diff options
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r-- | arch/x86/mm/fault.c | 955 |
1 files changed, 955 insertions, 0 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c new file mode 100644 index 000000000000..14a0c6e541de --- /dev/null +++ b/arch/x86/mm/fault.c | |||
@@ -0,0 +1,955 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1995 Linus Torvalds | ||
3 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | ||
4 | */ | ||
5 | |||
6 | #include <linux/signal.h> | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/errno.h> | ||
10 | #include <linux/string.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/ptrace.h> | ||
13 | #include <linux/mman.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/tty.h> | ||
19 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
20 | #include <linux/compiler.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kprobes.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/kdebug.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/desc.h> | ||
31 | #include <asm/segment.h> | ||
32 | #include <asm/pgalloc.h> | ||
33 | #include <asm/smp.h> | ||
34 | #include <asm/tlbflush.h> | ||
35 | #include <asm/proto.h> | ||
36 | #include <asm-generic/sections.h> | ||
37 | |||
38 | /* | ||
39 | * Page fault error code bits | ||
40 | * bit 0 == 0 means no page found, 1 means protection fault | ||
41 | * bit 1 == 0 means read, 1 means write | ||
42 | * bit 2 == 0 means kernel, 1 means user-mode | ||
43 | * bit 3 == 1 means use of reserved bit detected | ||
44 | * bit 4 == 1 means fault was an instruction fetch | ||
45 | */ | ||
46 | #define PF_PROT (1<<0) | ||
47 | #define PF_WRITE (1<<1) | ||
48 | #define PF_USER (1<<2) | ||
49 | #define PF_RSVD (1<<3) | ||
50 | #define PF_INSTR (1<<4) | ||
51 | |||
52 | static inline int notify_page_fault(struct pt_regs *regs) | ||
53 | { | ||
54 | #ifdef CONFIG_KPROBES | ||
55 | int ret = 0; | ||
56 | |||
57 | /* kprobe_running() needs smp_processor_id() */ | ||
58 | #ifdef CONFIG_X86_32 | ||
59 | if (!user_mode_vm(regs)) { | ||
60 | #else | ||
61 | if (!user_mode(regs)) { | ||
62 | #endif | ||
63 | preempt_disable(); | ||
64 | if (kprobe_running() && kprobe_fault_handler(regs, 14)) | ||
65 | ret = 1; | ||
66 | preempt_enable(); | ||
67 | } | ||
68 | |||
69 | return ret; | ||
70 | #else | ||
71 | return 0; | ||
72 | #endif | ||
73 | } | ||
74 | |||
75 | /* | ||
76 | * X86_32 | ||
77 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
78 | * Check that here and ignore it. | ||
79 | * | ||
80 | * X86_64 | ||
81 | * Sometimes the CPU reports invalid exceptions on prefetch. | ||
82 | * Check that here and ignore it. | ||
83 | * | ||
84 | * Opcode checker based on code by Richard Brunner | ||
85 | */ | ||
86 | static int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
87 | unsigned long error_code) | ||
88 | { | ||
89 | unsigned char *instr; | ||
90 | int scan_more = 1; | ||
91 | int prefetch = 0; | ||
92 | unsigned char *max_instr; | ||
93 | |||
94 | #ifdef CONFIG_X86_32 | ||
95 | # ifdef CONFIG_X86_PAE | ||
96 | /* If it was a exec fault on NX page, ignore */ | ||
97 | if (nx_enabled && (error_code & PF_INSTR)) | ||
98 | return 0; | ||
99 | # else | ||
100 | return 0; | ||
101 | # endif | ||
102 | #else /* CONFIG_X86_64 */ | ||
103 | /* If it was a exec fault on NX page, ignore */ | ||
104 | if (error_code & PF_INSTR) | ||
105 | return 0; | ||
106 | #endif | ||
107 | |||
108 | instr = (unsigned char *)convert_ip_to_linear(current, regs); | ||
109 | max_instr = instr + 15; | ||
110 | |||
111 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | ||
112 | return 0; | ||
113 | |||
114 | while (scan_more && instr < max_instr) { | ||
115 | unsigned char opcode; | ||
116 | unsigned char instr_hi; | ||
