmap_sem | 1060 | * case of an erroneous fault occurring in a code path which already |
679 | * we will deadlock attempting to validate the fault against the | 1061 | * holds mmap_sem we will deadlock attempting to validate the fault |
680 | * address space. Luckily the kernel only validly references user | 1062 | * against the address space. Luckily the kernel only validly |
681 | * space from well defined areas of code, which are listed in the | 1063 | * references user space from well defined areas of code, which are |
682 | * exceptions table. | 1064 | * listed in the exceptions table. |
683 | * | 1065 | * |
684 | * As the vast majority of faults will be valid we will only perform | 1066 | * As the vast majority of faults will be valid we will only perform |
685 | * the source reference check when there is a possibility of a deadlock. | 1067 | * the source reference check when there is a possibility of a |
686 | * Attempt to lock the address space, if we cannot we then validate the | 1068 | * deadlock. Attempt to lock the address space, if we cannot we then |
687 | * source. If this is invalid we can skip the address space check, | 1069 | * validate the source. If this is invalid we can skip the address |
688 | * thus avoiding the deadlock. | 1070 | * space check, thus avoiding the deadlock: |
689 | */ | 1071 | */ |
690 | if (!down_read_trylock(&mm->mmap_sem)) { | 1072 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { |
691 | if ((error_code & PF_USER) == 0 && | 1073 | if ((error_code & PF_USER) == 0 && |
692 | !search_exception_tables(regs->ip)) | 1074 | !search_exception_tables(regs->ip)) { |
693 | goto bad_area_nosemaphore; | 1075 | bad_area_nosemaphore(regs, error_code, address); |
1076 | return; | ||
1077 | } | ||
694 | down_read(&mm->mmap_sem); | 1078 | down_read(&mm->mmap_sem); |
1079 | } else { | ||
1080 | /* | ||
1081 | * The above down_read_trylock() might have succeeded in | ||
1082 | * which case we'll have missed the might_sleep() from | ||
1083 | * down_read(): | ||
1084 | */ | ||
1085 | might_sleep(); | ||
695 | } | 1086 | } |
696 | 1087 | ||
697 | vma = find_vma(mm, address); | 1088 | vma = find_vma(mm, address); |
698 | if (!vma) | 1089 | if (unlikely(!vma)) { |
699 | goto bad_area; | 1090 | bad_area(regs, error_code, address); |
700 | if (vma->vm_start <= address) | 1091 | return; |
1092 | } | ||
1093 | if (likely(vma->vm_start <= address)) | ||
701 | goto good_area; | 1094 | goto good_area; |
702 | if (!(vma->vm_flags & VM_GROWSDOWN)) | 1095 | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { |
703 | goto bad_area; | 1096 | bad_area(regs, error_code, address); |
1097 | return; | ||
1098 | } | ||
704 | if (error_code & PF_USER) { | 1099 | if (error_code & PF_USER) { |
705 | /* | 1100 | /* |
706 | * Accessing the stack below %sp is always a bug. | 1101 | * Accessing the stack below %sp is always a bug. |
707 | * The large cushion allows instructions like enter | 1102 | * The large cushion allows instructions like enter |
708 | * and pusha to work. ("enter $65535,$31" pushes | 1103 | * and pusha to work. ("enter $65535, $31" pushes |
709 | * 32 pointers and then decrements %sp by 65535.) | 1104 | * 32 pointers and then decrements %sp by 65535.) |
710 | */ | 1105 | */ |
711 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) | 1106 | if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { |
712 | goto bad_area; | 1107 | bad_area(regs, error_code, address); |
1108 | return; | ||
1109 | } | ||
713 | } | 1110 | } |
714 | if (expand_stack(vma, address)) | 1111 | if (unlikely(expand_stack(vma, address))) { |
715 | goto bad_area; | 1112 | bad_area(regs, error_code, address); |
716 | /* | 1113 | return; |
717 | * Ok, we have a good vm_area for this memory access, so | 1114 | } |
718 | * we can handle it.. | 1115 | |
719 | */ | 1116 | /* |
1117 | * Ok, we have a good vm_area for this memory access, so | ||
1118 | * we can handle it.. | ||
1119 | */ | ||
720 | good_area: | 1120 | good_area: |
721 | si_code = SEGV_ACCERR; | 1121 | write = error_code & PF_WRITE; |
722 | write = 0; | 1122 | |
723 | switch (error_code & (PF_PROT|PF_WRITE)) { | 1123 | if (unlikely(access_error(error_code, write, vma))) { |
724 | default: /* 3: write, present */ | 1124 | bad_area_access_error(regs, error_code, address); |
725 | /* fall through */ | 1125 | return; |
726 | case PF_WRITE: /* write, not present */ | ||
727 | if (!(vma->vm_flags & VM_WRITE)) | ||
728 | goto bad_area; | ||
729 | write++; | ||
730 | break; | ||
731 | case PF_PROT: /* read, present */ | ||
732 | goto bad_area; | ||
733 | case 0: /* read, not present */ | ||
734 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
735 | goto bad_area; | ||
736 | } | 1126 | } |
737 | 1127 | ||
738 | /* | 1128 | /* |
739 | * If for any reason at all we couldn't handle the fault, | 1129 | * If for any reason at all we couldn't handle the fault, |
740 | * make sure we exit gracefully rather than endlessly redo | 1130 | * make sure we exit gracefully rather than endlessly redo |
741 | * the fault. | 1131 | * the fault: |
742 | */ | 1132 | */ |
743 | fault = handle_mm_fault(mm, vma, address, write); | 1133 | fault = handle_mm_fault(mm, vma, address, write); |
1134 | |||
744 | if (unlikely(fault & VM_FAULT_ERROR)) { | 1135 | if (unlikely(fault & VM_FAULT_ERROR)) { |
745 | if (fault & VM_FAULT_OOM) | 1136 | mm_fault_error(regs, error_code, address, fault); |
746 | goto out_of_memory; | 1137 | return; |
747 | else if (fault & VM_FAULT_SIGBUS) | ||
748 | goto do_sigbus; | ||
749 | BUG(); | ||
750 | } | 1138 | } |
1139 | |||
751 | if (fault & VM_FAULT_MAJOR) | 1140 | if (fault & VM_FAULT_MAJOR) |
752 | tsk->maj_flt++; | 1141 | tsk->maj_flt++; |
753 | else | 1142 | else |
754 | tsk->min_flt++; | 1143 | tsk->min_flt++; |
755 | 1144 | ||
756 | #ifdef CONFIG_X86_32 | 1145 | check_v8086_mode(regs, address, tsk); |
757 | /* | ||
758 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
759 | */ | ||
760 | if (v8086_mode(regs)) { | ||
761 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
762 | if (bit < 32) | ||
763 | tsk->thread.screen_bitmap |= 1 << bit; | ||
764 | } | ||
765 | #endif | ||
766 | up_read(&mm->mmap_sem); | ||
767 | return; | ||
768 | 1146 | ||
769 | /* | ||
770 | * Something tried to access memory that isn't in our memory map.. | ||
771 | * Fix it, but check if it's kernel or user first.. | ||
772 | */ | ||
773 | bad_area: | ||
774 | up_read(&mm->mmap_sem); | 1147 | up_read(&mm->mmap_sem); |
775 | |||
776 | bad_area_nosemaphore: | ||
777 | /* User mode accesses just cause a SIGSEGV */ | ||
778 | if (error_code & PF_USER) { | ||
779 | /* | ||
780 | * It's possible to have interrupts off here. | ||
781 | */ | ||
782 | local_irq_enable(); | ||
783 | |||
784 | /* | ||
785 | * Valid to do another page fault here because this one came | ||
786 | * from user space. | ||
787 | */ | ||
788 | if (is_prefetch(regs, address, error_code)) | ||
789 | return; | ||
790 | |||
791 | if (is_errata100(regs, address)) | ||
792 | return; | ||
793 | |||
794 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
795 | printk_ratelimit()) { | ||
796 | printk( | ||
797 | "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", | ||
798 | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | ||
799 | tsk->comm, task_pid_nr(tsk), address, | ||
800 | (void *) regs->ip, (void *) regs->sp, error_code); | ||
801 | print_vma_addr(" in ", regs->ip); | ||
802 | printk("\n"); | ||
803 | } | ||
804 | |||
805 | tsk->thread.cr2 = address; | ||
806 | /* Kernel addresses are always protection faults */ | ||
807 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
808 | tsk->thread.trap_no = 14; | ||
809 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
810 | return; | ||
811 | } | ||
812 | |||
813 | if (is_f00f_bug(regs, address)) | ||
814 | return; | ||
815 | |||
816 | no_context: | ||
817 | /* Are we prepared to handle this kernel fault? */ | ||
818 | if (fixup_exception(regs)) | ||
819 | return; | ||
820 | |||
821 | /* | ||
822 | * X86_32 | ||
823 | * Valid to do another page fault here, because if this fault | ||
824 | * had been triggered by is_prefetch fixup_exception would have | ||
825 | * handled it. | ||
826 | * | ||
827 | * X86_64 | ||
828 | * Hall of shame of CPU/BIOS bugs. | ||
829 | */ | ||
830 | if (is_prefetch(regs, address, error_code)) | ||
831 | return; | ||
832 | |||
