diff options
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r-- | arch/x86/mm/fault.c | 986 |
1 files changed, 986 insertions, 0 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c new file mode 100644 index 000000000000..621afb6343dc --- /dev/null +++ b/arch/x86/mm/fault.c | |||
@@ -0,0 +1,986 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1995 Linus Torvalds | ||
3 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | ||
4 | */ | ||
5 | |||
6 | #include <linux/signal.h> | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/errno.h> | ||
10 | #include <linux/string.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/ptrace.h> | ||
13 | #include <linux/mman.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/tty.h> | ||
19 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
20 | #include <linux/compiler.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kprobes.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/kdebug.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/desc.h> | ||
31 | #include <asm/segment.h> | ||
32 | #include <asm/pgalloc.h> | ||
33 | #include <asm/smp.h> | ||
34 | #include <asm/tlbflush.h> | ||
35 | #include <asm/proto.h> | ||
36 | #include <asm-generic/sections.h> | ||
37 | |||
38 | /* | ||
39 | * Page fault error code bits | ||
40 | * bit 0 == 0 means no page found, 1 means protection fault | ||
41 | * bit 1 == 0 means read, 1 means write | ||
42 | * bit 2 == 0 means kernel, 1 means user-mode | ||
43 | * bit 3 == 1 means use of reserved bit detected | ||
44 | * bit 4 == 1 means fault was an instruction fetch | ||
45 | */ | ||
46 | #define PF_PROT (1<<0) | ||
47 | #define PF_WRITE (1<<1) | ||
48 | #define PF_USER (1<<2) | ||
49 | #define PF_RSVD (1<<3) | ||
50 | #define PF_INSTR (1<<4) | ||
51 | |||
52 | static inline int notify_page_fault(struct pt_regs *regs) | ||
53 | { | ||
54 | #ifdef CONFIG_KPROBES | ||
55 | int ret = 0; | ||
56 | |||
57 | /* kprobe_running() needs smp_processor_id() */ | ||
58 | #ifdef CONFIG_X86_32 | ||
59 | if (!user_mode_vm(regs)) { | ||
60 | #else | ||
61 | if (!user_mode(regs)) { | ||
62 | #endif | ||
63 | preempt_disable(); | ||
64 | if (kprobe_running() && kprobe_fault_handler(regs, 14)) | ||
65 | ret = 1; | ||
66 | preempt_enable(); | ||
67 | } | ||
68 | |||
69 | return ret; | ||
70 | #else | ||
71 | return 0; | ||
72 | #endif | ||
73 | } | ||
74 | |||
75 | /* | ||
76 | * X86_32 | ||
77 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
78 | * Check that here and ignore it. | ||
79 | * | ||
80 | * X86_64 | ||
81 | * Sometimes the CPU reports invalid exceptions on prefetch. | ||
82 | * Check that here and ignore it. | ||
83 | * | ||
84 | * Opcode checker based on code by Richard Brunner | ||
85 | */ | ||
86 | static int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
87 | unsigned long error_code) | ||
88 | { | ||
89 | unsigned char *instr; | ||
90 | int scan_more = 1; | ||
91 | int prefetch = 0; | ||
92 | unsigned char *max_instr; | ||
93 | |||
94 | #ifdef CONFIG_X86_32 | ||
95 | if (!(__supported_pte_mask & _PAGE_NX)) | ||
96 | return 0; | ||
97 | #endif | ||
98 | |||
99 | /* If it was a exec fault on NX page, ignore */ | ||
100 | if (error_code & PF_INSTR) | ||
101 | return 0; | ||
102 | |||
103 | instr = (unsigned char *)convert_ip_to_linear(current, regs); | ||
104 | max_instr = instr + 15; | ||
105 | |||
106 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | ||
107 | return 0; | ||
108 | |||
109 | while (scan_more && instr < max_instr) { | ||
110 | unsigned char opcode; | ||
111 | unsigned char instr_hi; | ||
112 | unsigned char instr_lo; | ||
113 | |||
114 | if (probe_kernel_address(instr, opcode)) | ||
115 | break; | ||
116 | |||
117 | instr_hi = opcode & 0xf0; | ||
118 | instr_lo = opcode & 0x0f; | ||
119 | instr++; | ||
120 | |||
121 | switch (instr_hi) { | ||
122 | case 0x20: | ||
123 | case 0x30: | ||
124 | /* | ||
125 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | ||
126 | * In X86_64 long mode, the CPU will signal invalid | ||
127 | * opcode if some of these prefixes are present so | ||
128 | * X86_64 will never get here anyway | ||
129 | */ | ||
130 | scan_more = ((instr_lo & 7) == 0x6); | ||
131 | break; | ||