117 | unsigned char instr_lo; | ||
118 | |||
119 | if (probe_kernel_address(instr, opcode)) | ||
120 | break; | ||
121 | |||
122 | instr_hi = opcode & 0xf0; | ||
123 | instr_lo = opcode & 0x0f; | ||
124 | instr++; | ||
125 | |||
126 | switch (instr_hi) { | ||
127 | case 0x20: | ||
128 | case 0x30: | ||
129 | /* | ||
130 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | ||
131 | * In X86_64 long mode, the CPU will signal invalid | ||
132 | * opcode if some of these prefixes are present so | ||
133 | * X86_64 will never get here anyway | ||
134 | */ | ||
135 | scan_more = ((instr_lo & 7) == 0x6); | ||
136 | break; | ||
137 | #ifdef CONFIG_X86_64 | ||
138 | case 0x40: | ||
139 | /* | ||
140 | * In AMD64 long mode 0x40..0x4F are valid REX prefixes | ||
141 | * Need to figure out under what instruction mode the | ||
142 | * instruction was issued. Could check the LDT for lm, | ||
143 | * but for now it's good enough to assume that long | ||
144 | * mode only uses well known segments or kernel. | ||
145 | */ | ||
146 | scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
147 | break; | ||
148 | #endif | ||
149 | case 0x60: | ||
150 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
151 | scan_more = (instr_lo & 0xC) == 0x4; | ||
152 | break; | ||
153 | case 0xF0: | ||
154 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | ||
155 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
156 | break; | ||
157 | case 0x00: | ||
158 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
159 | scan_more = 0; | ||
160 | |||
161 | if (probe_kernel_address(instr, opcode)) | ||
162 | break; | ||
163 | prefetch = (instr_lo == 0xF) && | ||
164 | (opcode == 0x0D || opcode == 0x18); | ||
165 | break; | ||
166 | default: | ||
167 | scan_more = 0; | ||
168 | break; | ||
169 | } | ||
170 | } | ||
171 | return prefetch; | ||
172 | } | ||
173 | |||
174 | static void force_sig_info_fault(int si_signo, int si_code, | ||
175 | unsigned long address, struct task_struct *tsk) | ||
176 | { | ||
177 | siginfo_t info; | ||
178 | |||
179 | info.si_signo = si_signo; | ||
180 | info.si_errno = 0; | ||
181 | info.si_code = si_code; | ||
182 | info.si_addr = (void __user *)address; | ||
183 | force_sig_info(si_signo, &info, tsk); | ||
184 | } | ||
185 | |||
186 | #ifdef CONFIG_X86_64 | ||
187 | static int bad_address(void *p) | ||
188 | { | ||
189 | unsigned long dummy; | ||
190 | return probe_kernel_address((unsigned long *)p, dummy); | ||
191 | } | ||
192 | #endif | ||
193 | |||
194 | void dump_pagetable(unsigned long address) | ||
195 | { | ||
196 | #ifdef CONFIG_X86_32 | ||
197 | __typeof__(pte_val(__pte(0))) page; | ||
198 | |||
199 | page = read_cr3(); | ||
200 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | ||
201 | #ifdef CONFIG_X86_PAE | ||
202 | printk("*pdpt = %016Lx ", page); | ||
203 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
204 | && page & _PAGE_PRESENT) { | ||
205 | page &= PAGE_MASK; | ||
206 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | ||
207 | & (PTRS_PER_PMD - 1)]; | ||
208 | printk(KERN_CONT "*pde = %016Lx ", page); | ||
209 | page &= ~_PAGE_NX; | ||
210 | } | ||
211 | #else | ||
212 | printk("*pde = %08lx ", page); | ||
213 | #endif | ||
214 | |||
215 | /* | ||
216 | * We must not directly access the pte in the highpte | ||
217 | * case if the page table is located in highmem. | ||
218 | * And let's rather not kmap-atomic the pte, just in case | ||
219 | * it's allocated already. | ||
220 | */ | ||
221 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
222 | && (page & _PAGE_PRESENT) | ||
223 | && !(page & _PAGE_PSE)) { | ||
224 | page &= PAGE_MASK; | ||
225 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | ||
226 | & (PTRS_PER_PTE - 1)]; | ||