833 | if (is_errata93(regs, address)) | ||
834 | return; | ||
835 | |||
836 | /* | ||
837 | * Oops. The kernel tried to access some bad page. We'll have to | ||
838 | * terminate things with extreme prejudice. | ||
839 | */ | ||
840 | #ifdef CONFIG_X86_32 | ||
841 | bust_spinlocks(1); | ||
842 | #else | ||
843 | flags = oops_begin(); | ||
844 | #endif | ||
845 | |||
846 | show_fault_oops(regs, error_code, address); | ||
847 | |||
848 | tsk->thread.cr2 = address; | ||
849 | tsk->thread.trap_no = 14; | ||
850 | tsk->thread.error_code = error_code; | ||
851 | |||
852 | #ifdef CONFIG_X86_32 | ||
853 | die("Oops", regs, error_code); | ||
854 | bust_spinlocks(0); | ||
855 | do_exit(SIGKILL); | ||
856 | #else | ||
857 | sig = SIGKILL; | ||
858 | if (__die("Oops", regs, error_code)) | ||
859 | sig = 0; | ||
860 | /* Executive summary in case the body of the oops scrolled away */ | ||
861 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
862 | oops_end(flags, regs, sig); | ||
863 | #endif | ||
864 | |||
865 | out_of_memory: | ||
866 | /* | ||
867 | * We ran out of memory, call the OOM killer, and return the userspace | ||
868 | * (which will retry the fault, or kill us if we got oom-killed). | ||
869 | */ | ||
870 | up_read(&mm->mmap_sem); | ||
871 | pagefault_out_of_memory(); | ||
872 | return; | ||
873 | |||
874 | do_sigbus: | ||
875 | up_read(&mm->mmap_sem); | ||
876 | |||
877 | /* Kernel mode? Handle exceptions or die */ | ||
878 | if (!(error_code & PF_USER)) | ||
879 | goto no_context; | ||
880 | #ifdef CONFIG_X86_32 | ||
881 | /* User space => ok to do another page fault */ | ||
882 | if (is_prefetch(regs, address, error_code)) | ||
883 | return; | ||
884 | #endif | ||
885 | tsk->thread.cr2 = address; | ||
886 | tsk->thread.error_code = error_code; | ||
887 | tsk->thread.trap_no = 14; | ||
888 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
889 | } | ||
890 | |||
891 | DEFINE_SPINLOCK(pgd_lock); | ||
892 | LIST_HEAD(pgd_list); | ||
893 | |||
894 | void vmalloc_sync_all(void) | ||
895 | { | ||
896 | unsigned long address; | ||
897 | |||
898 | #ifdef CONFIG_X86_32 | ||
899 | if (SHARED_KERNEL_PMD) | ||
900 | return; | ||
901 | |||
902 | for (address = VMALLOC_START & PMD_MASK; | ||
903 | address >= TASK_SIZE && address < FIXADDR_TOP; | ||
904 | address += PMD_SIZE) { | ||
905 | unsigned long flags; | ||
906 | struct page *page; | ||
907 | |||
908 | spin_lock_irqsave(&pgd_lock, flags); | ||
909 | list_for_each_entry(page, &pgd_list, lru) { | ||
910 | if (!vmalloc_sync_one(page_address(page), | ||
911 | address)) | ||
912 | break; | ||
913 | } | ||
914 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
915 | } | ||
916 | #else /* CONFIG_X86_64 */ | ||
917 | for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; | ||
918 | address += PGDIR_SIZE) { | ||
919 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
920 | unsigned long flags; | ||
921 | struct page *page; | ||
922 | |||
923 | if (pgd_none(*pgd_ref)) | ||
924 | continue; | ||
925 | spin_lock_irqsave(&pgd_lock, flags); | ||
926 | list_for_each_entry(page, &pgd_list, lru) { | ||
927 | pgd_t *pgd; | ||
928 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
929 | if (pgd_none(*pgd)) | ||
930 | set_pgd(pgd, *pgd_ref); | ||
931 | else | ||
932 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
933 | } | ||
934 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
935 | } | ||
936 | #endif | ||
937 | } | 1148 | } |
diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c index bcc079c282dd..00f127c80b0e 100644 --- a/arch/x86/mm/highmem_32.c +++ b/arch/x86/mm/highmem_32.c | |||
@@ -1,5 +1,6 @@ | |||
1 | #include <linux/highmem.h> | 1 | #include <linux/highmem.h> |
2 | #include <linux/module.h> | 2 | #include <linux/module.h> |
3 | #include <linux/swap.h> /* for totalram_pages */ | ||
3 | 4 | ||
4 | void *kmap(struct page *page) | 5 | void *kmap(struct page *page) |
5 | { | 6 | { |
@@ -156,3 +157,36 @@ EXPORT_SYMBOL(kmap); | |||
156 | EXPORT_SYMBOL(kunmap); | 157 | EXPORT_SYMBOL(kunmap); |
157 | EXPORT_SYMBOL(kmap_atomic); | 158 | EXPORT_SYMBOL(kmap_atomic); |
158 | EXPORT_SYMBOL(kunmap_atomic); | 159 | EXPORT_SYMBOL(kunmap_atomic); |
160 | |||
161 | #ifdef CONFIG_NUMA | ||
162 | void __init set_highmem_pages_init(void) | ||
163 | { | ||
164 | struct zone *zone; | ||
165 | int nid; | ||
166 | |||
167 | for_each_zone(zone) { | ||
168 | unsigned long zone_start_pfn, zone_end_pfn; | ||
169 | |||
170 | if (!is_highmem(zone)) | ||
171 | continue; | ||
172 | |||
173 | zone_start_pfn = zone->zone_start_pfn; | ||
174 | zone_end_pfn = zone_start_pfn + zone->spanned_pages; | ||
175 | |||
176 | nid = zone_to_nid(zone); | ||
177 | printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n", | ||
178 | zone->name, nid, zone_start_pfn, zone_end_pfn); | ||
179 | |||
180 | add_highpages_with_active_regions(nid, zone_start_pfn, | ||
181 | zone_end_pfn); | ||
182 | } | ||
183 | totalram_pages += totalhigh_pages; | ||
184 | } | ||
185 | #else | ||
186 | void __init set_highmem_pages_init(void) | ||
187 | { | ||
188 | add_highpages_with_active_regions(0, highstart_pfn, highend_pfn); | ||
189 | |||
190 | totalram_pages += totalhigh_pages; | ||
191 | } | ||
192 | #endif /* CONFIG_NUMA */ | ||
diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c new file mode 100644 index 000000000000..ce6a722587d8 --- /dev/null +++ b/arch/x86/mm/init.c | |||
@@ -0,0 +1,49 @@ | |||
1 | #include <linux/swap.h> | ||
2 | #include <asm/cacheflush.h> | ||
3 | #include <asm/page.h> | ||
4 | #include <asm/sections.h> | ||
5 | #include <asm/system.h> | ||
6 | |||
7 | void free_init_pages(char *what, unsigned long begin, unsigned long end) | ||
8 | { | ||
9 | unsigned long addr = begin; | ||
10 | |||
11 | if (addr >= end) | ||
12 | return; | ||
13 | |||
14 | /* | ||
15 | * If debugging page accesses then do not free this memory but | ||
16 | * mark them not present - any buggy init-section access will | ||
17 | * create a kernel page fault: | ||
18 | */ | ||
19 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
20 | printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", | ||
21 | begin, PAGE_ALIGN(end)); | ||
22 | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | ||
23 | #else | ||
24 | /* | ||
25 | * We just marked the kernel text read only above, now that | ||
26 | * we are going to free part of that, we need to make that | ||
27 | * writeable first. | ||
28 | */ | ||
29 | set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); | ||
30 | |||
31 | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | ||
32 | |||
33 | for (; addr < end; addr += PAGE_SIZE) { | ||
34 | ClearPageReserved(virt_to_page(addr)); | ||
35 | init_page_count(virt_to_page(addr)); | ||
36 | memset((void *)(addr & ~(PAGE_SIZE-1)), | ||
37 | POISON_FREE_INITMEM, PAGE_SIZE); | ||
38 | free_page(addr); | ||
39 | totalram_pages++; | ||
40 | } | ||
41 | #endif | ||
42 | } | ||
43 | |||
44 | void free_initmem(void) | ||
45 | { | ||
46 | free_init_pages("unused kernel memory", | ||
47 | (unsigned long)(&__init_begin), | ||
48 | (unsigned long)(&__init_end)); | ||
49 | } | ||
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c index 2cef05074413..0b087dcd2c18 100644 --- a/arch/x86/mm/init_32.c +++ b/arch/x86/mm/init_32.c | |||
@@ -49,9 +49,6 @@ | |||
49 | #include <asm/paravirt.h> | 49 | #include <asm/paravirt.h> |
50 | #include <asm/setup.h> | 50 | #include <asm/setup.h> |
51 | #include <asm/cacheflush.h> | 51 | #include <asm/cacheflush.h> |
52 | #include <asm/smp.h> | ||
53 | |||
54 | unsigned int __VMALLOC_RESERVE = 128 << 20; | ||
55 | 52 | ||
56 | unsigned long max_low_pfn_mapped; | 53 | unsigned long max_low_pfn_mapped; |
57 | unsigned long max_pfn_mapped; | 54 | unsigned long max_pfn_mapped; |
@@ -470,22 +467,10 @@ void __init add_highpages_with_active_regions(int nid, unsigned long start_pfn, | |||
470 | work_with_active_regions(nid, add_highpages_work_fn, &data); | 467 | work_with_active_regions(nid, add_highpages_work_fn, &data); |
471 | } | 468 | } |
472 | 469 | ||
473 | #ifndef CONFIG_NUMA | ||
474 | static void __init set_highmem_pages_init(void) | ||
475 | { | ||
476 | add_highpages_with_active_regions(0, highstart_pfn, highend_pfn); | ||
477 | |||
478 | totalram_pages += totalhigh_pages; | ||
479 | } | ||
480 | #endif /* !CONFIG_NUMA */ | ||
481 | |||
482 | #else | 470 | #else |