132 | #ifdef CONFIG_X86_64 | ||
133 | case 0x40: | ||
134 | /* | ||
135 | * In AMD64 long mode 0x40..0x4F are valid REX prefixes | ||
136 | * Need to figure out under what instruction mode the | ||
137 | * instruction was issued. Could check the LDT for lm, | ||
138 | * but for now it's good enough to assume that long | ||
139 | * mode only uses well known segments or kernel. | ||
140 | */ | ||
141 | scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
142 | break; | ||
143 | #endif | ||
144 | case 0x60: | ||
145 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
146 | scan_more = (instr_lo & 0xC) == 0x4; | ||
147 | break; | ||
148 | case 0xF0: | ||
149 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | ||
150 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
151 | break; | ||
152 | case 0x00: | ||
153 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
154 | scan_more = 0; | ||
155 | |||
156 | if (probe_kernel_address(instr, opcode)) | ||
157 | break; | ||
158 | prefetch = (instr_lo == 0xF) && | ||
159 | (opcode == 0x0D || opcode == 0x18); | ||
160 | break; | ||
161 | default: | ||
162 | scan_more = 0; | ||
163 | break; | ||
164 | } | ||
165 | } | ||
166 | return prefetch; | ||
167 | } | ||
168 | |||
169 | static void force_sig_info_fault(int si_signo, int si_code, | ||
170 | unsigned long address, struct task_struct *tsk) | ||
171 | { | ||
172 | siginfo_t info; | ||
173 | |||
174 | info.si_signo = si_signo; | ||
175 | info.si_errno = 0; | ||
176 | info.si_code = si_code; | ||
177 | info.si_addr = (void __user *)address; | ||
178 | force_sig_info(si_signo, &info, tsk); | ||
179 | } | ||
180 | |||
181 | #ifdef CONFIG_X86_64 | ||
182 | static int bad_address(void *p) | ||
183 | { | ||
184 | unsigned long dummy; | ||
185 | return probe_kernel_address((unsigned long *)p, dummy); | ||
186 | } | ||
187 | #endif | ||
188 | |||
189 | void dump_pagetable(unsigned long address) | ||
190 | { | ||
191 | #ifdef CONFIG_X86_32 | ||
192 | __typeof__(pte_val(__pte(0))) page; | ||
193 | |||
194 | page = read_cr3(); | ||
195 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | ||
196 | #ifdef CONFIG_X86_PAE | ||
197 | printk("*pdpt = %016Lx ", page); | ||
198 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
199 | && page & _PAGE_PRESENT) { | ||
200 | page &= PAGE_MASK; | ||
201 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | ||
202 | & (PTRS_PER_PMD - 1)]; | ||
203 | printk(KERN_CONT "*pde = %016Lx ", page); | ||
204 | page &= ~_PAGE_NX; | ||
205 | } | ||
206 | #else | ||
207 | printk("*pde = %08lx ", page); | ||
208 | #endif | ||
209 | |||
210 | /* | ||
211 | * We must not directly access the pte in the highpte | ||
212 | * case if the page table is located in highmem. | ||
213 | * And let's rather not kmap-atomic the pte, just in case | ||
214 | * it's allocated already. | ||
215 | */ | ||
216 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
217 | && (page & _PAGE_PRESENT) | ||
218 | && !(page & _PAGE_PSE)) { | ||
219 | page &= PAGE_MASK; | ||
220 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | ||
221 | & (PTRS_PER_PTE - 1)]; | ||
222 | printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); | ||
223 | } | ||
224 | |||
225 | printk("\n"); | ||
226 | #else /* CONFIG_X86_64 */ | ||
227 | pgd_t *pgd; | ||
228 | pud_t *pud; | ||
229 | pmd_t *pmd; | ||
230 | pte_t *pte; | ||
231 | |||
232 | pgd = (pgd_t *)read_cr3(); | ||
233 | |||
234 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | ||
235 | pgd += pgd_index(address); | ||
236 | if (bad_address(pgd)) goto bad; | ||
237 | printk("PGD %lx ", pgd_val(*pgd)); | ||
238 | if (!pgd_present(*pgd)) goto ret; | ||
239 | |||
240 | pud = pud_offset(pgd, address); | ||
241 | if (bad_address(pud)) goto bad; | ||
242 | printk("PUD %lx ", pud_val(*pud)); | ||
243 | if (!pud_present(*pud) || pud_large(*pud)) | ||
244 | goto ret; | ||
245 | |||
246 | pmd = pmd_offset(pud, address); | ||
247 | if (bad_address(pmd)) goto bad; | ||
248 | printk("PMD %lx ", pmd_val(*pmd)); | ||
249 | if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; | ||
250 | |||
251 | pte = pte_offset_kernel(pmd, address); | ||
252 | if (bad_address(pte)) goto bad; | ||
253 | printk("PTE %lx", pte_val(*pte)); | ||