227 | printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); | ||
228 | } | ||
229 | |||
230 | printk("\n"); | ||
231 | #else /* CONFIG_X86_64 */ | ||
232 | pgd_t *pgd; | ||
233 | pud_t *pud; | ||
234 | pmd_t *pmd; | ||
235 | pte_t *pte; | ||
236 | |||
237 | pgd = (pgd_t *)read_cr3(); | ||
238 | |||
239 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | ||
240 | pgd += pgd_index(address); | ||
241 | if (bad_address(pgd)) goto bad; | ||
242 | printk("PGD %lx ", pgd_val(*pgd)); | ||
243 | if (!pgd_present(*pgd)) goto ret; | ||
244 | |||
245 | pud = pud_offset(pgd, address); | ||
246 | if (bad_address(pud)) goto bad; | ||
247 | printk("PUD %lx ", pud_val(*pud)); | ||
248 | if (!pud_present(*pud)) goto ret; | ||
249 | |||
250 | pmd = pmd_offset(pud, address); | ||
251 | if (bad_address(pmd)) goto bad; | ||
252 | printk("PMD %lx ", pmd_val(*pmd)); | ||
253 | if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; | ||
254 | |||
255 | pte = pte_offset_kernel(pmd, address); | ||
256 | if (bad_address(pte)) goto bad; | ||
257 | printk("PTE %lx", pte_val(*pte)); | ||
258 | ret: | ||
259 | printk("\n"); | ||
260 | return; | ||
261 | bad: | ||
262 | printk("BAD\n"); | ||
263 | #endif | ||
264 | } | ||
265 | |||
266 | #ifdef CONFIG_X86_32 | ||
267 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
268 | { | ||
269 | unsigned index = pgd_index(address); | ||
270 | pgd_t *pgd_k; | ||
271 | pud_t *pud, *pud_k; | ||
272 | pmd_t *pmd, *pmd_k; | ||
273 | |||
274 | pgd += index; | ||
275 | pgd_k = init_mm.pgd + index; | ||
276 | |||
277 | if (!pgd_present(*pgd_k)) | ||
278 | return NULL; | ||
279 | |||
280 | /* | ||
281 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
282 | * and redundant with the set_pmd() on non-PAE. As would | ||
283 | * set_pud. | ||
284 | */ | ||
285 | |||
286 | pud = pud_offset(pgd, address); | ||
287 | pud_k = pud_offset(pgd_k, address); | ||
288 | if (!pud_present(*pud_k)) | ||
289 | return NULL; | ||
290 | |||
291 | pmd = pmd_offset(pud, address); | ||
292 | pmd_k = pmd_offset(pud_k, address); | ||
293 | if (!pmd_present(*pmd_k)) | ||
294 | return NULL; | ||
295 | if (!pmd_present(*pmd)) { | ||
296 | set_pmd(pmd, *pmd_k); | ||
297 | arch_flush_lazy_mmu_mode(); | ||
298 | } else | ||
299 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
300 | return pmd_k; | ||
301 | } | ||
302 | #endif | ||
303 | |||
304 | #ifdef CONFIG_X86_64 | ||
305 | static const char errata93_warning[] = | ||
306 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
307 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
308 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
309 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
310 | #endif | ||
311 | |||
312 | /* Workaround for K8 erratum #93 & buggy BIOS. | ||
313 | BIOS SMM functions are required to use a specific workaround | ||
314 | to avoid corruption of the 64bit RIP register on C stepping K8. | ||
315 | A lot of BIOS that didn't get tested properly miss this. | ||
316 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
317 | Try to work around it here. | ||
318 | Note we only handle faults in kernel here. | ||
319 | Does nothing for X86_32 | ||
320 | */ | ||
321 | static int is_errata93(struct pt_regs *regs, unsigned long address) | ||
322 | { | ||
323 | #ifdef CONFIG_X86_64 | ||
324 | static int warned; | ||
325 | if (address != regs->ip) | ||
326 | return 0; | ||
327 | if ((address >> 32) != 0) | ||
328 | return 0; | ||
329 | address |= 0xffffffffUL << 32; | ||
330 | if ((address >= (u64)_stext && address <= (u64)_etext) || | ||
331 | (address >= MODULES_VADDR && address <= MODULES_END)) { | ||
332 | if (!warned) { | ||
333 | printk(errata93_warning); | ||
334 | warned = 1; | ||
335 | } | ||