483 | static inline void permanent_kmaps_init(pgd_t *pgd_base) | 471 | static inline void permanent_kmaps_init(pgd_t *pgd_base) |
484 | { | 472 | { |
485 | } | 473 | } |
486 | static inline void set_highmem_pages_init(void) | ||
487 | { | ||
488 | } | ||
489 | #endif /* CONFIG_HIGHMEM */ | 474 | #endif /* CONFIG_HIGHMEM */ |
490 | 475 | ||
491 | void __init native_pagetable_setup_start(pgd_t *base) | 476 | void __init native_pagetable_setup_start(pgd_t *base) |
@@ -675,75 +660,97 @@ static int __init parse_highmem(char *arg) | |||
675 | } | 660 | } |
676 | early_param("highmem", parse_highmem); | 661 | early_param("highmem", parse_highmem); |
677 | 662 | ||
663 | #define MSG_HIGHMEM_TOO_BIG \ | ||
664 | "highmem size (%luMB) is bigger than pages available (%luMB)!\n" | ||
665 | |||
666 | #define MSG_LOWMEM_TOO_SMALL \ | ||
667 | "highmem size (%luMB) results in <64MB lowmem, ignoring it!\n" | ||
678 | /* | 668 | /* |
679 | * Determine low and high memory ranges: | 669 | * All of RAM fits into lowmem - but if user wants highmem |
670 | * artificially via the highmem=x boot parameter then create | ||
671 | * it: | ||
680 | */ | 672 | */ |
681 | void __init find_low_pfn_range(void) | 673 | void __init lowmem_pfn_init(void) |
682 | { | 674 | { |
683 | /* it could update max_pfn */ | ||
684 | |||
685 | /* max_low_pfn is 0, we already have early_res support */ | 675 | /* max_low_pfn is 0, we already have early_res support */ |
686 | |||
687 | max_low_pfn = max_pfn; | 676 | max_low_pfn = max_pfn; |
688 | if (max_low_pfn > MAXMEM_PFN) { | 677 | |
689 | if (highmem_pages == -1) | 678 | if (highmem_pages == -1) |
690 | highmem_pages = max_pfn - MAXMEM_PFN; | 679 | highmem_pages = 0; |
691 | if (highmem_pages + MAXMEM_PFN < max_pfn) | 680 | #ifdef CONFIG_HIGHMEM |
692 | max_pfn = MAXMEM_PFN + highmem_pages; | 681 | if (highmem_pages >= max_pfn) { |
693 | if (highmem_pages + MAXMEM_PFN > max_pfn) { | 682 | printk(KERN_ERR MSG_HIGHMEM_TOO_BIG, |
694 | printk(KERN_WARNING "only %luMB highmem pages " | 683 | pages_to_mb(highmem_pages), pages_to_mb(max_pfn)); |
695 | "available, ignoring highmem size of %uMB.\n", | 684 | highmem_pages = 0; |
696 | pages_to_mb(max_pfn - MAXMEM_PFN), | 685 | } |
686 | if (highmem_pages) { | ||
687 | if (max_low_pfn - highmem_pages < 64*1024*1024/PAGE_SIZE) { | ||
688 | printk(KERN_ERR MSG_LOWMEM_TOO_SMALL, | ||
697 | pages_to_mb(highmem_pages)); | 689 | pages_to_mb(highmem_pages)); |
698 | highmem_pages = 0; | 690 | highmem_pages = 0; |
699 | } | 691 | } |
700 | max_low_pfn = MAXMEM_PFN; | 692 | max_low_pfn -= highmem_pages; |
693 | } | ||
694 | #else | ||
695 | if (highmem_pages) | ||
696 | printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n"); | ||
697 | #endif | ||
698 | } | ||
699 | |||
700 | #define MSG_HIGHMEM_TOO_SMALL \ | ||
701 | "only %luMB highmem pages available, ignoring highmem size of %luMB!\n" | ||
702 | |||
703 | #define MSG_HIGHMEM_TRIMMED \ | ||
704 | "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n" | ||
705 | /* | ||
706 | * We have more RAM than fits into lowmem - we try to put it into | ||
707 | * highmem, also taking the highmem=x boot parameter into account: | ||
708 | */ | ||
709 | void __init highmem_pfn_init(void) | ||
710 | { | ||
711 | max_low_pfn = MAXMEM_PFN; | ||
712 | |||
713 | if (highmem_pages == -1) | ||
714 | highmem_pages = max_pfn - MAXMEM_PFN; | ||
715 | |||
716 | if (highmem_pages + MAXMEM_PFN < max_pfn) | ||
717 | max_pfn = MAXMEM_PFN + highmem_pages; | ||
718 | |||
719 | if (highmem_pages + MAXMEM_PFN > max_pfn) { | ||
720 | printk(KERN_WARNING MSG_HIGHMEM_TOO_SMALL, | ||
721 | pages_to_mb(max_pfn - MAXMEM_PFN), | ||
722 | pages_to_mb(highmem_pages)); | ||
723 | highmem_pages = 0; | ||
724 | } | ||
701 | #ifndef CONFIG_HIGHMEM | 725 | #ifndef CONFIG_HIGHMEM |
702 | /* Maximum memory usable is what is directly addressable */ | 726 | /* Maximum memory usable is what is directly addressable */ |
703 | printk(KERN_WARNING "Warning only %ldMB will be used.\n", | 727 | printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20); |
704 | MAXMEM>>20); | 728 | if (max_pfn > MAX_NONPAE_PFN) |
705 | if (max_pfn > MAX_NONPAE_PFN) | 729 | printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n"); |
706 | printk(KERN_WARNING | 730 | else |
707 | "Use a HIGHMEM64G enabled kernel.\n"); | 731 | printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); |
708 | else | 732 | max_pfn = MAXMEM_PFN; |
709 | printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); | ||
710 | max_pfn = MAXMEM_PFN; | ||
711 | #else /* !CONFIG_HIGHMEM */ | 733 | #else /* !CONFIG_HIGHMEM */ |
712 | #ifndef CONFIG_HIGHMEM64G | 734 | #ifndef CONFIG_HIGHMEM64G |
713 | if (max_pfn > MAX_NONPAE_PFN) { | 735 | if (max_pfn > MAX_NONPAE_PFN) { |
714 | max_pfn = MAX_NONPAE_PFN; | 736 | max_pfn = MAX_NONPAE_PFN; |
715 | printk(KERN_WARNING "Warning only 4GB will be used." | 737 | printk(KERN_WARNING MSG_HIGHMEM_TRIMMED); |
716 | "Use a HIGHMEM64G enabled kernel.\n"); | 738 | } |
717 | } | ||
718 | #endif /* !CONFIG_HIGHMEM64G */ | 739 | #endif /* !CONFIG_HIGHMEM64G */ |
719 | #endif /* !CONFIG_HIGHMEM */ | 740 | #endif /* !CONFIG_HIGHMEM */ |
720 | } else { | 741 | } |
721 | if (highmem_pages == -1) | 742 | |
722 | highmem_pages = 0; | 743 | /* |
723 | #ifdef CONFIG_HIGHMEM | 744 | * Determine low and high memory ranges: |
724 | if (highmem_pages >= max_pfn) { | 745 | */ |
725 | printk(KERN_ERR "highmem size specified (%uMB) is " | 746 | void __init find_low_pfn_range(void) |
726 | "bigger than pages available (%luMB)!.\n", | 747 | { |
727 | pages_to_mb(highmem_pages), | 748 | /* it could update max_pfn */ |
728 | pages_to_mb(max_pfn)); | 749 | |
729 | highmem_pages = 0; | 750 | if (max_pfn <= MAXMEM_PFN) |
730 | } | 751 | lowmem_pfn_init(); |
731 | if (highmem_pages) { | 752 | else |
732 | if (max_low_pfn - highmem_pages < | 753 | highmem_pfn_init(); |
733 | 64*1024*1024/PAGE_SIZE){ | ||
734 | printk(KERN_ERR "highmem size %uMB results in " | ||
735 | "smaller than 64MB lowmem, ignoring it.\n" | ||
736 | , pages_to_mb(highmem_pages)); | ||
737 | highmem_pages = 0; | ||
738 | } | ||
739 | max_low_pfn -= highmem_pages; | ||
740 | } | ||
741 | #else | ||
742 | if (highmem_pages) | ||
743 | printk(KERN_ERR "ignoring highmem size on non-highmem" | ||
744 | " kernel!\n"); | ||
745 | #endif | ||
746 | } | ||
747 | } | 754 | } |
748 | 755 | ||
749 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 756 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
@@ -826,10 +833,10 @@ static void __init find_early_table_space(unsigned long end, int use_pse) | |||
826 | unsigned long puds, pmds, ptes, tables, start; | 833 | unsigned long puds, pmds, ptes, tables, start; |
827 | 834 | ||
828 | puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; | 835 | puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; |
829 | tables = PAGE_ALIGN(puds * sizeof(pud_t)); | 836 | tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); |
830 | 837 | ||
831 | pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; | 838 | pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; |
832 | tables += PAGE_ALIGN(pmds * sizeof(pmd_t)); | 839 | tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); |
833 | 840 | ||
834 | if (use_pse) { | 841 | if (use_pse) { |
835 | unsigned long extra; | 842 | unsigned long extra; |
@@ -840,10 +847,10 @@ static void __init find_early_table_space(unsigned long end, int use_pse) | |||
840 | } else | 847 | } else |
841 | ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; | 848 | ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; |
842 | 849 | ||
843 | tables += PAGE_ALIGN(ptes * sizeof(pte_t)); | 850 | tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); |
844 | 851 | ||
845 | /* for fixmap */ | 852 | /* for fixmap */ |
846 | tables += PAGE_ALIGN(__end_of_fixed_addresses * sizeof(pte_t)); | 853 | tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE); |
847 | 854 | ||
848 | /* | 855 | /* |
849 | * RED-PEN putting page tables only on node 0 could | 856 | * RED-PEN putting page tables only on node 0 could |
@@ -1193,45 +1200,6 @@ void mark_rodata_ro(void) | |||
1193 | } | 1200 | } |
1194 | #endif | 1201 | #endif |
1195 | 1202 | ||
1196 | void free_init_pages(char *what, unsigned long begin, unsigned long end) | ||
1197 | { | ||
1198 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
