diff options
Diffstat (limited to 'arch/x86/mm/fault_64.c')
-rw-r--r-- | arch/x86/mm/fault_64.c | 636 |
1 files changed, 636 insertions, 0 deletions
diff --git a/arch/x86/mm/fault_64.c b/arch/x86/mm/fault_64.c new file mode 100644 index 000000000000..54816adb8e93 --- /dev/null +++ b/arch/x86/mm/fault_64.c | |||
@@ -0,0 +1,636 @@ | |||
1 | /* | ||
2 | * linux/arch/x86-64/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | ||
6 | */ | ||
7 | |||
8 | #include <linux/signal.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/errno.h> | ||
12 | #include <linux/string.h> | ||
13 | #include <linux/types.h> | ||
14 | #include <linux/ptrace.h> | ||
15 | #include <linux/mman.h> | ||
16 | #include <linux/mm.h> | ||
17 | #include <linux/smp.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/tty.h> | ||
21 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
22 | #include <linux/compiler.h> | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kprobes.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/kdebug.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/pgalloc.h> | ||
31 | #include <asm/smp.h> | ||
32 | #include <asm/tlbflush.h> | ||
33 | #include <asm/proto.h> | ||
34 | #include <asm-generic/sections.h> | ||
35 | |||
36 | /* Page fault error code bits */ | ||
37 | #define PF_PROT (1<<0) /* or no page found */ | ||
38 | #define PF_WRITE (1<<1) | ||
39 | #define PF_USER (1<<2) | ||
40 | #define PF_RSVD (1<<3) | ||
41 | #define PF_INSTR (1<<4) | ||
42 | |||
43 | static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain); | ||
44 | |||
45 | /* Hook to register for page fault notifications */ | ||
46 | int register_page_fault_notifier(struct notifier_block *nb) | ||
47 | { | ||
48 | vmalloc_sync_all(); | ||
49 | return atomic_notifier_chain_register(¬ify_page_fault_chain, nb); | ||
50 | } | ||
51 | EXPORT_SYMBOL_GPL(register_page_fault_notifier); | ||
52 | |||
53 | int unregister_page_fault_notifier(struct notifier_block *nb) | ||
54 | { | ||
55 | return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb); | ||
56 | } | ||
57 | EXPORT_SYMBOL_GPL(unregister_page_fault_notifier); | ||
58 | |||
59 | static inline int notify_page_fault(struct pt_regs *regs, long err) | ||
60 | { | ||
61 | struct die_args args = { | ||
62 | .regs = regs, | ||
63 | .str = "page fault", | ||
64 | .err = err, | ||
65 | .trapnr = 14, | ||
66 | .signr = SIGSEGV | ||
67 | }; | ||
68 | return atomic_notifier_call_chain(¬ify_page_fault_chain, | ||
69 | DIE_PAGE_FAULT, &args); | ||
70 | } | ||
71 | |||
72 | /* Sometimes the CPU reports invalid exceptions on prefetch. | ||
73 | Check that here and ignore. | ||
74 | Opcode checker based on code by Richard Brunner */ | ||
75 | static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
76 | unsigned long error_code) | ||
77 | { | ||
78 | unsigned char *instr; | ||
79 | int scan_more = 1; | ||
80 | int prefetch = 0; | ||
81 | unsigned char *max_instr; | ||
82 | |||
83 | /* If it was a exec fault ignore */ | ||
84 | if (error_code & PF_INSTR) | ||
85 | return 0; | ||
86 | |||
87 | instr = (unsigned char __user *)convert_rip_to_linear(current, regs); | ||
88 | max_instr = instr + 15; | ||
89 | |||
90 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | ||
91 | return 0; | ||
92 | |||
93 | while (scan_more && instr < max_instr) { | ||
94 | unsigned char opcode; | ||
95 | unsigned char instr_hi; | ||
96 | unsigned char instr_lo; | ||
97 | |||
98 | if (probe_kernel_address(instr, opcode)) | ||
99 | break; | ||
100 | |||
101 | instr_hi = opcode & 0xf0; | ||
102 | instr_lo = opcode & 0x0f; | ||
103 | instr++; | ||
104 | |||
105 | switch (instr_hi) { | ||
106 | case 0x20: | ||
107 | case 0x30: | ||
108 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 | ||
109 | prefixes. In long mode, the CPU will signal | ||