336 | regs->ip = address; | ||
337 | return 1; | ||
338 | } | ||
339 | #endif | ||
340 | return 0; | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal | ||
345 | * addresses >4GB. We catch this in the page fault handler because these | ||
346 | * addresses are not reachable. Just detect this case and return. Any code | ||
347 | * segment in LDT is compatibility mode. | ||
348 | */ | ||
349 | static int is_errata100(struct pt_regs *regs, unsigned long address) | ||
350 | { | ||
351 | #ifdef CONFIG_X86_64 | ||
352 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | ||
353 | (address >> 32)) | ||
354 | return 1; | ||
355 | #endif | ||
356 | return 0; | ||
357 | } | ||
358 | |||
359 | void do_invalid_op(struct pt_regs *, unsigned long); | ||
360 | |||
361 | static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | ||
362 | { | ||
363 | #ifdef CONFIG_X86_F00F_BUG | ||
364 | unsigned long nr; | ||
365 | /* | ||
366 | * Pentium F0 0F C7 C8 bug workaround. | ||
367 | */ | ||
368 | if (boot_cpu_data.f00f_bug) { | ||
369 | nr = (address - idt_descr.address) >> 3; | ||
370 | |||
371 | if (nr == 6) { | ||
372 | do_invalid_op(regs, 0); | ||
373 | return 1; | ||
374 | } | ||
375 | } | ||
376 | #endif | ||
377 | return 0; | ||
378 | } | ||
379 | |||
380 | static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, | ||
381 | unsigned long address) | ||
382 | { | ||
383 | #ifdef CONFIG_X86_32 | ||
384 | if (!oops_may_print()) | ||
385 | return; | ||
386 | |||
387 | #ifdef CONFIG_X86_PAE | ||
388 | if (error_code & PF_INSTR) { | ||
389 | int level; | ||
390 | pte_t *pte = lookup_address(address, &level); | ||
391 | |||
392 | if (pte && pte_present(*pte) && !pte_exec(*pte)) | ||
393 | printk(KERN_CRIT "kernel tried to execute " | ||
394 | "NX-protected page - exploit attempt? " | ||
395 | "(uid: %d)\n", current->uid); | ||
396 | } | ||
397 | #endif | ||
398 | printk(KERN_ALERT "BUG: unable to handle kernel "); | ||
399 | if (address < PAGE_SIZE) | ||
400 | printk(KERN_CONT "NULL pointer dereference"); | ||
401 | else | ||
402 | printk(KERN_CONT "paging request"); | ||
403 | printk(KERN_CONT " at %08lx\n", address); | ||
404 | |||
405 | printk(KERN_ALERT "IP:"); | ||
406 | printk_address(regs->ip, 1); | ||
407 | dump_pagetable(address); | ||
408 | #else /* CONFIG_X86_64 */ | ||
409 | printk(KERN_ALERT "BUG: unable to handle kernel "); | ||
410 | if (address < PAGE_SIZE) | ||
411 | printk(KERN_CONT "NULL pointer dereference"); | ||
412 | else | ||
413 | printk(KERN_CONT "paging request"); | ||
414 | printk(KERN_CONT " at %016lx\n", address); | ||
415 | |||
416 | printk(KERN_ALERT "IP:"); | ||
417 | printk_address(regs->ip, 1); | ||
418 | dump_pagetable(address); | ||
419 | #endif | ||
420 | } | ||
421 | |||
422 | #ifdef CONFIG_X86_64 | ||
423 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | ||
424 | unsigned long error_code) | ||
425 | { | ||
426 | unsigned long flags = oops_begin(); | ||
427 | struct task_struct *tsk; | ||
428 | |||
429 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | ||
430 | current->comm, address); | ||
431 | dump_pagetable(address); | ||
432 | tsk = current; | ||
433 | tsk->thread.cr2 = address; | ||
434 | tsk->thread.trap_no = 14; | ||
435 | tsk->thread.error_code = error_code; | ||
436 | if (__die("Bad pagetable", regs, error_code)) | ||
437 | regs = NULL; | ||
438 | oops_end(flags, regs, SIGKILL); | ||
439 | } | ||
440 | #endif | ||
441 | |||
442 | /* | ||
443 | * X86_32 | ||
444 | * Handle a fault on the vmalloc or module mapping area | ||
445 | * | ||
446 | * X86_64 | ||
447 | * Handle a fault on the vmalloc area | ||
448 | * | ||
449 | * This assumes no large pages in there. | ||
450 | */ | ||
451 | static int vmalloc_fault(unsigned long address) | ||
452 | { | ||