254 | ret: | ||
255 | printk("\n"); | ||
256 | return; | ||
257 | bad: | ||
258 | printk("BAD\n"); | ||
259 | #endif | ||
260 | } | ||
261 | |||
262 | #ifdef CONFIG_X86_32 | ||
263 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
264 | { | ||
265 | unsigned index = pgd_index(address); | ||
266 | pgd_t *pgd_k; | ||
267 | pud_t *pud, *pud_k; | ||
268 | pmd_t *pmd, *pmd_k; | ||
269 | |||
270 | pgd += index; | ||
271 | pgd_k = init_mm.pgd + index; | ||
272 | |||
273 | if (!pgd_present(*pgd_k)) | ||
274 | return NULL; | ||
275 | |||
276 | /* | ||
277 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
278 | * and redundant with the set_pmd() on non-PAE. As would | ||
279 | * set_pud. | ||
280 | */ | ||
281 | |||
282 | pud = pud_offset(pgd, address); | ||
283 | pud_k = pud_offset(pgd_k, address); | ||
284 | if (!pud_present(*pud_k)) | ||
285 | return NULL; | ||
286 | |||
287 | pmd = pmd_offset(pud, address); | ||
288 | pmd_k = pmd_offset(pud_k, address); | ||
289 | if (!pmd_present(*pmd_k)) | ||
290 | return NULL; | ||
291 | if (!pmd_present(*pmd)) { | ||
292 | set_pmd(pmd, *pmd_k); | ||
293 | arch_flush_lazy_mmu_mode(); | ||
294 | } else | ||
295 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
296 | return pmd_k; | ||
297 | } | ||
298 | #endif | ||
299 | |||
300 | #ifdef CONFIG_X86_64 | ||
301 | static const char errata93_warning[] = | ||
302 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
303 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
304 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
305 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
306 | #endif | ||
307 | |||
308 | /* Workaround for K8 erratum #93 & buggy BIOS. | ||
309 | BIOS SMM functions are required to use a specific workaround | ||
310 | to avoid corruption of the 64bit RIP register on C stepping K8. | ||
311 | A lot of BIOS that didn't get tested properly miss this. | ||
312 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
313 | Try to work around it here. | ||
314 | Note we only handle faults in kernel here. | ||
315 | Does nothing for X86_32 | ||
316 | */ | ||
317 | static int is_errata93(struct pt_regs *regs, unsigned long address) | ||
318 | { | ||
319 | #ifdef CONFIG_X86_64 | ||
320 | static int warned; | ||
321 | if (address != regs->ip) | ||
322 | return 0; | ||
323 | if ((address >> 32) != 0) | ||
324 | return 0; | ||
325 | address |= 0xffffffffUL << 32; | ||
326 | if ((address >= (u64)_stext && address <= (u64)_etext) || | ||
327 | (address >= MODULES_VADDR && address <= MODULES_END)) { | ||
328 | if (!warned) { | ||
329 | printk(errata93_warning); | ||
330 | warned = 1; | ||
331 | } | ||
332 | regs->ip = address; | ||
333 | return 1; | ||
334 | } | ||
335 | #endif | ||
336 | return 0; | ||
337 | } | ||
338 | |||
339 | /* | ||
340 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal | ||
341 | * addresses >4GB. We catch this in the page fault handler because these | ||
342 | * addresses are not reachable. Just detect this case and return. Any code | ||
343 | * segment in LDT is compatibility mode. | ||
344 | */ | ||
345 | static int is_errata100(struct pt_regs *regs, unsigned long address) | ||
346 | { | ||
347 | #ifdef CONFIG_X86_64 | ||
348 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | ||
349 | (address >> 32)) | ||
350 | return 1; | ||
351 | #endif | ||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | void do_invalid_op(struct pt_regs *, unsigned long); | ||
356 | |||
357 | static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | ||
358 | { | ||
359 | #ifdef CONFIG_X86_F00F_BUG | ||
360 | unsigned long nr; | ||
361 | /* | ||
362 | * Pentium F0 0F C7 C8 bug workaround. | ||
363 | */ | ||
364 | if (boot_cpu_data.f00f_bug) { | ||
365 | nr = (address - idt_descr.address) >> 3; | ||
366 | |||
367 | if (nr == 6) { | ||
368 | do_invalid_op(regs, 0); | ||
369 | return 1; | ||
370 | } | ||
371 | } | ||
372 | #endif | ||
373 | return 0; | ||
374 | } | ||
375 | |||
376 | static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, | ||
377 | unsigned long address) | ||
378 | { | ||
379 | #ifdef CONFIG_X86_32 | ||
380 | if (!oops_may_print()) | ||
381 | return; | ||
382 | #endif | ||
383 | |||
384 | #ifdef CONFIG_X86_PAE | ||