1199 | /* | ||
1200 | * If debugging page accesses then do not free this memory but | ||
1201 | * mark them not present - any buggy init-section access will | ||
1202 | * create a kernel page fault: | ||
1203 | */ | ||
1204 | printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", | ||
1205 | begin, PAGE_ALIGN(end)); | ||
1206 | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | ||
1207 | #else | ||
1208 | unsigned long addr; | ||
1209 | |||
1210 | /* | ||
1211 | * We just marked the kernel text read only above, now that | ||
1212 | * we are going to free part of that, we need to make that | ||
1213 | * writeable first. | ||
1214 | */ | ||
1215 | set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); | ||
1216 | |||
1217 | for (addr = begin; addr < end; addr += PAGE_SIZE) { | ||
1218 | ClearPageReserved(virt_to_page(addr)); | ||
1219 | init_page_count(virt_to_page(addr)); | ||
1220 | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | ||
1221 | free_page(addr); | ||
1222 | totalram_pages++; | ||
1223 | } | ||
1224 | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | ||
1225 | #endif | ||
1226 | } | ||
1227 | |||
1228 | void free_initmem(void) | ||
1229 | { | ||
1230 | free_init_pages("unused kernel memory", | ||
1231 | (unsigned long)(&__init_begin), | ||
1232 | (unsigned long)(&__init_end)); | ||
1233 | } | ||
1234 | |||
1235 | #ifdef CONFIG_BLK_DEV_INITRD | 1203 | #ifdef CONFIG_BLK_DEV_INITRD |
1236 | void free_initrd_mem(unsigned long start, unsigned long end) | 1204 | void free_initrd_mem(unsigned long start, unsigned long end) |
1237 | { | 1205 | { |
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c index b1352250096e..724e537432e7 100644 --- a/arch/x86/mm/init_64.c +++ b/arch/x86/mm/init_64.c | |||
@@ -947,43 +947,6 @@ void __init mem_init(void) | |||
947 | initsize >> 10); | 947 | initsize >> 10); |
948 | } | 948 | } |
949 | 949 | ||
950 | void free_init_pages(char *what, unsigned long begin, unsigned long end) | ||
951 | { | ||
952 | unsigned long addr = begin; | ||
953 | |||
954 | if (addr >= end) | ||
955 | return; | ||
956 | |||
957 | /* | ||
958 | * If debugging page accesses then do not free this memory but | ||
959 | * mark them not present - any buggy init-section access will | ||
960 | * create a kernel page fault: | ||
961 | */ | ||
962 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
963 | printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", | ||
964 | begin, PAGE_ALIGN(end)); | ||
965 | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | ||
966 | #else | ||
967 | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | ||
968 | |||
969 | for (; addr < end; addr += PAGE_SIZE) { | ||
970 | ClearPageReserved(virt_to_page(addr)); | ||
971 | init_page_count(virt_to_page(addr)); | ||
972 | memset((void *)(addr & ~(PAGE_SIZE-1)), | ||
973 | POISON_FREE_INITMEM, PAGE_SIZE); | ||
974 | free_page(addr); | ||
975 | totalram_pages++; | ||
976 | } | ||
977 | #endif | ||
978 | } | ||
979 | |||
980 | void free_initmem(void) | ||
981 | { | ||
982 | free_init_pages("unused kernel memory", | ||
983 | (unsigned long)(&__init_begin), | ||
984 | (unsigned long)(&__init_end)); | ||
985 | } | ||
986 | |||
987 | #ifdef CONFIG_DEBUG_RODATA | 950 | #ifdef CONFIG_DEBUG_RODATA |
988 | const int rodata_test_data = 0xC3; | 951 | const int rodata_test_data = 0xC3; |
989 | EXPORT_SYMBOL_GPL(rodata_test_data); | 952 | EXPORT_SYMBOL_GPL(rodata_test_data); |
diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c index f45d5e29a72e..433f7bd4648a 100644 --- a/arch/x86/mm/ioremap.c +++ b/arch/x86/mm/ioremap.c | |||
@@ -348,7 +348,7 @@ EXPORT_SYMBOL(ioremap_nocache); | |||
348 | * | 348 | * |
349 | * Must be freed with iounmap. | 349 | * Must be freed with iounmap. |
350 | */ | 350 | */ |
351 | void __iomem *ioremap_wc(unsigned long phys_addr, unsigned long size) | 351 | void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) |
352 | { | 352 | { |
353 | if (pat_enabled) | 353 | if (pat_enabled) |
354 | return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC, | 354 | return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC, |
diff --git a/arch/x86/mm/memtest.c b/arch/x86/mm/memtest.c index 9cab18b0b857..0bcd7883d036 100644 --- a/arch/x86/mm/memtest.c +++ b/arch/x86/mm/memtest.c | |||
@@ -9,44 +9,44 @@ | |||
9 | 9 | ||
10 | #include <asm/e820.h> | 10 | #include <asm/e820.h> |
11 | 11 | ||
12 | static void __init memtest(unsigned long start_phys, unsigned long size, | 12 | static u64 patterns[] __initdata = { |
13 | unsigned pattern) | 13 | 0, |
14 | 0xffffffffffffffffULL, | ||
15 | 0x5555555555555555ULL, | ||
16 | 0xaaaaaaaaaaaaaaaaULL, | ||
17 | 0x1111111111111111ULL, | ||
18 | 0x2222222222222222ULL, | ||
19 | 0x4444444444444444ULL, | ||
20 | 0x8888888888888888ULL, | ||
21 | 0x3333333333333333ULL, | ||
22 | 0x6666666666666666ULL, | ||
23 | 0x9999999999999999ULL, | ||
24 | 0xccccccccccccccccULL, | ||
25 | 0x7777777777777777ULL, | ||
26 | 0xbbbbbbbbbbbbbbbbULL, | ||
27 | 0xddddddddddddddddULL, | ||
28 | 0xeeeeeeeeeeeeeeeeULL, | ||
29 | 0x7a6c7258554e494cULL, /* yeah ;-) */ | ||
30 | }; | ||
31 | |||
32 | static void __init reserve_bad_mem(u64 pattern, u64 start_bad, u64 end_bad) | ||
14 | { | 33 | { |
15 | unsigned long i; | 34 | printk(KERN_INFO " %016llx bad mem addr %010llx - %010llx reserved\n", |
16 | unsigned long *start; | 35 | (unsigned long long) pattern, |
17 | unsigned long start_bad; | 36 | (unsigned long long) start_bad, |
18 | unsigned long last_bad; | 37 | (unsigned long long) end_bad); |
19 | unsigned long val; | 38 | reserve_early(start_bad, end_bad, "BAD RAM"); |
20 | unsigned long start_phys_aligned; | 39 | } |
21 | unsigned long count; | ||
22 | unsigned long incr; | ||
23 | |||
24 | switch (pattern) { | ||
25 | case 0: | ||
26 | val = 0UL; | ||
27 | break; | ||
28 | case 1: | ||
29 | val = -1UL; | ||
30 | break; | ||
31 | case 2: | ||
32 | #ifdef CONFIG_X86_64 | ||
33 | val = 0x5555555555555555UL; | ||
34 | #else | ||
35 | val = 0x55555555UL; | ||
36 | #endif | ||
37 | break; | ||
38 | case 3: | ||
39 | #ifdef CONFIG_X86_64 | ||
40 | val = 0xaaaaaaaaaaaaaaaaUL; | ||
41 | #else | ||
42 | val = 0xaaaaaaaaUL; | ||
43 | #endif | ||
44 | break; | ||
45 | default: | ||
46 | return; | ||
47 | } | ||
48 | 40 | ||
49 | incr = sizeof(unsigned long); | 41 | static void __init memtest(u64 pattern, u64 start_phys, u64 size) |
42 | { | ||
43 | u64 i, count; | ||
44 | u64 *start; | ||
45 | u64 start_bad, last_bad; | ||
46 | u64 start_phys_aligned; | ||
47 | size_t incr; | ||
48 | |||
49 | incr = sizeof(pattern); | ||
50 | start_phys_aligned = ALIGN(start_phys, incr); | 50 | start_phys_aligned = ALIGN(start_phys, incr); |
51 | count = (size - (start_phys_aligned - start_phys))/incr; | 51 | count = (size - (start_phys_aligned - start_phys))/incr; |
52 | start = __va(start_phys_aligned); | 52 | start = __va(start_phys_aligned); |
@@ -54,25 +54,42 @@ static void __init memtest(unsigned long start_phys, unsigned long size, | |||
54 | last_bad = 0; | 54 | last_bad = 0; |
55 | 55 | ||
56 | for (i = 0; i < count; i++) | 56 | for (i = 0; i < count; i++) |
57 | start[i] = val; | 57 | start[i] = pattern; |
58 | for (i = 0; i < count; i++, start++, start_phys_aligned += incr) { | 58 | for (i = 0; i < count; i++, start++, start_phys_aligned += incr) { |
59 | if (*start != val) { | 59 | if (*start == pattern) |
60 | if (start_phys_aligned == last_bad + incr) { | 60 | continue; |
61 | last_bad += incr; | 61 | if (start_phys_aligned == last_bad + incr) { |
62 | } else { | 62 | last_bad += incr; |
63 | if (start_bad) { | 63 | continue; |
64 | printk(KERN_CONT "\n %016lx bad mem addr %010lx - %010lx reserved", | ||
65 | val, start_bad, last_bad + incr); | ||
66 | reserve_early(start_bad, last_bad + incr, "BAD RAM"); | ||
67 | } | ||
68 | start_bad = last_bad = start_phys_aligned; | ||
69 | } | ||
70 | } | 64 | } |
65 | if (start_bad) | ||
66 | reserve_bad_mem(pattern, start_bad, last_bad + incr); | ||
67 | start_bad = last_bad = start_phys_aligned; | ||
71 | } | 68 | } |
72 | if (start_bad) { | 69 | if (start_bad) |
73 | printk(KERN_CONT "\n %016lx bad mem addr %010lx - %010lx reserved", | 70 | reserve_bad_mem(pattern, start_bad, last_bad + incr); |
74 | val, start_bad, last_bad + incr); | 71 | } |
75 | reserve_early(start_bad, last_bad + incr, "BAD RAM"); | 72 | |
73 | static void __init do_one_pass(u64 pattern, u64 start, u64 end) | ||