110 | invalid opcode if some of these prefixes are | ||
111 | present so we will never get here anyway */ | ||
112 | scan_more = ((instr_lo & 7) == 0x6); | ||
113 | break; | ||
114 | |||
115 | case 0x40: | ||
116 | /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes | ||
117 | Need to figure out under what instruction mode the | ||
118 | instruction was issued ... */ | ||
119 | /* Could check the LDT for lm, but for now it's good | ||
120 | enough to assume that long mode only uses well known | ||
121 | segments or kernel. */ | ||
122 | scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
123 | break; | ||
124 | |||
125 | case 0x60: | ||
126 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
127 | scan_more = (instr_lo & 0xC) == 0x4; | ||
128 | break; | ||
129 | case 0xF0: | ||
130 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */ | ||
131 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
132 | break; | ||
133 | case 0x00: | ||
134 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
135 | scan_more = 0; | ||
136 | if (probe_kernel_address(instr, opcode)) | ||
137 | break; | ||
138 | prefetch = (instr_lo == 0xF) && | ||
139 | (opcode == 0x0D || opcode == 0x18); | ||
140 | break; | ||
141 | default: | ||
142 | scan_more = 0; | ||
143 | break; | ||
144 | } | ||
145 | } | ||
146 | return prefetch; | ||
147 | } | ||
148 | |||
149 | static int bad_address(void *p) | ||
150 | { | ||
151 | unsigned long dummy; | ||
152 | return probe_kernel_address((unsigned long *)p, dummy); | ||
153 | } | ||
154 | |||
155 | void dump_pagetable(unsigned long address) | ||
156 | { | ||
157 | pgd_t *pgd; | ||
158 | pud_t *pud; | ||
159 | pmd_t *pmd; | ||
160 | pte_t *pte; | ||
161 | |||
162 | pgd = (pgd_t *)read_cr3(); | ||
163 | |||
164 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | ||
165 | pgd += pgd_index(address); | ||
166 | if (bad_address(pgd)) goto bad; | ||
167 | printk("PGD %lx ", pgd_val(*pgd)); | ||
168 | if (!pgd_present(*pgd)) goto ret; | ||
169 | |||
170 | pud = pud_offset(pgd, address); | ||
171 | if (bad_address(pud)) goto bad; | ||
172 | printk("PUD %lx ", pud_val(*pud)); | ||
173 | if (!pud_present(*pud)) goto ret; | ||
174 | |||
175 | pmd = pmd_offset(pud, address); | ||
176 | if (bad_address(pmd)) goto bad; | ||
177 | printk("PMD %lx ", pmd_val(*pmd)); | ||
178 | if (!pmd_present(*pmd)) goto ret; | ||
179 | |||
180 | pte = pte_offset_kernel(pmd, address); | ||
181 | if (bad_address(pte)) goto bad; | ||
182 | printk("PTE %lx", pte_val(*pte)); | ||
183 | ret: | ||
184 | printk("\n"); | ||
185 | return; | ||
186 | bad: | ||
187 | printk("BAD\n"); | ||
188 | } | ||
189 | |||
190 | static const char errata93_warning[] = | ||
191 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
192 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
193 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
194 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
195 | |||
196 | /* Workaround for K8 erratum #93 & buggy BIOS. | ||
197 | BIOS SMM functions are required to use a specific workaround | ||
198 | to avoid corruption of the 64bit RIP register on C stepping K8. | ||
199 | A lot of BIOS that didn't get tested properly miss this. | ||
200 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
201 | Try to work around it here. | ||
202 | Note we only handle faults in kernel here. */ | ||
203 | |||
204 | static int is_errata93(struct pt_regs *regs, unsigned long address) | ||
205 | { | ||
206 | static int warned; | ||
207 | if (address != regs->rip) | ||
208 | return 0; | ||
209 | if ((address >> 32) != 0) | ||
210 | return 0; | ||
211 | address |= 0xffffffffUL << 32; | ||
212 | if ((address >= (u64)_stext && address <= (u64)_etext) || | ||
213 | (address >= MODULES_VADDR && address <= MODULES_END)) { | ||