385 | if (error_code & PF_INSTR) { | ||
386 | unsigned int level; | ||
387 | pte_t *pte = lookup_address(address, &level); | ||
388 | |||
389 | if (pte && pte_present(*pte) && !pte_exec(*pte)) | ||
390 | printk(KERN_CRIT "kernel tried to execute " | ||
391 | "NX-protected page - exploit attempt? " | ||
392 | "(uid: %d)\n", current->uid); | ||
393 | } | ||
394 | #endif | ||
395 | |||
396 | printk(KERN_ALERT "BUG: unable to handle kernel "); | ||
397 | if (address < PAGE_SIZE) | ||
398 | printk(KERN_CONT "NULL pointer dereference"); | ||
399 | else | ||
400 | printk(KERN_CONT "paging request"); | ||
401 | #ifdef CONFIG_X86_32 | ||
402 | printk(KERN_CONT " at %08lx\n", address); | ||
403 | #else | ||
404 | printk(KERN_CONT " at %016lx\n", address); | ||
405 | #endif | ||
406 | printk(KERN_ALERT "IP:"); | ||
407 | printk_address(regs->ip, 1); | ||
408 | dump_pagetable(address); | ||
409 | } | ||
410 | |||
411 | #ifdef CONFIG_X86_64 | ||
412 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | ||
413 | unsigned long error_code) | ||
414 | { | ||
415 | unsigned long flags = oops_begin(); | ||
416 | struct task_struct *tsk; | ||
417 | |||
418 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | ||
419 | current->comm, address); | ||
420 | dump_pagetable(address); | ||
421 | tsk = current; | ||
422 | tsk->thread.cr2 = address; | ||
423 | tsk->thread.trap_no = 14; | ||
424 | tsk->thread.error_code = error_code; | ||
425 | if (__die("Bad pagetable", regs, error_code)) | ||
426 | regs = NULL; | ||
427 | oops_end(flags, regs, SIGKILL); | ||
428 | } | ||
429 | #endif | ||
430 | |||
431 | static int spurious_fault_check(unsigned long error_code, pte_t *pte) | ||
432 | { | ||
433 | if ((error_code & PF_WRITE) && !pte_write(*pte)) | ||
434 | return 0; | ||
435 | if ((error_code & PF_INSTR) && !pte_exec(*pte)) | ||
436 | return 0; | ||
437 | |||
438 | return 1; | ||
439 | } | ||
440 | |||
441 | /* | ||
442 | * Handle a spurious fault caused by a stale TLB entry. This allows | ||
443 | * us to lazily refresh the TLB when increasing the permissions of a | ||
444 | * kernel page (RO -> RW or NX -> X). Doing it eagerly is very | ||
445 | * expensive since that implies doing a full cross-processor TLB | ||
446 | * flush, even if no stale TLB entries exist on other processors. | ||
447 | * There are no security implications to leaving a stale TLB when | ||
448 | * increasing the permissions on a page. | ||
449 | */ | ||
450 | static int spurious_fault(unsigned long address, | ||
451 | unsigned long error_code) | ||
452 | { | ||
453 | pgd_t *pgd; | ||
454 | pud_t *pud; | ||
455 | pmd_t *pmd; | ||
456 | pte_t *pte; | ||
457 | |||
458 | /* Reserved-bit violation or user access to kernel space? */ | ||
459 | if (error_code & (PF_USER | PF_RSVD)) | ||
460 | return 0; | ||
461 | |||
462 | pgd = init_mm.pgd + pgd_index(address); | ||
463 | if (!pgd_present(*pgd)) | ||
464 | return 0; | ||
465 | |||
466 | pud = pud_offset(pgd, address); | ||
467 | if (!pud_present(*pud)) | ||
468 | return 0; | ||
469 | |||
470 | if (pud_large(*pud)) | ||
471 | return spurious_fault_check(error_code, (pte_t *) pud); | ||
472 | |||
473 | pmd = pmd_offset(pud, address); | ||
474 | if (!pmd_present(*pmd)) | ||
475 | return 0; | ||
476 | |||
477 | if (pmd_large(*pmd)) | ||
478 | return spurious_fault_check(error_code, (pte_t *) pmd); | ||
479 | |||
480 | pte = pte_offset_kernel(pmd, address); | ||
481 | if (!pte_present(*pte)) | ||
482 | return 0; | ||
483 | |||
484 | return spurious_fault_check(error_code, pte); | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * X86_32 | ||
489 | * Handle a fault on the vmalloc or module mapping area | ||
490 | * | ||
491 | * X86_64 | ||
492 | * Handle a fault on the vmalloc area | ||
493 | * | ||
494 | * This assumes no large pages in there. | ||
495 | */ | ||
496 | static int vmalloc_fault(unsigned long address) | ||
497 | { | ||
498 | #ifdef CONFIG_X86_32 | ||
499 | unsigned long pgd_paddr; | ||
500 | pmd_t *pmd_k; | ||
501 | pte_t *pte_k; | ||
502 | /* | ||
503 | * Synchronize this task's top level page-table | ||
504 | * with the 'reference' page table. | ||
505 | * | ||
506 | * Do _not_ use "current" here. We might be inside | ||