74 | { | ||
75 | u64 size = 0; | ||
76 | |||
77 | while (start < end) { | ||
78 | start = find_e820_area_size(start, &size, 1); | ||
79 | |||
80 | /* done ? */ | ||
81 | if (start >= end) | ||
82 | break; | ||
83 | if (start + size > end) | ||
84 | size = end - start; | ||
85 | |||
86 | printk(KERN_INFO " %010llx - %010llx pattern %016llx\n", | ||
87 | (unsigned long long) start, | ||
88 | (unsigned long long) start + size, | ||
89 | (unsigned long long) cpu_to_be64(pattern)); | ||
90 | memtest(pattern, start, size); | ||
91 | |||
92 | start += size; | ||
76 | } | 93 | } |
77 | } | 94 | } |
78 | 95 | ||
@@ -90,33 +107,22 @@ early_param("memtest", parse_memtest); | |||
90 | 107 | ||
91 | void __init early_memtest(unsigned long start, unsigned long end) | 108 | void __init early_memtest(unsigned long start, unsigned long end) |
92 | { | 109 | { |
93 | u64 t_start, t_size; | 110 | unsigned int i; |
94 | unsigned pattern; | 111 | unsigned int idx = 0; |
95 | 112 | ||
96 | if (!memtest_pattern) | 113 | if (!memtest_pattern) |
97 | return; | 114 | return; |
98 | 115 | ||
99 | printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern); | 116 | printk(KERN_INFO "early_memtest: # of tests: %d\n", memtest_pattern); |
100 | for (pattern = 0; pattern < memtest_pattern; pattern++) { | 117 | for (i = 0; i < memtest_pattern; i++) { |
101 | t_start = start; | 118 | idx = i % ARRAY_SIZE(patterns); |
102 | t_size = 0; | 119 | do_one_pass(patterns[idx], start, end); |
103 | while (t_start < end) { | 120 | } |
104 | t_start = find_e820_area_size(t_start, &t_size, 1); | ||
105 | |||
106 | /* done ? */ | ||
107 | if (t_start >= end) | ||
108 | break; | ||
109 | if (t_start + t_size > end) | ||
110 | t_size = end - t_start; | ||
111 | |||
112 | printk(KERN_CONT "\n %010llx - %010llx pattern %d", | ||
113 | (unsigned long long)t_start, | ||
114 | (unsigned long long)t_start + t_size, pattern); | ||
115 | |||
116 | memtest(t_start, t_size, pattern); | ||
117 | 121 | ||
118 | t_start += t_size; | 122 | if (idx > 0) { |
119 | } | 123 | printk(KERN_INFO "early_memtest: wipe out " |
124 | "test pattern from memory\n"); | ||
125 | /* additional test with pattern 0 will do this */ | ||
126 | do_one_pass(0, start, end); | ||
120 | } | 127 | } |
121 | printk(KERN_CONT "\n"); | ||
122 | } | 128 | } |
diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c index 56fe7124fbec..165829600566 100644 --- a/arch/x86/mm/mmap.c +++ b/arch/x86/mm/mmap.c | |||
@@ -4,7 +4,7 @@ | |||
4 | * Based on code by Ingo Molnar and Andi Kleen, copyrighted | 4 | * Based on code by Ingo Molnar and Andi Kleen, copyrighted |
5 | * as follows: | 5 | * as follows: |
6 | * | 6 | * |
7 | * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. | 7 | * Copyright 2003-2009 Red Hat Inc. |
8 | * All Rights Reserved. | 8 | * All Rights Reserved. |
9 | * Copyright 2005 Andi Kleen, SUSE Labs. | 9 | * Copyright 2005 Andi Kleen, SUSE Labs. |
10 | * Copyright 2007 Jiri Kosina, SUSE Labs. | 10 | * Copyright 2007 Jiri Kosina, SUSE Labs. |
diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c index d1f7439d173c..451fe95a0352 100644 --- a/arch/x86/mm/numa_32.c +++ b/arch/x86/mm/numa_32.c | |||
@@ -194,7 +194,7 @@ void *alloc_remap(int nid, unsigned long size) | |||
194 | size = ALIGN(size, L1_CACHE_BYTES); | 194 | size = ALIGN(size, L1_CACHE_BYTES); |
195 | 195 | ||
196 | if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) | 196 | if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) |
197 | return 0; | 197 | return NULL; |
198 | 198 | ||
199 | node_remap_alloc_vaddr[nid] += size; | 199 | node_remap_alloc_vaddr[nid] += size; |
200 | memset(allocation, 0, size); | 200 | memset(allocation, 0, size); |
@@ -423,32 +423,6 @@ void __init initmem_init(unsigned long start_pfn, | |||
423 | setup_bootmem_allocator(); | 423 | setup_bootmem_allocator(); |
424 | } | 424 | } |
425 | 425 | ||
426 | void __init set_highmem_pages_init(void) | ||
427 | { | ||
428 | #ifdef CONFIG_HIGHMEM | ||
429 | struct zone *zone; | ||
430 | int nid; | ||
431 | |||
432 | for_each_zone(zone) { | ||
433 | unsigned long zone_start_pfn, zone_end_pfn; | ||
434 | |||
435 | if (!is_highmem(zone)) | ||
436 | continue; | ||
437 | |||
438 | zone_start_pfn = zone->zone_start_pfn; | ||
439 | zone_end_pfn = zone_start_pfn + zone->spanned_pages; | ||
440 | |||
441 | nid = zone_to_nid(zone); | ||
442 | printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n", | ||
443 | zone->name, nid, zone_start_pfn, zone_end_pfn); | ||
444 | |||
445 | add_highpages_with_active_regions(nid, zone_start_pfn, | ||
446 | zone_end_pfn); | ||
447 | } | ||
448 | totalram_pages += totalhigh_pages; | ||
449 | #endif | ||
450 | } | ||
451 | |||
452 | #ifdef CONFIG_MEMORY_HOTPLUG | 426 | #ifdef CONFIG_MEMORY_HOTPLUG |
453 | static int paddr_to_nid(u64 addr) | 427 | static int paddr_to_nid(u64 addr) |
454 | { | 428 | { |
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c index f3516da035d1..64c9cf043cdd 100644 --- a/arch/x86/mm/numa_64.c +++ b/arch/x86/mm/numa_64.c | |||
@@ -20,6 +20,12 @@ | |||
20 | #include <asm/acpi.h> | 20 | #include <asm/acpi.h> |
21 | #include <asm/k8.h> | 21 | #include <asm/k8.h> |
22 | 22 | ||
23 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | ||
24 | # define DBG(x...) printk(KERN_DEBUG x) | ||
25 | #else | ||
26 | # define DBG(x...) | ||
27 | #endif | ||
28 | |||
23 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 29 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
24 | EXPORT_SYMBOL(node_data); | 30 | EXPORT_SYMBOL(node_data); |
25 | 31 | ||
@@ -33,6 +39,21 @@ int numa_off __initdata; | |||
33 | static unsigned long __initdata nodemap_addr; | 39 | static unsigned long __initdata nodemap_addr; |
34 | static unsigned long __initdata nodemap_size; | 40 | static unsigned long __initdata nodemap_size; |
35 | 41 | ||
42 | DEFINE_PER_CPU(int, node_number) = 0; | ||
43 | EXPORT_PER_CPU_SYMBOL(node_number); | ||
44 | |||
45 | /* | ||
46 | * Map cpu index to node index | ||
47 | */ | ||
48 | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | ||
49 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | ||
50 | |||
51 | /* | ||
52 | * Which logical CPUs are on which nodes | ||
53 | */ | ||
54 | cpumask_t *node_to_cpumask_map; | ||
55 | EXPORT_SYMBOL(node_to_cpumask_map); | ||
56 | |||
36 | /* | 57 | /* |
37 | * Given a shift value, try to populate memnodemap[] | 58 | * Given a shift value, try to populate memnodemap[] |
38 | * Returns : | 59 | * Returns : |
@@ -640,3 +661,199 @@ void __init init_cpu_to_node(void) | |||
640 | #endif | 661 | #endif |
641 | 662 | ||
642 | 663 | ||
664 | /* | ||
665 | * Allocate node_to_cpumask_map based on number of available nodes | ||
666 | * Requires node_possible_map to be valid. | ||
667 | * | ||
668 | * Note: node_to_cpumask() is not valid until after this is done. | ||
669 | * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) | ||
670 | */ | ||
671 | void __init setup_node_to_cpumask_map(void) | ||
672 | { | ||
673 | unsigned int node, num = 0; | ||
674 | cpumask_t *map; | ||
675 | |||
676 | /* setup nr_node_ids if not done yet */ | ||
677 | if (nr_node_ids == MAX_NUMNODES) { | ||
678 | for_each_node_mask(node, node_possible_map) | ||
679 | num = node; | ||
680 | nr_node_ids = num + 1; | ||
681 | } | ||
682 | |||
683 | /* allocate the map */ | ||
684 | map = alloc_bootmem_low(nr_node_ids * sizeof(cpumask_t)); | ||
685 | DBG("node_to_cpumask_map at %p for %d nodes\n", map, nr_node_ids); | ||
686 | |||
687 | pr_debug("Node to cpumask map at %p for %d nodes\n", | ||
688 | map, nr_node_ids); | ||
689 | |||
690 | /* node_to_cpumask() will now work */ | ||
691 | node_to_cpumask_map = map; | ||
692 | } | ||
693 | |||
694 | void __cpuinit numa_set_node(int cpu, int node) | ||
695 | { | ||
696 | int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | ||
697 | |||
698 | /* early setting, no percpu area yet */ | ||
699 | if (cpu_to_node_map) { | ||
700 | cpu_to_node_map[cpu] = node; | ||
701 | return; | ||
702 | } | ||
703 | |||
704 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | ||
705 | if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | ||
706 | printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | ||
707 | dump_stack(); | ||
708 | return; | ||
709 | } | ||
710 | #endif | ||
711 | per_cpu(x86_cpu_to_node_map, cpu) = node; | ||