214 | if (!warned) { | ||
215 | printk(errata93_warning); | ||
216 | warned = 1; | ||
217 | } | ||
218 | regs->rip = address; | ||
219 | return 1; | ||
220 | } | ||
221 | return 0; | ||
222 | } | ||
223 | |||
224 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | ||
225 | unsigned long error_code) | ||
226 | { | ||
227 | unsigned long flags = oops_begin(); | ||
228 | struct task_struct *tsk; | ||
229 | |||
230 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | ||
231 | current->comm, address); | ||
232 | dump_pagetable(address); | ||
233 | tsk = current; | ||
234 | tsk->thread.cr2 = address; | ||
235 | tsk->thread.trap_no = 14; | ||
236 | tsk->thread.error_code = error_code; | ||
237 | __die("Bad pagetable", regs, error_code); | ||
238 | oops_end(flags); | ||
239 | do_exit(SIGKILL); | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * Handle a fault on the vmalloc area | ||
244 | * | ||
245 | * This assumes no large pages in there. | ||
246 | */ | ||
247 | static int vmalloc_fault(unsigned long address) | ||
248 | { | ||
249 | pgd_t *pgd, *pgd_ref; | ||
250 | pud_t *pud, *pud_ref; | ||
251 | pmd_t *pmd, *pmd_ref; | ||
252 | pte_t *pte, *pte_ref; | ||
253 | |||
254 | /* Copy kernel mappings over when needed. This can also | ||
255 | happen within a race in page table update. In the later | ||
256 | case just flush. */ | ||
257 | |||
258 | pgd = pgd_offset(current->mm ?: &init_mm, address); | ||
259 | pgd_ref = pgd_offset_k(address); | ||
260 | if (pgd_none(*pgd_ref)) | ||
261 | return -1; | ||
262 | if (pgd_none(*pgd)) | ||
263 | set_pgd(pgd, *pgd_ref); | ||
264 | else | ||
265 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
266 | |||
267 | /* Below here mismatches are bugs because these lower tables | ||
268 | are shared */ | ||
269 | |||
270 | pud = pud_offset(pgd, address); | ||
271 | pud_ref = pud_offset(pgd_ref, address); | ||
272 | if (pud_none(*pud_ref)) | ||
273 | return -1; | ||
274 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
275 | BUG(); | ||
276 | pmd = pmd_offset(pud, address); | ||
277 | pmd_ref = pmd_offset(pud_ref, address); | ||
278 | if (pmd_none(*pmd_ref)) | ||
279 | return -1; | ||
280 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
281 | BUG(); | ||
282 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
283 | if (!pte_present(*pte_ref)) | ||
284 | return -1; | ||
285 | pte = pte_offset_kernel(pmd, address); | ||
286 | /* Don't use pte_page here, because the mappings can point | ||
287 | outside mem_map, and the NUMA hash lookup cannot handle | ||
288 | that. */ | ||
289 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
290 | BUG(); | ||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | static int page_fault_trace; | ||
295 | int show_unhandled_signals = 1; | ||
296 | |||
297 | /* | ||
298 | * This routine handles page faults. It determines the address, | ||
299 | * and the problem, and then passes it off to one of the appropriate | ||
300 | * routines. | ||
301 | */ | ||
302 | asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, | ||
303 | unsigned long error_code) | ||
304 | { | ||
305 | struct task_struct *tsk; | ||
306 | struct mm_struct *mm; | ||
307 | struct vm_area_struct * vma; | ||
308 | unsigned long address; | ||
309 | const struct exception_table_entry *fixup; | ||
310 | int write, fault; | ||
311 | unsigned long flags; | ||
312 | siginfo_t info; | ||
313 | |||
314 | tsk = current; | ||
315 | mm = tsk->mm; | ||
316 | prefetchw(&mm->mmap_sem); | ||
317 | |||
318 | /* get the address */ | ||
319 | address = read_cr2(); | ||
320 | |||
321 | info.si_code = SEGV_MAPERR; | ||
322 | |||
323 | |||
324 | /* | ||
325 | * We fault-in kernel-space virtual memory on-demand. The | ||
326 | * 'reference' page table is init_mm.pgd. | ||