453 | #ifdef CONFIG_X86_32 | ||
454 | unsigned long pgd_paddr; | ||
455 | pmd_t *pmd_k; | ||
456 | pte_t *pte_k; | ||
457 | /* | ||
458 | * Synchronize this task's top level page-table | ||
459 | * with the 'reference' page table. | ||
460 | * | ||
461 | * Do _not_ use "current" here. We might be inside | ||
462 | * an interrupt in the middle of a task switch.. | ||
463 | */ | ||
464 | pgd_paddr = read_cr3(); | ||
465 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
466 | if (!pmd_k) | ||
467 | return -1; | ||
468 | pte_k = pte_offset_kernel(pmd_k, address); | ||
469 | if (!pte_present(*pte_k)) | ||
470 | return -1; | ||
471 | return 0; | ||
472 | #else | ||
473 | pgd_t *pgd, *pgd_ref; | ||
474 | pud_t *pud, *pud_ref; | ||
475 | pmd_t *pmd, *pmd_ref; | ||
476 | pte_t *pte, *pte_ref; | ||
477 | |||
478 | /* Copy kernel mappings over when needed. This can also | ||
479 | happen within a race in page table update. In the later | ||
480 | case just flush. */ | ||
481 | |||
482 | pgd = pgd_offset(current->mm ?: &init_mm, address); | ||
483 | pgd_ref = pgd_offset_k(address); | ||
484 | if (pgd_none(*pgd_ref)) | ||
485 | return -1; | ||
486 | if (pgd_none(*pgd)) | ||
487 | set_pgd(pgd, *pgd_ref); | ||
488 | else | ||
489 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
490 | |||
491 | /* Below here mismatches are bugs because these lower tables | ||
492 | are shared */ | ||
493 | |||
494 | pud = pud_offset(pgd, address); | ||
495 | pud_ref = pud_offset(pgd_ref, address); | ||
496 | if (pud_none(*pud_ref)) | ||
497 | return -1; | ||
498 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
499 | BUG(); | ||
500 | pmd = pmd_offset(pud, address); | ||
501 | pmd_ref = pmd_offset(pud_ref, address); | ||
502 | if (pmd_none(*pmd_ref)) | ||
503 | return -1; | ||
504 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
505 | BUG(); | ||
506 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
507 | if (!pte_present(*pte_ref)) | ||
508 | return -1; | ||
509 | pte = pte_offset_kernel(pmd, address); | ||
510 | /* Don't use pte_page here, because the mappings can point | ||
511 | outside mem_map, and the NUMA hash lookup cannot handle | ||
512 | that. */ | ||
513 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
514 | BUG(); | ||
515 | return 0; | ||
516 | #endif | ||
517 | } | ||
518 | |||
519 | int show_unhandled_signals = 1; | ||
520 | |||
521 | /* | ||
522 | * This routine handles page faults. It determines the address, | ||
523 | * and the problem, and then passes it off to one of the appropriate | ||
524 | * routines. | ||
525 | */ | ||
526 | #ifdef CONFIG_X86_64 | ||
527 | asmlinkage | ||
528 | #endif | ||
529 | void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
530 | { | ||
531 | struct task_struct *tsk; | ||
532 | struct mm_struct *mm; | ||
533 | struct vm_area_struct *vma; | ||
534 | unsigned long address; | ||
535 | int write, si_code; | ||
536 | int fault; | ||
537 | #ifdef CONFIG_X86_64 | ||
538 | unsigned long flags; | ||
539 | #endif | ||
540 | |||
541 | /* | ||
542 | * We can fault from pretty much anywhere, with unknown IRQ state. | ||
543 | */ | ||
544 | trace_hardirqs_fixup(); | ||
545 | |||
546 | tsk = current; | ||
547 | mm = tsk->mm; | ||
548 | prefetchw(&mm->mmap_sem); | ||
549 | |||
550 | /* get the address */ | ||
551 | address = read_cr2(); | ||
552 | |||
553 | si_code = SEGV_MAPERR; | ||
554 | |||
555 | if (notify_page_fault(regs)) | ||
556 | return; | ||
557 | |||
558 | /* | ||
559 | * We fault-in kernel-space virtual memory on-demand. The | ||
560 | * 'reference' page table is init_mm.pgd. | ||
561 | * | ||
562 | * NOTE! We MUST NOT take any locks for this case. We may | ||
563 | * be in an interrupt or a critical region, and should | ||