712 | |||
713 | if (node != NUMA_NO_NODE) | ||
714 | per_cpu(node_number, cpu) = node; | ||
715 | } | ||
716 | |||
717 | void __cpuinit numa_clear_node(int cpu) | ||
718 | { | ||
719 | numa_set_node(cpu, NUMA_NO_NODE); | ||
720 | } | ||
721 | |||
722 | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | ||
723 | |||
724 | void __cpuinit numa_add_cpu(int cpu) | ||
725 | { | ||
726 | cpu_set(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | ||
727 | } | ||
728 | |||
729 | void __cpuinit numa_remove_cpu(int cpu) | ||
730 | { | ||
731 | cpu_clear(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | ||
732 | } | ||
733 | |||
734 | #else /* CONFIG_DEBUG_PER_CPU_MAPS */ | ||
735 | |||
736 | /* | ||
737 | * --------- debug versions of the numa functions --------- | ||
738 | */ | ||
739 | static void __cpuinit numa_set_cpumask(int cpu, int enable) | ||
740 | { | ||
741 | int node = early_cpu_to_node(cpu); | ||
742 | cpumask_t *mask; | ||
743 | char buf[64]; | ||
744 | |||
745 | if (node_to_cpumask_map == NULL) { | ||
746 | printk(KERN_ERR "node_to_cpumask_map NULL\n"); | ||
747 | dump_stack(); | ||
748 | return; | ||
749 | } | ||
750 | |||
751 | mask = &node_to_cpumask_map[node]; | ||
752 | if (enable) | ||
753 | cpu_set(cpu, *mask); | ||
754 | else | ||
755 | cpu_clear(cpu, *mask); | ||
756 | |||
757 | cpulist_scnprintf(buf, sizeof(buf), mask); | ||
758 | printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", | ||
759 | enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); | ||
760 | } | ||
761 | |||
762 | void __cpuinit numa_add_cpu(int cpu) | ||
763 | { | ||
764 | numa_set_cpumask(cpu, 1); | ||
765 | } | ||
766 | |||
767 | void __cpuinit numa_remove_cpu(int cpu) | ||
768 | { | ||
769 | numa_set_cpumask(cpu, 0); | ||
770 | } | ||
771 | |||
772 | int cpu_to_node(int cpu) | ||
773 | { | ||
774 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | ||
775 | printk(KERN_WARNING | ||
776 | "cpu_to_node(%d): usage too early!\n", cpu); | ||
777 | dump_stack(); | ||
778 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | ||
779 | } | ||
780 | return per_cpu(x86_cpu_to_node_map, cpu); | ||
781 | } | ||
782 | EXPORT_SYMBOL(cpu_to_node); | ||
783 | |||
784 | /* | ||
785 | * Same function as cpu_to_node() but used if called before the | ||
786 | * per_cpu areas are setup. | ||
787 | */ | ||
788 | int early_cpu_to_node(int cpu) | ||
789 | { | ||
790 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) | ||
791 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | ||
792 | |||
793 | if (!cpu_possible(cpu)) { | ||
794 | printk(KERN_WARNING | ||
795 | "early_cpu_to_node(%d): no per_cpu area!\n", cpu); | ||
796 | dump_stack(); | ||
797 | return NUMA_NO_NODE; | ||
798 | } | ||
799 | return per_cpu(x86_cpu_to_node_map, cpu); | ||
800 | } | ||
801 | |||
802 | |||
803 | /* empty cpumask */ | ||
804 | static const cpumask_t cpu_mask_none; | ||
805 | |||
806 | /* | ||
807 | * Returns a pointer to the bitmask of CPUs on Node 'node'. | ||
808 | */ | ||
809 | const cpumask_t *cpumask_of_node(int node) | ||
810 | { | ||
811 | if (node_to_cpumask_map == NULL) { | ||
812 | printk(KERN_WARNING | ||
813 | "cpumask_of_node(%d): no node_to_cpumask_map!\n", | ||
814 | node); | ||
815 | dump_stack(); | ||
816 | return (const cpumask_t *)&cpu_online_map; | ||
817 | } | ||
818 | if (node >= nr_node_ids) { | ||
819 | printk(KERN_WARNING | ||
820 | "cpumask_of_node(%d): node > nr_node_ids(%d)\n", | ||
821 | node, nr_node_ids); | ||
822 | dump_stack(); | ||
823 | return &cpu_mask_none; | ||
824 | } | ||
825 | return &node_to_cpumask_map[node]; | ||
826 | } | ||
827 | EXPORT_SYMBOL(cpumask_of_node); | ||
828 | |||
829 | /* | ||
830 | * Returns a bitmask of CPUs on Node 'node'. | ||
831 | * | ||
832 | * Side note: this function creates the returned cpumask on the stack | ||
833 | * so with a high NR_CPUS count, excessive stack space is used. The | ||
834 | * node_to_cpumask_ptr function should be used whenever possible. | ||
835 | */ | ||
836 | cpumask_t node_to_cpumask(int node) | ||
837 | { | ||
838 | if (node_to_cpumask_map == NULL) { | ||
839 | printk(KERN_WARNING | ||
840 | "node_to_cpumask(%d): no node_to_cpumask_map!\n", node); | ||
841 | dump_stack(); | ||
842 | return cpu_online_map; | ||
843 | } | ||
844 | if (node >= nr_node_ids) { | ||
845 | printk(KERN_WARNING | ||
846 | "node_to_cpumask(%d): node > nr_node_ids(%d)\n", | ||
847 | node, nr_node_ids); | ||
848 | dump_stack(); | ||
849 | return cpu_mask_none; | ||
850 | } | ||
851 | return node_to_cpumask_map[node]; | ||
852 | } | ||
853 | EXPORT_SYMBOL(node_to_cpumask); | ||
854 | |||
855 | /* | ||
856 | * --------- end of debug versions of the numa functions --------- | ||
857 | */ | ||
858 | |||
859 | #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ | ||
diff --git a/arch/x86/mm/pageattr.c b/arch/x86/mm/pageattr.c index 7be47d1a97e4..8253bc97587e 100644 --- a/arch/x86/mm/pageattr.c +++ b/arch/x86/mm/pageattr.c | |||
@@ -482,6 +482,13 @@ static int split_large_page(pte_t *kpte, unsigned long address) | |||
482 | pbase = (pte_t *)page_address(base); | 482 | pbase = (pte_t *)page_address(base); |
483 | paravirt_alloc_pte(&init_mm, page_to_pfn(base)); | 483 | paravirt_alloc_pte(&init_mm, page_to_pfn(base)); |
484 | ref_prot = pte_pgprot(pte_clrhuge(*kpte)); | 484 | ref_prot = pte_pgprot(pte_clrhuge(*kpte)); |
485 | /* | ||
486 | * If we ever want to utilize the PAT bit, we need to | ||
487 | * update this function to make sure it's converted from | ||
488 | * bit 12 to bit 7 when we cross from the 2MB level to | ||
489 | * the 4K level: | ||
490 | */ | ||
491 | WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE); | ||
485 | 492 | ||
486 | #ifdef CONFIG_X86_64 | 493 | #ifdef CONFIG_X86_64 |
487 | if (level == PG_LEVEL_1G) { | 494 | if (level == PG_LEVEL_1G) { |
diff --git a/arch/x86/mm/pat.c b/arch/x86/mm/pat.c index e0ab173b6974..2ed37158012d 100644 --- a/arch/x86/mm/pat.c +++ b/arch/x86/mm/pat.c | |||
@@ -31,7 +31,7 @@ | |||
31 | #ifdef CONFIG_X86_PAT | 31 | #ifdef CONFIG_X86_PAT |
32 | int __read_mostly pat_enabled = 1; | 32 | int __read_mostly pat_enabled = 1; |
33 | 33 | ||
34 | void __cpuinit pat_disable(char *reason) | 34 | void __cpuinit pat_disable(const char *reason) |
35 | { | 35 | { |
36 | pat_enabled = 0; | 36 | pat_enabled = 0; |
37 | printk(KERN_INFO "%s\n", reason); | 37 | printk(KERN_INFO "%s\n", reason); |
@@ -43,6 +43,11 @@ static int __init nopat(char *str) | |||
43 | return 0; | 43 | return 0; |
44 | } | 44 | } |
45 | early_param("nopat", nopat); | 45 | early_param("nopat", nopat); |
46 | #else | ||
47 | static inline void pat_disable(const char *reason) | ||
48 | { | ||
49 | (void)reason; | ||
50 | } | ||
46 | #endif | 51 | #endif |
47 | 52 | ||
48 | 53 | ||
@@ -79,16 +84,20 @@ void pat_init(void) | |||
79 | if (!pat_enabled) | 84 | if (!pat_enabled) |
80 | return; | 85 | return; |
81 | 86 | ||
82 | /* Paranoia check. */ | 87 | if (!cpu_has_pat) { |
83 | if (!cpu_has_pat && boot_pat_state) { | 88 | if (!boot_pat_state) { |
84 | /* | 89 | pat_disable("PAT not supported by CPU."); |
85 | * If this happens we are on a secondary CPU, but | 90 | return; |
86 | * switched to PAT on the boot CPU. We have no way to | 91 | } else { |
87 | * undo PAT. | 92 | /* |
88 | */ | 93 | * If this happens we are on a secondary CPU, but |
89 | printk(KERN_ERR "PAT enabled, " | 94 | * switched to PAT on the boot CPU. We have no way to |
90 | "but not supported by secondary CPU\n"); | 95 | * undo PAT. |
91 | BUG(); | 96 | */ |
97 | printk(KERN_ERR "PAT enabled, " | ||
98 | "but not supported by secondary CPU\n"); | ||
99 | BUG(); | ||
100 | } | ||
92 | } | 101 | } |
93 | 102 | ||
94 | /* Set PWT to Write-Combining. All other bits stay the same */ | 103 | /* Set PWT to Write-Combining. All other bits stay the same */ |
@@ -626,6 +635,33 @@ void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot) | |||
626 | } | 635 | } |
627 | 636 | ||
628 | /* | 637 | /* |
638 | * Change the memory type for the physial address range in kernel identity | ||
639 | * mapping space if that range is a part of identity map. | ||
640 | */ | ||
641 | int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags) | ||
642 | { | ||
643 | unsigned long id_sz; | ||
644 | |||
645 | if (!pat_enabled || base >= __pa(high_memory)) | ||
646 | return 0; | ||
647 | |||