507 | * an interrupt in the middle of a task switch.. | ||
508 | */ | ||
509 | pgd_paddr = read_cr3(); | ||
510 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
511 | if (!pmd_k) | ||
512 | return -1; | ||
513 | pte_k = pte_offset_kernel(pmd_k, address); | ||
514 | if (!pte_present(*pte_k)) | ||
515 | return -1; | ||
516 | return 0; | ||
517 | #else | ||
518 | pgd_t *pgd, *pgd_ref; | ||
519 | pud_t *pud, *pud_ref; | ||
520 | pmd_t *pmd, *pmd_ref; | ||
521 | pte_t *pte, *pte_ref; | ||
522 | |||
523 | /* Make sure we are in vmalloc area */ | ||
524 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | ||
525 | return -1; | ||
526 | |||
527 | /* Copy kernel mappings over when needed. This can also | ||
528 | happen within a race in page table update. In the later | ||
529 | case just flush. */ | ||
530 | |||
531 | pgd = pgd_offset(current->mm ?: &init_mm, address); | ||
532 | pgd_ref = pgd_offset_k(address); | ||
533 | if (pgd_none(*pgd_ref)) | ||
534 | return -1; | ||
535 | if (pgd_none(*pgd)) | ||
536 | set_pgd(pgd, *pgd_ref); | ||
537 | else | ||
538 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
539 | |||
540 | /* Below here mismatches are bugs because these lower tables | ||
541 | are shared */ | ||
542 | |||
543 | pud = pud_offset(pgd, address); | ||
544 | pud_ref = pud_offset(pgd_ref, address); | ||
545 | if (pud_none(*pud_ref)) | ||
546 | return -1; | ||
547 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
548 | BUG(); | ||
549 | pmd = pmd_offset(pud, address); | ||
550 | pmd_ref = pmd_offset(pud_ref, address); | ||
551 | if (pmd_none(*pmd_ref)) | ||
552 | return -1; | ||
553 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
554 | BUG(); | ||
555 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
556 | if (!pte_present(*pte_ref)) | ||
557 | return -1; | ||
558 | pte = pte_offset_kernel(pmd, address); | ||
559 | /* Don't use pte_page here, because the mappings can point | ||
560 | outside mem_map, and the NUMA hash lookup cannot handle | ||
561 | that. */ | ||
562 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
563 | BUG(); | ||
564 | return 0; | ||
565 | #endif | ||
566 | } | ||
567 | |||
568 | int show_unhandled_signals = 1; | ||
569 | |||
570 | /* | ||
571 | * This routine handles page faults. It determines the address, | ||
572 | * and the problem, and then passes it off to one of the appropriate | ||
573 | * routines. | ||
574 | */ | ||
575 | #ifdef CONFIG_X86_64 | ||
576 | asmlinkage | ||
577 | #endif | ||
578 | void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
579 | { | ||
580 | struct task_struct *tsk; | ||
581 | struct mm_struct *mm; | ||
582 | struct vm_area_struct *vma; | ||
583 | unsigned long address; | ||
584 | int write, si_code; | ||
585 | int fault; | ||
586 | #ifdef CONFIG_X86_64 | ||
587 | unsigned long flags; | ||
588 | #endif | ||
589 | |||
590 | /* | ||
591 | * We can fault from pretty much anywhere, with unknown IRQ state. | ||
592 | */ | ||
593 | trace_hardirqs_fixup(); | ||
594 | |||
595 | tsk = current; | ||
596 | mm = tsk->mm; | ||
597 | prefetchw(&mm->mmap_sem); | ||
598 | |||
599 | /* get the address */ | ||
600 | address = read_cr2(); | ||
601 | |||
602 | si_code = SEGV_MAPERR; | ||
603 | |||
604 | if (notify_page_fault(regs)) | ||
605 | return; | ||
606 | |||
607 | /* | ||
608 | * We fault-in kernel-space virtual memory on-demand. The | ||
609 | * 'reference' page table is init_mm.pgd. | ||
610 | * | ||
611 | * NOTE! We MUST NOT take any locks for this case. We may | ||
612 | * be in an interrupt or a critical region, and should | ||
613 | * only copy the information from the master page table, | ||
614 | * nothing more. | ||
615 | * | ||
616 | * This verifies that the fault happens in kernel space | ||
617 | * (error_code & 4) == 0, and that the fault was not a | ||
618 | * protection error (error_code & 9) == 0. | ||
619 | */ | ||
620 | #ifdef CONFIG_X86_32 | ||
621 | if (unlikely(address >= TASK_SIZE)) { | ||
622 | #else | ||
623 | if (unlikely(address >= TASK_SIZE64)) { | ||
624 | #endif | ||
625 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
626 | vmalloc_fault(address) >= 0) | ||
627 | return; | ||
628 | |||
629 | /* Can handle a stale RO->RW TLB */ | ||