564 | * only copy the information from the master page table, | ||
565 | * nothing more. | ||
566 | * | ||
567 | * This verifies that the fault happens in kernel space | ||
568 | * (error_code & 4) == 0, and that the fault was not a | ||
569 | * protection error (error_code & 9) == 0. | ||
570 | */ | ||
571 | #ifdef CONFIG_X86_32 | ||
572 | if (unlikely(address >= TASK_SIZE)) { | ||
573 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
574 | vmalloc_fault(address) >= 0) | ||
575 | return; | ||
576 | /* | ||
577 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
578 | * fault we could otherwise deadlock. | ||
579 | */ | ||
580 | goto bad_area_nosemaphore; | ||
581 | } | ||
582 | |||
583 | /* It's safe to allow irq's after cr2 has been saved and the vmalloc | ||
584 | fault has been handled. */ | ||
585 | if (regs->flags & (X86_EFLAGS_IF|VM_MASK)) | ||
586 | local_irq_enable(); | ||
587 | |||
588 | /* | ||
589 | * If we're in an interrupt, have no user context or are running in an | ||
590 | * atomic region then we must not take the fault. | ||
591 | */ | ||
592 | if (in_atomic() || !mm) | ||
593 | goto bad_area_nosemaphore; | ||
594 | #else /* CONFIG_X86_64 */ | ||
595 | if (unlikely(address >= TASK_SIZE64)) { | ||
596 | /* | ||
597 | * Don't check for the module range here: its PML4 | ||
598 | * is always initialized because it's shared with the main | ||
599 | * kernel text. Only vmalloc may need PML4 syncups. | ||
600 | */ | ||
601 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
602 | ((address >= VMALLOC_START && address < VMALLOC_END))) { | ||
603 | if (vmalloc_fault(address) >= 0) | ||
604 | return; | ||
605 | } | ||
606 | /* | ||
607 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
608 | * fault we could otherwise deadlock. | ||
609 | */ | ||
610 | goto bad_area_nosemaphore; | ||
611 | } | ||
612 | if (likely(regs->flags & X86_EFLAGS_IF)) | ||
613 | local_irq_enable(); | ||
614 | |||
615 | if (unlikely(error_code & PF_RSVD)) | ||
616 | pgtable_bad(address, regs, error_code); | ||
617 | |||
618 | /* | ||
619 | * If we're in an interrupt, have no user context or are running in an | ||
620 | * atomic region then we must not take the fault. | ||
621 | */ | ||
622 | if (unlikely(in_atomic() || !mm)) | ||
623 | goto bad_area_nosemaphore; | ||
624 | |||
625 | /* | ||
626 | * User-mode registers count as a user access even for any | ||
627 | * potential system fault or CPU buglet. | ||
628 | */ | ||
629 | if (user_mode_vm(regs)) | ||
630 | error_code |= PF_USER; | ||
631 | again: | ||
632 | #endif | ||
633 | /* When running in the kernel we expect faults to occur only to | ||
634 | * addresses in user space. All other faults represent errors in the | ||
635 | * kernel and should generate an OOPS. Unfortunately, in the case of an | ||
636 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
637 | * we will deadlock attempting to validate the fault against the | ||
638 | * address space. Luckily the kernel only validly references user | ||
639 | * space from well defined areas of code, which are listed in the | ||
640 | * exceptions table. | ||
641 | * | ||
642 | * As the vast majority of faults will be valid we will only perform | ||
643 | * the source reference check when there is a possibility of a deadlock. | ||
644 | * Attempt to lock the address space, if we cannot we then validate the | ||
645 | * source. If this is invalid we can skip the address space check, | ||
646 | * thus avoiding the deadlock. | ||
647 | */ | ||
648 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
649 | if ((error_code & PF_USER) == 0 && | ||
650 | !search_exception_tables(regs->ip)) | ||
651 | goto bad_area_nosemaphore; | ||
652 | down_read(&mm->mmap_sem); | ||
653 | } | ||
654 | |||