327 | * | ||
328 | * NOTE! We MUST NOT take any locks for this case. We may | ||
329 | * be in an interrupt or a critical region, and should | ||
330 | * only copy the information from the master page table, | ||
331 | * nothing more. | ||
332 | * | ||
333 | * This verifies that the fault happens in kernel space | ||
334 | * (error_code & 4) == 0, and that the fault was not a | ||
335 | * protection error (error_code & 9) == 0. | ||
336 | */ | ||
337 | if (unlikely(address >= TASK_SIZE64)) { | ||
338 | /* | ||
339 | * Don't check for the module range here: its PML4 | ||
340 | * is always initialized because it's shared with the main | ||
341 | * kernel text. Only vmalloc may need PML4 syncups. | ||
342 | */ | ||
343 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
344 | ((address >= VMALLOC_START && address < VMALLOC_END))) { | ||
345 | if (vmalloc_fault(address) >= 0) | ||
346 | return; | ||
347 | } | ||
348 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
349 | return; | ||
350 | /* | ||
351 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
352 | * fault we could otherwise deadlock. | ||
353 | */ | ||
354 | goto bad_area_nosemaphore; | ||
355 | } | ||
356 | |||
357 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
358 | return; | ||
359 | |||
360 | if (likely(regs->eflags & X86_EFLAGS_IF)) | ||
361 | local_irq_enable(); | ||
362 | |||
363 | if (unlikely(page_fault_trace)) | ||
364 | printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n", | ||
365 | regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); | ||
366 | |||
367 | if (unlikely(error_code & PF_RSVD)) | ||
368 | pgtable_bad(address, regs, error_code); | ||
369 | |||
370 | /* | ||
371 | * If we're in an interrupt or have no user | ||
372 | * context, we must not take the fault.. | ||
373 | */ | ||
374 | if (unlikely(in_atomic() || !mm)) | ||
375 | goto bad_area_nosemaphore; | ||
376 | |||
377 | /* | ||
378 | * User-mode registers count as a user access even for any | ||
379 | * potential system fault or CPU buglet. | ||
380 | */ | ||
381 | if (user_mode_vm(regs)) | ||
382 | error_code |= PF_USER; | ||
383 | |||
384 | again: | ||
385 | /* When running in the kernel we expect faults to occur only to | ||
386 | * addresses in user space. All other faults represent errors in the | ||
387 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
388 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
389 | * we will deadlock attempting to validate the fault against the | ||
390 | * address space. Luckily the kernel only validly references user | ||
391 | * space from well defined areas of code, which are listed in the | ||
392 | * exceptions table. | ||
393 | * | ||
394 | * As the vast majority of faults will be valid we will only perform | ||
395 | * the source reference check when there is a possibilty of a deadlock. | ||
396 | * Attempt to lock the address space, if we cannot we then validate the | ||
397 | * source. If this is invalid we can skip the address space check, | ||
398 | * thus avoiding the deadlock. | ||
399 | */ | ||
400 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
401 | if ((error_code & PF_USER) == 0 && | ||
402 | !search_exception_tables(regs->rip)) | ||
403 | goto bad_area_nosemaphore; | ||
404 | down_read(&mm->mmap_sem); | ||
405 | } | ||
406 | |||
407 | vma = find_vma(mm, address); | ||
408 | if (!vma) | ||
409 | goto bad_area; | ||
410 | if (likely(vma->vm_start <= address)) | ||
411 | goto good_area; | ||
412 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
413 | goto bad_area; | ||
414 | if (error_code & 4) { | ||
415 | /* Allow userspace just enough access below the stack pointer | ||
416 | * to let the 'enter' instruction work. | ||
417 | */ | ||
418 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp) | ||