648 | id_sz = (__pa(high_memory) < base + size) ? | ||
649 | __pa(high_memory) - base : | ||
650 | size; | ||
651 | |||
652 | if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) { | ||
653 | printk(KERN_INFO | ||
654 | "%s:%d ioremap_change_attr failed %s " | ||
655 | "for %Lx-%Lx\n", | ||
656 | current->comm, current->pid, | ||
657 | cattr_name(flags), | ||
658 | base, (unsigned long long)(base + size)); | ||
659 | return -EINVAL; | ||
660 | } | ||
661 | return 0; | ||
662 | } | ||
663 | |||
664 | /* | ||
629 | * Internal interface to reserve a range of physical memory with prot. | 665 | * Internal interface to reserve a range of physical memory with prot. |
630 | * Reserved non RAM regions only and after successful reserve_memtype, | 666 | * Reserved non RAM regions only and after successful reserve_memtype, |
631 | * this func also keeps identity mapping (if any) in sync with this new prot. | 667 | * this func also keeps identity mapping (if any) in sync with this new prot. |
@@ -634,7 +670,7 @@ static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, | |||
634 | int strict_prot) | 670 | int strict_prot) |
635 | { | 671 | { |
636 | int is_ram = 0; | 672 | int is_ram = 0; |
637 | int id_sz, ret; | 673 | int ret; |
638 | unsigned long flags; | 674 | unsigned long flags; |
639 | unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK); | 675 | unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK); |
640 | 676 | ||
@@ -671,23 +707,8 @@ static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, | |||
671 | flags); | 707 | flags); |
672 | } | 708 | } |
673 | 709 | ||
674 | /* Need to keep identity mapping in sync */ | 710 | if (kernel_map_sync_memtype(paddr, size, flags) < 0) { |
675 | if (paddr >= __pa(high_memory)) | ||
676 | return 0; | ||
677 | |||
678 | id_sz = (__pa(high_memory) < paddr + size) ? | ||
679 | __pa(high_memory) - paddr : | ||
680 | size; | ||
681 | |||
682 | if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) { | ||
683 | free_memtype(paddr, paddr + size); | 711 | free_memtype(paddr, paddr + size); |
684 | printk(KERN_ERR | ||
685 | "%s:%d reserve_pfn_range ioremap_change_attr failed %s " | ||
686 | "for %Lx-%Lx\n", | ||
687 | current->comm, current->pid, | ||
688 | cattr_name(flags), | ||
689 | (unsigned long long)paddr, | ||
690 | (unsigned long long)(paddr + size)); | ||
691 | return -EINVAL; | 712 | return -EINVAL; |
692 | } | 713 | } |
693 | return 0; | 714 | return 0; |
diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c index 86f2ffc43c3d..5b7c7c8464fe 100644 --- a/arch/x86/mm/pgtable.c +++ b/arch/x86/mm/pgtable.c | |||
@@ -313,6 +313,24 @@ int ptep_clear_flush_young(struct vm_area_struct *vma, | |||
313 | return young; | 313 | return young; |
314 | } | 314 | } |
315 | 315 | ||
316 | /** | ||
317 | * reserve_top_address - reserves a hole in the top of kernel address space | ||
318 | * @reserve - size of hole to reserve | ||
319 | * | ||
320 | * Can be used to relocate the fixmap area and poke a hole in the top | ||
321 | * of kernel address space to make room for a hypervisor. | ||
322 | */ | ||
323 | void __init reserve_top_address(unsigned long reserve) | ||
324 | { | ||
325 | #ifdef CONFIG_X86_32 | ||
326 | BUG_ON(fixmaps_set > 0); | ||
327 | printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", | ||
328 | (int)-reserve); | ||
329 | __FIXADDR_TOP = -reserve - PAGE_SIZE; | ||
330 | __VMALLOC_RESERVE += reserve; | ||
331 | #endif | ||
332 | } | ||
333 | |||
316 | int fixmaps_set; | 334 | int fixmaps_set; |
317 | 335 | ||
318 | void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) | 336 | void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) |
diff --git a/arch/x86/mm/pgtable_32.c b/arch/x86/mm/pgtable_32.c index 0951db9ee519..f2e477c91c1b 100644 --- a/arch/x86/mm/pgtable_32.c +++ b/arch/x86/mm/pgtable_32.c | |||
@@ -20,6 +20,8 @@ | |||
20 | #include <asm/tlb.h> | 20 | #include <asm/tlb.h> |
21 | #include <asm/tlbflush.h> | 21 | #include <asm/tlbflush.h> |
22 | 22 | ||
23 | unsigned int __VMALLOC_RESERVE = 128 << 20; | ||
24 | |||
23 | /* | 25 | /* |
24 | * Associate a virtual page frame with a given physical page frame | 26 | * Associate a virtual page frame with a given physical page frame |
25 | * and protection flags for that frame. | 27 | * and protection flags for that frame. |
@@ -97,22 +99,6 @@ void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) | |||
97 | unsigned long __FIXADDR_TOP = 0xfffff000; | 99 | unsigned long __FIXADDR_TOP = 0xfffff000; |
98 | EXPORT_SYMBOL(__FIXADDR_TOP); | 100 | EXPORT_SYMBOL(__FIXADDR_TOP); |
99 | 101 | ||
100 | /** | ||
101 | * reserve_top_address - reserves a hole in the top of kernel address space | ||
102 | * @reserve - size of hole to reserve | ||
103 | * | ||
104 | * Can be used to relocate the fixmap area and poke a hole in the top | ||
105 | * of kernel address space to make room for a hypervisor. | ||
106 | */ | ||
107 | void __init reserve_top_address(unsigned long reserve) | ||
108 | { | ||
109 | BUG_ON(fixmaps_set > 0); | ||
110 | printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", | ||
111 | (int)-reserve); | ||
112 | __FIXADDR_TOP = -reserve - PAGE_SIZE; | ||
113 | __VMALLOC_RESERVE += reserve; | ||
114 | } | ||
115 | |||
116 | /* | 102 | /* |
117 | * vmalloc=size forces the vmalloc area to be exactly 'size' | 103 | * vmalloc=size forces the vmalloc area to be exactly 'size' |
118 | * bytes. This can be used to increase (or decrease) the | 104 | * bytes. This can be used to increase (or decrease) the |
diff --git a/arch/x86/mm/srat_64.c b/arch/x86/mm/srat_64.c index 09737c8af074..574c8bc95ef0 100644 --- a/arch/x86/mm/srat_64.c +++ b/arch/x86/mm/srat_64.c | |||
@@ -20,7 +20,8 @@ | |||
20 | #include <asm/proto.h> | 20 | #include <asm/proto.h> |
21 | #include <asm/numa.h> | 21 | #include <asm/numa.h> |
22 | #include <asm/e820.h> | 22 | #include <asm/e820.h> |
23 | #include <asm/genapic.h> | 23 | #include <asm/apic.h> |
24 | #include <asm/uv/uv.h> | ||
24 | 25 | ||
25 | int acpi_numa __initdata; | 26 | int acpi_numa __initdata; |
26 | 27 | ||
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c new file mode 100644 index 000000000000..a654d59e4483 --- /dev/null +++ b/arch/x86/mm/tlb.c | |||
@@ -0,0 +1,295 @@ | |||
1 | #include <linux/init.h> | ||
2 | |||
3 | #include <linux/mm.h> | ||
4 | #include <linux/spinlock.h> | ||
5 | #include <linux/smp.h> | ||
6 | #include <linux/interrupt.h> | ||
7 | #include <linux/module.h> | ||
8 | |||
9 | #include <asm/tlbflush.h> | ||
10 | #include <asm/mmu_context.h> | ||
11 | #include <asm/apic.h> | ||
12 | #include <asm/uv/uv.h> | ||
13 | |||
14 | DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) | ||
15 | = { &init_mm, 0, }; | ||
16 | |||
17 | /* | ||
18 | * Smarter SMP flushing macros. | ||
19 | * c/o Linus Torvalds. | ||
20 | * | ||
21 | * These mean you can really definitely utterly forget about | ||
22 | * writing to user space from interrupts. (Its not allowed anyway). | ||
23 | * | ||
24 | * Optimizations Manfred Spraul <manfred@colorfullife.com> | ||
25 | * | ||
26 | * More scalable flush, from Andi Kleen | ||
27 | * | ||
28 | * To avoid global state use 8 different call vectors. | ||
29 | * Each CPU uses a specific vector to trigger flushes on other | ||
30 | * CPUs. Depending on the received vector the target CPUs look into | ||
31 | * the right array slot for the flush data. | ||
32 | * | ||
33 | * With more than 8 CPUs they are hashed to the 8 available | ||
34 | * vectors. The limited global vector space forces us to this right now. | ||
35 | * In future when interrupts are split into per CPU domains this could be | ||
36 | * fixed, at the cost of triggering multiple IPIs in some cases. | ||
37 | */ | ||
38 | |||
39 | union smp_flush_state { | ||
40 | struct { | ||
41 | struct mm_struct *flush_mm; | ||
42 | unsigned long flush_va; | ||
43 | spinlock_t tlbstate_lock; | ||
44 | DECLARE_BITMAP(flush_cpumask, NR_CPUS); | ||
45 | }; | ||
46 | char pad[CONFIG_X86_INTERNODE_CACHE_BYTES]; | ||
47 | } ____cacheline_internodealigned_in_smp; | ||
48 | |||
49 | /* State is put into the per CPU data section, but padded | ||
50 | to a full cache line because other CPUs can access it and we don't | ||
51 | want false sharing in the per cpu data segment. */ | ||
52 | static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS]; | ||
53 | |||
54 | /* | ||