630 | if (spurious_fault(address, error_code)) | ||
631 | return; | ||
632 | |||
633 | /* | ||
634 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
635 | * fault we could otherwise deadlock. | ||
636 | */ | ||
637 | goto bad_area_nosemaphore; | ||
638 | } | ||
639 | |||
640 | |||
641 | #ifdef CONFIG_X86_32 | ||
642 | /* It's safe to allow irq's after cr2 has been saved and the vmalloc | ||
643 | fault has been handled. */ | ||
644 | if (regs->flags & (X86_EFLAGS_IF|VM_MASK)) | ||
645 | local_irq_enable(); | ||
646 | |||
647 | /* | ||
648 | * If we're in an interrupt, have no user context or are running in an | ||
649 | * atomic region then we must not take the fault. | ||
650 | */ | ||
651 | if (in_atomic() || !mm) | ||
652 | goto bad_area_nosemaphore; | ||
653 | #else /* CONFIG_X86_64 */ | ||
654 | if (likely(regs->flags & X86_EFLAGS_IF)) | ||
655 | local_irq_enable(); | ||
656 | |||
657 | if (unlikely(error_code & PF_RSVD)) | ||
658 | pgtable_bad(address, regs, error_code); | ||
659 | |||
660 | /* | ||
661 | * If we're in an interrupt, have no user context or are running in an | ||
662 | * atomic region then we must not take the fault. | ||
663 | */ | ||
664 | if (unlikely(in_atomic() || !mm)) | ||
665 | goto bad_area_nosemaphore; | ||
666 | |||
667 | /* | ||
668 | * User-mode registers count as a user access even for any | ||
669 | * potential system fault or CPU buglet. | ||
670 | */ | ||
671 | if (user_mode_vm(regs)) | ||
672 | error_code |= PF_USER; | ||
673 | again: | ||
674 | #endif | ||
675 | /* When running in the kernel we expect faults to occur only to | ||
676 | * addresses in user space. All other faults represent errors in the | ||
677 | * kernel and should generate an OOPS. Unfortunately, in the case of an | ||
678 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
679 | * we will deadlock attempting to validate the fault against the | ||
680 | * address space. Luckily the kernel only validly references user | ||
681 | * space from well defined areas of code, which are listed in the | ||
682 | * exceptions table. | ||
683 | * | ||
684 | * As the vast majority of faults will be valid we will only perform | ||
685 | * the source reference check when there is a possibility of a deadlock. | ||
686 | * Attempt to lock the address space, if we cannot we then validate the | ||
687 | * source. If this is invalid we can skip the address space check, | ||
688 | * thus avoiding the deadlock. | ||
689 | */ | ||
690 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
691 | if ((error_code & PF_USER) == 0 && | ||
692 | !search_exception_tables(regs->ip)) | ||
693 | goto bad_area_nosemaphore; | ||
694 | down_read(&mm->mmap_sem); | ||
695 | } | ||
696 | |||
697 | vma = find_vma(mm, address); | ||
698 | if (!vma) | ||
699 | goto bad_area; | ||
700 | if (vma->vm_start <= address) | ||
701 | goto good_area; | ||
702 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
703 | goto bad_area; | ||
704 | if (error_code & PF_USER) { | ||
705 | /* | ||
706 | * Accessing the stack below %sp is always a bug. | ||
707 | * The large cushion allows instructions like enter | ||
708 | * and pusha to work. ("enter $65535,$31" pushes | ||
709 | * 32 pointers and then decrements %sp by 65535.) | ||
710 | */ | ||
711 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) | ||
712 | goto bad_area; | ||
713 | } | ||
714 | if (expand_stack(vma, address)) | ||
715 | goto bad_area; | ||
716 | /* | ||
717 | * Ok, we have a good vm_area for this memory access, so | ||
718 | * we can handle it.. | ||
719 | */ | ||
720 | good_area: | ||
721 | si_code = SEGV_ACCERR; | ||
722 | write = 0; | ||
723 | switch (error_code & (PF_PROT|PF_WRITE)) { | ||
724 | default: /* 3: write, present */ | ||
725 | /* fall through */ | ||
726 | case PF_WRITE: /* write, not present */ | ||
727 | if (!(vma->vm_flags & VM_WRITE)) | ||
728 | goto bad_area; | ||
729 | write++; | ||
730 | break; | ||
731 | case PF_PROT: /* read, present */ | ||
732 | goto bad_area; | ||
733 | case 0: /* read, not present */ | ||
734 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
735 | goto bad_area; | ||
736 | } | ||
737 | |||
738 | #ifdef CONFIG_X86_32 | ||
739 | survive: | ||
740 | #endif | ||
741 | /* | ||