655 | vma = find_vma(mm, address); | ||
656 | if (!vma) | ||
657 | goto bad_area; | ||
658 | #ifdef CONFIG_X86_32 | ||
659 | if (vma->vm_start <= address) | ||
660 | #else | ||
661 | if (likely(vma->vm_start <= address)) | ||
662 | #endif | ||
663 | goto good_area; | ||
664 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
665 | goto bad_area; | ||
666 | if (error_code & PF_USER) { | ||
667 | /* | ||
668 | * Accessing the stack below %sp is always a bug. | ||
669 | * The large cushion allows instructions like enter | ||
670 | * and pusha to work. ("enter $65535,$31" pushes | ||
671 | * 32 pointers and then decrements %sp by 65535.) | ||
672 | */ | ||
673 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) | ||
674 | goto bad_area; | ||
675 | } | ||
676 | if (expand_stack(vma, address)) | ||
677 | goto bad_area; | ||
678 | /* | ||
679 | * Ok, we have a good vm_area for this memory access, so | ||
680 | * we can handle it.. | ||
681 | */ | ||
682 | good_area: | ||
683 | si_code = SEGV_ACCERR; | ||
684 | write = 0; | ||
685 | switch (error_code & (PF_PROT|PF_WRITE)) { | ||
686 | default: /* 3: write, present */ | ||
687 | /* fall through */ | ||
688 | case PF_WRITE: /* write, not present */ | ||
689 | if (!(vma->vm_flags & VM_WRITE)) | ||
690 | goto bad_area; | ||
691 | write++; | ||
692 | break; | ||
693 | case PF_PROT: /* read, present */ | ||
694 | goto bad_area; | ||
695 | case 0: /* read, not present */ | ||
696 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
697 | goto bad_area; | ||
698 | } | ||
699 | |||
700 | #ifdef CONFIG_X86_32 | ||
701 | survive: | ||
702 | #endif | ||
703 | /* | ||
704 | * If for any reason at all we couldn't handle the fault, | ||
705 | * make sure we exit gracefully rather than endlessly redo | ||
706 | * the fault. | ||
707 | */ | ||
708 | fault = handle_mm_fault(mm, vma, address, write); | ||
709 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
710 | if (fault & VM_FAULT_OOM) | ||
711 | goto out_of_memory; | ||
712 | else if (fault & VM_FAULT_SIGBUS) | ||
713 | goto do_sigbus; | ||
714 | BUG(); | ||
715 | } | ||
716 | if (fault & VM_FAULT_MAJOR) | ||
717 | tsk->maj_flt++; | ||
718 | else | ||
719 | tsk->min_flt++; | ||
720 | |||
721 | #ifdef CONFIG_X86_32 | ||
722 | /* | ||
723 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
724 | */ | ||
725 | if (v8086_mode(regs)) { | ||
726 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
727 | if (bit < 32) | ||
728 | tsk->thread.screen_bitmap |= 1 << bit; | ||
729 | } | ||
730 | #endif | ||
731 | up_read(&mm->mmap_sem); | ||
732 | return; | ||
733 | |||
734 | /* | ||
735 | * Something tried to access memory that isn't in our memory map.. | ||
736 | * Fix it, but check if it's kernel or user first.. | ||
737 | */ | ||
738 | bad_area: | ||
739 | up_read(&mm->mmap_sem); | ||
740 | |||
741 | bad_area_nosemaphore: | ||
742 | /* User mode accesses just cause a SIGSEGV */ | ||
743 | if (error_code & PF_USER) { | ||
744 | /* | ||
745 | * It's possible to have interrupts off here. | ||
746 | */ | ||
747 | local_irq_enable(); | ||
748 | |||
749 | /* | ||
750 | * Valid to do another page fault here because this one came | ||
751 | * from user space. | ||
752 | */ | ||
753 | if (is_prefetch(regs, address, error_code)) | ||
754 | return; | ||
755 | |||
756 | if (is_errata100(regs, address)) | ||
757 | return; | ||
758 | |||
759 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
760 | printk_ratelimit()) { | ||
761 | printk( | ||
762 | #ifdef CONFIG_X86_32 | ||
763 | "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx", | ||
764 | #else | ||
765 | "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx", | ||
766 | #endif | ||
767 | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | ||