419 | goto bad_area; | ||
420 | } | ||
421 | if (expand_stack(vma, address)) | ||
422 | goto bad_area; | ||
423 | /* | ||
424 | * Ok, we have a good vm_area for this memory access, so | ||
425 | * we can handle it.. | ||
426 | */ | ||
427 | good_area: | ||
428 | info.si_code = SEGV_ACCERR; | ||
429 | write = 0; | ||
430 | switch (error_code & (PF_PROT|PF_WRITE)) { | ||
431 | default: /* 3: write, present */ | ||
432 | /* fall through */ | ||
433 | case PF_WRITE: /* write, not present */ | ||
434 | if (!(vma->vm_flags & VM_WRITE)) | ||
435 | goto bad_area; | ||
436 | write++; | ||
437 | break; | ||
438 | case PF_PROT: /* read, present */ | ||
439 | goto bad_area; | ||
440 | case 0: /* read, not present */ | ||
441 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
442 | goto bad_area; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * If for any reason at all we couldn't handle the fault, | ||
447 | * make sure we exit gracefully rather than endlessly redo | ||
448 | * the fault. | ||
449 | */ | ||
450 | fault = handle_mm_fault(mm, vma, address, write); | ||
451 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
452 | if (fault & VM_FAULT_OOM) | ||
453 | goto out_of_memory; | ||
454 | else if (fault & VM_FAULT_SIGBUS) | ||
455 | goto do_sigbus; | ||
456 | BUG(); | ||
457 | } | ||
458 | if (fault & VM_FAULT_MAJOR) | ||
459 | tsk->maj_flt++; | ||
460 | else | ||
461 | tsk->min_flt++; | ||
462 | up_read(&mm->mmap_sem); | ||
463 | return; | ||
464 | |||
465 | /* | ||
466 | * Something tried to access memory that isn't in our memory map.. | ||
467 | * Fix it, but check if it's kernel or user first.. | ||
468 | */ | ||
469 | bad_area: | ||
470 | up_read(&mm->mmap_sem); | ||
471 | |||
472 | bad_area_nosemaphore: | ||
473 | /* User mode accesses just cause a SIGSEGV */ | ||
474 | if (error_code & PF_USER) { | ||
475 | |||
476 | /* | ||
477 | * It's possible to have interrupts off here. | ||
478 | */ | ||
479 | local_irq_enable(); | ||
480 | |||
481 | if (is_prefetch(regs, address, error_code)) | ||
482 | return; | ||
483 | |||
484 | /* Work around K8 erratum #100 K8 in compat mode | ||
485 | occasionally jumps to illegal addresses >4GB. We | ||
486 | catch this here in the page fault handler because | ||
487 | these addresses are not reachable. Just detect this | ||
488 | case and return. Any code segment in LDT is | ||
489 | compatibility mode. */ | ||
490 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | ||
491 | (address >> 32)) | ||
492 | return; | ||
493 | |||
494 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
495 | printk_ratelimit()) { | ||
496 | printk( | ||
497 | "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n", | ||
498 | tsk->pid > 1 ? KERN_INFO : KERN_EMERG, | ||
499 | tsk->comm, tsk->pid, address, regs->rip, | ||
500 | regs->rsp, error_code); | ||
501 | } | ||
502 | |||
503 | tsk->thread.cr2 = address; | ||
504 | /* Kernel addresses are always protection faults */ | ||
505 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
506 | tsk->thread.trap_no = 14; | ||
507 | info.si_signo = SIGSEGV; | ||
508 | info.si_errno = 0; | ||
509 | /* info.si_code has been set above */ | ||
510 | info.si_addr = (void __user *)address; | ||
511 | force_sig_info(SIGSEGV, &info, tsk); | ||
512 | return; | ||
513 | } | ||
514 | |||
515 | no_context: | ||
516 | |||
517 | /* Are we prepared to handle this kernel fault? */ | ||
518 | fixup = search_exception_tables(regs->rip); | ||
519 | if (fixup) { | ||
520 | regs->rip = fixup->fixup; | ||
521 | return; | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * Hall of shame of CPU/BIOS bugs. | ||
526 | */ | ||
527 | |||
528 | if (is_prefetch(regs, address, error_code)) | ||
529 | return; | ||
530 | |||
531 | if (is_errata93(regs, address)) | ||
532 | return; | ||