742 | * If for any reason at all we couldn't handle the fault, | ||
743 | * make sure we exit gracefully rather than endlessly redo | ||
744 | * the fault. | ||
745 | */ | ||
746 | fault = handle_mm_fault(mm, vma, address, write); | ||
747 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
748 | if (fault & VM_FAULT_OOM) | ||
749 | goto out_of_memory; | ||
750 | else if (fault & VM_FAULT_SIGBUS) | ||
751 | goto do_sigbus; | ||
752 | BUG(); | ||
753 | } | ||
754 | if (fault & VM_FAULT_MAJOR) | ||
755 | tsk->maj_flt++; | ||
756 | else | ||
757 | tsk->min_flt++; | ||
758 | |||
759 | #ifdef CONFIG_X86_32 | ||
760 | /* | ||
761 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
762 | */ | ||
763 | if (v8086_mode(regs)) { | ||
764 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
765 | if (bit < 32) | ||
766 | tsk->thread.screen_bitmap |= 1 << bit; | ||
767 | } | ||
768 | #endif | ||
769 | up_read(&mm->mmap_sem); | ||
770 | return; | ||
771 | |||
772 | /* | ||
773 | * Something tried to access memory that isn't in our memory map.. | ||
774 | * Fix it, but check if it's kernel or user first.. | ||
775 | */ | ||
776 | bad_area: | ||
777 | up_read(&mm->mmap_sem); | ||
778 | |||
779 | bad_area_nosemaphore: | ||
780 | /* User mode accesses just cause a SIGSEGV */ | ||
781 | if (error_code & PF_USER) { | ||
782 | /* | ||
783 | * It's possible to have interrupts off here. | ||
784 | */ | ||
785 | local_irq_enable(); | ||
786 | |||
787 | /* | ||
788 | * Valid to do another page fault here because this one came | ||
789 | * from user space. | ||
790 | */ | ||
791 | if (is_prefetch(regs, address, error_code)) | ||
792 | return; | ||
793 | |||
794 | if (is_errata100(regs, address)) | ||
795 | return; | ||
796 | |||
797 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
798 | printk_ratelimit()) { | ||
799 | printk( | ||
800 | #ifdef CONFIG_X86_32 | ||
801 | "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx", | ||
802 | #else | ||
803 | "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx", | ||
804 | #endif | ||
805 | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | ||
806 | tsk->comm, task_pid_nr(tsk), address, regs->ip, | ||
807 | regs->sp, error_code); | ||
808 | print_vma_addr(" in ", regs->ip); | ||
809 | printk("\n"); | ||
810 | } | ||
811 | |||
812 | tsk->thread.cr2 = address; | ||
813 | /* Kernel addresses are always protection faults */ | ||
814 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
815 | tsk->thread.trap_no = 14; | ||
816 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
817 | return; | ||
818 | } | ||
819 | |||
820 | if (is_f00f_bug(regs, address)) | ||
821 | return; | ||
822 | |||
823 | no_context: | ||
824 | /* Are we prepared to handle this kernel fault? */ | ||
825 | if (fixup_exception(regs)) | ||
826 | return; | ||
827 | |||
828 | /* | ||
829 | * X86_32 | ||
830 | * Valid to do another page fault here, because if this fault | ||
831 | * had been triggered by is_prefetch fixup_exception would have | ||
832 | * handled it. | ||
833 | * | ||
834 | * X86_64 | ||
835 | * Hall of shame of CPU/BIOS bugs. | ||
836 | */ | ||
837 | if (is_prefetch(regs, address, error_code)) | ||
838 | return; | ||
839 | |||
840 | if (is_errata93(regs, address)) | ||
841 | return; | ||
842 | |||
843 | /* | ||
844 | * Oops. The kernel tried to access some bad page. We'll have to | ||
845 | * terminate things with extreme prejudice. | ||
846 | */ | ||
847 | #ifdef CONFIG_X86_32 | ||
848 | bust_spinlocks(1); | ||
849 | #else | ||
850 | flags = oops_begin(); | ||
851 | #endif | ||
852 | |||
853 | show_fault_oops(regs, error_code, address); | ||
854 | |||
855 | tsk->thread.cr2 = address; | ||
856 | tsk->thread.trap_no = 14; | ||
857 | tsk->thread.error_code = error_code; | ||
858 | |||
859 | #ifdef CONFIG_X86_32 | ||
860 | die("Oops", regs, error_code); | ||
861 | bust_spinlocks(0); | ||
862 | do_exit(SIGKILL); | ||
863 | #else | ||
864 | if (__die("Oops", regs, error_code)) | ||
865 | regs = NULL; | ||
866 | /* Executive summary in case the body of the oops scrolled away */ | ||
867 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
868 | oops_end(flags, regs, SIGKILL); | ||
869 | #endif | ||
870 | |||
871 | /* | ||