55 | * We cannot call mmdrop() because we are in interrupt context, | ||
56 | * instead update mm->cpu_vm_mask. | ||
57 | */ | ||
58 | void leave_mm(int cpu) | ||
59 | { | ||
60 | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) | ||
61 | BUG(); | ||
62 | cpu_clear(cpu, percpu_read(cpu_tlbstate.active_mm)->cpu_vm_mask); | ||
63 | load_cr3(swapper_pg_dir); | ||
64 | } | ||
65 | EXPORT_SYMBOL_GPL(leave_mm); | ||
66 | |||
67 | /* | ||
68 | * | ||
69 | * The flush IPI assumes that a thread switch happens in this order: | ||
70 | * [cpu0: the cpu that switches] | ||
71 | * 1) switch_mm() either 1a) or 1b) | ||
72 | * 1a) thread switch to a different mm | ||
73 | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | ||
74 | * Stop ipi delivery for the old mm. This is not synchronized with | ||
75 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis | ||
76 | * for the wrong mm, and in the worst case we perform a superfluous | ||
77 | * tlb flush. | ||
78 | * 1a2) set cpu mmu_state to TLBSTATE_OK | ||
79 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | ||
80 | * was in lazy tlb mode. | ||
81 | * 1a3) update cpu active_mm | ||
82 | * Now cpu0 accepts tlb flushes for the new mm. | ||
83 | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | ||
84 | * Now the other cpus will send tlb flush ipis. | ||
85 | * 1a4) change cr3. | ||
86 | * 1b) thread switch without mm change | ||
87 | * cpu active_mm is correct, cpu0 already handles | ||
88 | * flush ipis. | ||
89 | * 1b1) set cpu mmu_state to TLBSTATE_OK | ||
90 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. | ||
91 | * Atomically set the bit [other cpus will start sending flush ipis], | ||
92 | * and test the bit. | ||
93 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | ||
94 | * 2) switch %%esp, ie current | ||
95 | * | ||
96 | * The interrupt must handle 2 special cases: | ||
97 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | ||
98 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only | ||
99 | * runs in kernel space, the cpu could load tlb entries for user space | ||
100 | * pages. | ||
101 | * | ||
102 | * The good news is that cpu mmu_state is local to each cpu, no | ||
103 | * write/read ordering problems. | ||
104 | */ | ||
105 | |||
106 | /* | ||
107 | * TLB flush IPI: | ||
108 | * | ||
109 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | ||
110 | * 2) Leave the mm if we are in the lazy tlb mode. | ||
111 | * | ||
112 | * Interrupts are disabled. | ||
113 | */ | ||
114 | |||
115 | /* | ||
116 | * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop | ||
117 | * but still used for documentation purpose but the usage is slightly | ||
118 | * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt | ||
119 | * entry calls in with the first parameter in %eax. Maybe define | ||
120 | * intrlinkage? | ||
121 | */ | ||
122 | #ifdef CONFIG_X86_64 | ||
123 | asmlinkage | ||
124 | #endif | ||
125 | void smp_invalidate_interrupt(struct pt_regs *regs) | ||
126 | { | ||
127 | unsigned int cpu; | ||
128 | unsigned int sender; | ||
129 | union smp_flush_state *f; | ||
130 | |||
131 | cpu = smp_processor_id(); | ||
132 | /* | ||
133 | * orig_rax contains the negated interrupt vector. | ||
134 | * Use that to determine where the sender put the data. | ||
135 | */ | ||
136 | sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; | ||
137 | f = &flush_state[sender]; | ||
138 | |||
139 | if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask))) | ||
140 | goto out; | ||
141 | /* | ||
142 | * This was a BUG() but until someone can quote me the | ||
143 | * line from the intel manual that guarantees an IPI to | ||
144 | * multiple CPUs is retried _only_ on the erroring CPUs | ||
145 | * its staying as a return | ||
146 | * | ||
147 | * BUG(); | ||
148 | */ | ||
149 | |||
150 | if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) { | ||
151 | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { | ||
152 | if (f->flush_va == TLB_FLUSH_ALL) | ||
153 | local_flush_tlb(); | ||
154 | else | ||
155 | __flush_tlb_one(f->flush_va); | ||
156 | } else | ||
157 | leave_mm(cpu); | ||
158 | } | ||
159 | out: | ||
160 | ack_APIC_irq(); | ||
161 | smp_mb__before_clear_bit(); | ||
162 | cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask)); | ||
163 | smp_mb__after_clear_bit(); | ||
164 | inc_irq_stat(irq_tlb_count); | ||
165 | } | ||
166 | |||
167 | static void flush_tlb_others_ipi(const struct cpumask *cpumask, | ||
168 | struct mm_struct *mm, unsigned long va) | ||
169 | { | ||
170 | unsigned int sender; | ||
171 | union smp_flush_state *f; | ||
172 | |||
173 | /* Caller has disabled preemption */ | ||
174 | sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; | ||
175 | f = &flush_state[sender]; | ||
176 | |||
177 | /* | ||
178 | * Could avoid this lock when | ||
179 | * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is | ||
180 | * probably not worth checking this for a cache-hot lock. | ||
181 | */ | ||
182 | spin_lock(&f->tlbstate_lock); | ||
183 | |||
184 | f->flush_mm = mm; | ||
185 | f->flush_va = va; | ||
186 | cpumask_andnot(to_cpumask(f->flush_cpumask), | ||
187 | cpumask, cpumask_of(smp_processor_id())); | ||
188 | |||
189 | /* | ||
190 | * Make the above memory operations globally visible before | ||
191 | * sending the IPI. | ||
192 | */ | ||
193 | smp_mb(); | ||
194 | /* | ||
195 | * We have to send the IPI only to | ||
196 | * CPUs affected. | ||
197 | */ | ||
198 | apic->send_IPI_mask(to_cpumask(f->flush_cpumask), | ||
199 | INVALIDATE_TLB_VECTOR_START + sender); | ||
200 | |||
201 | while (!cpumask_empty(to_cpumask(f->flush_cpumask))) | ||
202 | cpu_relax(); | ||
203 | |||
204 | f->flush_mm = NULL; | ||
205 | f->flush_va = 0; | ||
206 | spin_unlock(&f->tlbstate_lock); | ||
207 | } | ||
208 | |||
209 | void native_flush_tlb_others(const struct cpumask *cpumask, | ||
210 | struct mm_struct *mm, unsigned long va) | ||
211 | { | ||
212 | if (is_uv_system()) { | ||
213 | unsigned int cpu; | ||
214 | |||
215 | cpu = get_cpu(); | ||
216 | cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu); | ||
217 | if (cpumask) | ||
218 | flush_tlb_others_ipi(cpumask, mm, va); | ||
219 | put_cpu(); | ||
220 | return; | ||
221 | } | ||
222 | flush_tlb_others_ipi(cpumask, mm, va); | ||
223 | } | ||
224 | |||
225 | static int __cpuinit init_smp_flush(void) | ||
226 | { | ||
227 | int i; | ||
228 | |||
229 | for (i = 0; i < ARRAY_SIZE(flush_state); i++) | ||
230 | spin_lock_init(&flush_state[i].tlbstate_lock); | ||
231 | |||
232 | return 0; | ||
233 | } | ||
234 | core_initcall(init_smp_flush); | ||
235 | |||
236 | void flush_tlb_current_task(void) | ||
237 | { | ||
238 | struct mm_struct *mm = current->mm; | ||
239 | |||
240 | preempt_disable(); | ||
241 | |||
242 | local_flush_tlb(); | ||
243 | if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) | ||
244 | flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL); | ||
245 | preempt_enable(); | ||
246 | } | ||
247 | |||
248 | void flush_tlb_mm(struct mm_struct *mm) | ||
249 | { | ||
250 | preempt_disable(); | ||
251 | |||
252 | if (current->active_mm == mm) { | ||
253 | if (current->mm) | ||
254 | local_flush_tlb(); | ||
255 | else | ||
256 | leave_mm(smp_processor_id()); | ||
257 | } | ||
258 | if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) | ||
259 | flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL); | ||
260 | |||
261 | preempt_enable(); | ||
262 | } | ||
263 | |||
264 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) | ||
265 | { | ||
266 | struct mm_struct *mm = vma->vm_mm; | ||
267 | |||
268 | preempt_disable(); | ||
269 | |||
270 | if (current->active_mm == mm) { | ||
271 | if (current->mm) | ||
272 | __flush_tlb_one(va); | ||
273 | else | ||
274 | leave_mm(smp_processor_id()); | ||
275 | } | ||
276 | |||
277 | if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids) | ||
278 | flush_tlb_others(&mm->cpu_vm_mask, mm, va); | ||
279 | |||
280 | preempt_enable(); | ||
281 | } | ||
282 | |||
283 | static void do_flush_tlb_all(void *info) | ||
284 | { | ||
285 | unsigned long cpu = smp_processor_id(); | ||
286 | |||
287 | __flush_tlb_all(); | ||
288 | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) | ||
289 | leave_mm(cpu); | ||
290 | } | ||
291 | |||
292 | void flush_tlb_all(void) | ||
293 | { | ||
294 | on_each_cpu(do_flush_tlb_all, NULL, 1); | ||
295 | } | ||