533 | |||
534 | /* | ||
535 | * Oops. The kernel tried to access some bad page. We'll have to | ||
536 | * terminate things with extreme prejudice. | ||
537 | */ | ||
538 | |||
539 | flags = oops_begin(); | ||
540 | |||
541 | if (address < PAGE_SIZE) | ||
542 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | ||
543 | else | ||
544 | printk(KERN_ALERT "Unable to handle kernel paging request"); | ||
545 | printk(" at %016lx RIP: \n" KERN_ALERT,address); | ||
546 | printk_address(regs->rip); | ||
547 | dump_pagetable(address); | ||
548 | tsk->thread.cr2 = address; | ||
549 | tsk->thread.trap_no = 14; | ||
550 | tsk->thread.error_code = error_code; | ||
551 | __die("Oops", regs, error_code); | ||
552 | /* Executive summary in case the body of the oops scrolled away */ | ||
553 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
554 | oops_end(flags); | ||
555 | do_exit(SIGKILL); | ||
556 | |||
557 | /* | ||
558 | * We ran out of memory, or some other thing happened to us that made | ||
559 | * us unable to handle the page fault gracefully. | ||
560 | */ | ||
561 | out_of_memory: | ||
562 | up_read(&mm->mmap_sem); | ||
563 | if (is_init(current)) { | ||
564 | yield(); | ||
565 | goto again; | ||
566 | } | ||
567 | printk("VM: killing process %s\n", tsk->comm); | ||
568 | if (error_code & 4) | ||
569 | do_group_exit(SIGKILL); | ||
570 | goto no_context; | ||
571 | |||
572 | do_sigbus: | ||
573 | up_read(&mm->mmap_sem); | ||
574 | |||
575 | /* Kernel mode? Handle exceptions or die */ | ||
576 | if (!(error_code & PF_USER)) | ||
577 | goto no_context; | ||
578 | |||
579 | tsk->thread.cr2 = address; | ||
580 | tsk->thread.error_code = error_code; | ||
581 | tsk->thread.trap_no = 14; | ||
582 | info.si_signo = SIGBUS; | ||
583 | info.si_errno = 0; | ||
584 | info.si_code = BUS_ADRERR; | ||
585 | info.si_addr = (void __user *)address; | ||
586 | force_sig_info(SIGBUS, &info, tsk); | ||
587 | return; | ||
588 | } | ||
589 | |||
590 | DEFINE_SPINLOCK(pgd_lock); | ||
591 | LIST_HEAD(pgd_list); | ||
592 | |||
593 | void vmalloc_sync_all(void) | ||
594 | { | ||
595 | /* Note that races in the updates of insync and start aren't | ||
596 | problematic: | ||
597 | insync can only get set bits added, and updates to start are only | ||
598 | improving performance (without affecting correctness if undone). */ | ||
599 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
600 | static unsigned long start = VMALLOC_START & PGDIR_MASK; | ||
601 | unsigned long address; | ||
602 | |||
603 | for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { | ||
604 | if (!test_bit(pgd_index(address), insync)) { | ||
605 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
606 | struct page *page; | ||
607 | |||
608 | if (pgd_none(*pgd_ref)) | ||
609 | continue; | ||
610 | spin_lock(&pgd_lock); | ||
611 | list_for_each_entry(page, &pgd_list, lru) { | ||
612 | pgd_t *pgd; | ||
613 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
614 | if (pgd_none(*pgd)) | ||
615 | set_pgd(pgd, *pgd_ref); | ||
616 | else | ||
617 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
618 | } | ||
619 | spin_unlock(&pgd_lock); | ||
620 | set_bit(pgd_index(address), insync); | ||
621 | } | ||
622 | if (address == start) | ||
623 | start = address + PGDIR_SIZE; | ||
624 | } | ||
625 | /* Check that there is no need to do the same for the modules area. */ | ||
626 | BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); | ||
627 | BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == | ||
628 | (__START_KERNEL & PGDIR_MASK))); | ||
629 | } | ||
630 | |||
631 | static int __init enable_pagefaulttrace(char *str) | ||
632 | { | ||
633 | page_fault_trace = 1; | ||
634 | return 1; | ||
635 | } | ||
636 | __setup("pagefaulttrace", enable_pagefaulttrace); | ||