872 | * We ran out of memory, or some other thing happened to us that made | ||
873 | * us unable to handle the page fault gracefully. | ||
874 | */ | ||
875 | out_of_memory: | ||
876 | up_read(&mm->mmap_sem); | ||
877 | if (is_global_init(tsk)) { | ||
878 | yield(); | ||
879 | #ifdef CONFIG_X86_32 | ||
880 | down_read(&mm->mmap_sem); | ||
881 | goto survive; | ||
882 | #else | ||
883 | goto again; | ||
884 | #endif | ||
885 | } | ||
886 | |||
887 | printk("VM: killing process %s\n", tsk->comm); | ||
888 | if (error_code & PF_USER) | ||
889 | do_group_exit(SIGKILL); | ||
890 | goto no_context; | ||
891 | |||
892 | do_sigbus: | ||
893 | up_read(&mm->mmap_sem); | ||
894 | |||
895 | /* Kernel mode? Handle exceptions or die */ | ||
896 | if (!(error_code & PF_USER)) | ||
897 | goto no_context; | ||
898 | #ifdef CONFIG_X86_32 | ||
899 | /* User space => ok to do another page fault */ | ||
900 | if (is_prefetch(regs, address, error_code)) | ||
901 | return; | ||
902 | #endif | ||
903 | tsk->thread.cr2 = address; | ||
904 | tsk->thread.error_code = error_code; | ||
905 | tsk->thread.trap_no = 14; | ||
906 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
907 | } | ||
908 | |||
909 | DEFINE_SPINLOCK(pgd_lock); | ||
910 | LIST_HEAD(pgd_list); | ||
911 | |||
912 | void vmalloc_sync_all(void) | ||
913 | { | ||
914 | #ifdef CONFIG_X86_32 | ||
915 | /* | ||
916 | * Note that races in the updates of insync and start aren't | ||
917 | * problematic: insync can only get set bits added, and updates to | ||
918 | * start are only improving performance (without affecting correctness | ||
919 | * if undone). | ||
920 | */ | ||
921 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
922 | static unsigned long start = TASK_SIZE; | ||
923 | unsigned long address; | ||
924 | |||
925 | if (SHARED_KERNEL_PMD) | ||
926 | return; | ||
927 | |||
928 | BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | ||
929 | for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | ||
930 | if (!test_bit(pgd_index(address), insync)) { | ||
931 | unsigned long flags; | ||
932 | struct page *page; | ||
933 | |||
934 | spin_lock_irqsave(&pgd_lock, flags); | ||
935 | list_for_each_entry(page, &pgd_list, lru) { | ||
936 | if (!vmalloc_sync_one(page_address(page), | ||
937 | address)) | ||
938 | break; | ||
939 | } | ||
940 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
941 | if (!page) | ||
942 | set_bit(pgd_index(address), insync); | ||
943 | } | ||
944 | if (address == start && test_bit(pgd_index(address), insync)) | ||
945 | start = address + PGDIR_SIZE; | ||
946 | } | ||
947 | #else /* CONFIG_X86_64 */ | ||
948 | /* | ||
949 | * Note that races in the updates of insync and start aren't | ||
950 | * problematic: insync can only get set bits added, and updates to | ||
951 | * start are only improving performance (without affecting correctness | ||
952 | * if undone). | ||
953 | */ | ||
954 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
955 | static unsigned long start = VMALLOC_START & PGDIR_MASK; | ||
956 | unsigned long address; | ||
957 | |||
958 | for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { | ||
959 | if (!test_bit(pgd_index(address), insync)) { | ||
960 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
961 | unsigned long flags; | ||
962 | struct page *page; | ||
963 | |||
964 | if (pgd_none(*pgd_ref)) | ||
965 | continue; | ||
966 | spin_lock_irqsave(&pgd_lock, flags); | ||
967 | list_for_each_entry(page, &pgd_list, lru) { | ||
968 | pgd_t *pgd; | ||
969 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
970 | if (pgd_none(*pgd)) | ||
971 | set_pgd(pgd, *pgd_ref); | ||
972 | else | ||
973 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
974 | } | ||
975 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
976 | set_bit(pgd_index(address), insync); | ||
977 | } | ||
978 | if (address == start) | ||
979 | start = address + PGDIR_SIZE; | ||
980 | } | ||
981 | /* Check that there is no need to do the same for the modules area. */ | ||
982 | BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); | ||
983 | BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == | ||
984 | (__START_KERNEL & PGDIR_MASK))); | ||
985 | #endif | ||
986 | } | ||