768 | tsk->comm, task_pid_nr(tsk), address, regs->ip, | ||
769 | regs->sp, error_code); | ||
770 | print_vma_addr(" in ", regs->ip); | ||
771 | printk("\n"); | ||
772 | } | ||
773 | |||
774 | tsk->thread.cr2 = address; | ||
775 | /* Kernel addresses are always protection faults */ | ||
776 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
777 | tsk->thread.trap_no = 14; | ||
778 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
779 | return; | ||
780 | } | ||
781 | |||
782 | if (is_f00f_bug(regs, address)) | ||
783 | return; | ||
784 | |||
785 | no_context: | ||
786 | /* Are we prepared to handle this kernel fault? */ | ||
787 | if (fixup_exception(regs)) | ||
788 | return; | ||
789 | |||
790 | /* | ||
791 | * X86_32 | ||
792 | * Valid to do another page fault here, because if this fault | ||
793 | * had been triggered by is_prefetch fixup_exception would have | ||
794 | * handled it. | ||
795 | * | ||
796 | * X86_64 | ||
797 | * Hall of shame of CPU/BIOS bugs. | ||
798 | */ | ||
799 | if (is_prefetch(regs, address, error_code)) | ||
800 | return; | ||
801 | |||
802 | if (is_errata93(regs, address)) | ||
803 | return; | ||
804 | |||
805 | /* | ||
806 | * Oops. The kernel tried to access some bad page. We'll have to | ||
807 | * terminate things with extreme prejudice. | ||
808 | */ | ||
809 | #ifdef CONFIG_X86_32 | ||
810 | bust_spinlocks(1); | ||
811 | |||
812 | show_fault_oops(regs, error_code, address); | ||
813 | |||
814 | tsk->thread.cr2 = address; | ||
815 | tsk->thread.trap_no = 14; | ||
816 | tsk->thread.error_code = error_code; | ||
817 | die("Oops", regs, error_code); | ||
818 | bust_spinlocks(0); | ||
819 | do_exit(SIGKILL); | ||
820 | #else /* CONFIG_X86_64 */ | ||
821 | flags = oops_begin(); | ||
822 | |||
823 | show_fault_oops(regs, error_code, address); | ||
824 | |||
825 | tsk->thread.cr2 = address; | ||
826 | tsk->thread.trap_no = 14; | ||
827 | tsk->thread.error_code = error_code; | ||
828 | if (__die("Oops", regs, error_code)) | ||
829 | regs = NULL; | ||
830 | /* Executive summary in case the body of the oops scrolled away */ | ||
831 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
832 | oops_end(flags, regs, SIGKILL); | ||
833 | #endif | ||
834 | |||
835 | /* | ||
836 | * We ran out of memory, or some other thing happened to us that made | ||
837 | * us unable to handle the page fault gracefully. | ||
838 | */ | ||
839 | out_of_memory: | ||
840 | up_read(&mm->mmap_sem); | ||
841 | #ifdef CONFIG_X86_32 | ||
842 | if (is_global_init(tsk)) { | ||
843 | yield(); | ||
844 | down_read(&mm->mmap_sem); | ||
845 | goto survive; | ||
846 | } | ||
847 | #else | ||
848 | if (is_global_init(current)) { | ||
849 | yield(); | ||
850 | goto again; | ||
851 | } | ||
852 | #endif | ||
853 | printk("VM: killing process %s\n", tsk->comm); | ||
854 | if (error_code & PF_USER) | ||
855 | do_group_exit(SIGKILL); | ||
856 | goto no_context; | ||
857 | |||
858 | do_sigbus: | ||
859 | up_read(&mm->mmap_sem); | ||
860 | |||
861 | /* Kernel mode? Handle exceptions or die */ | ||
862 | if (!(error_code & PF_USER)) | ||
863 | goto no_context; | ||
864 | #ifdef CONFIG_X86_32 | ||
865 | /* User space => ok to do another page fault */ | ||
866 | if (is_prefetch(regs, address, error_code)) | ||
867 | return; | ||
868 | #endif | ||
869 | tsk->thread.cr2 = address; | ||
870 | tsk->thread.error_code = error_code; | ||
871 | tsk->thread.trap_no = 14; | ||
872 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
873 | } | ||
874 | |||
875 | #ifdef CONFIG_X86_64 | ||
876 | DEFINE_SPINLOCK(pgd_lock); | ||
877 | LIST_HEAD(pgd_list); | ||
878 | #endif | ||
879 | |||
880 | void vmalloc_sync_all(void) | ||
881 | { | ||
882 | #ifdef CONFIG_X86_32 | ||
883 | /* | ||
884 | * Note that races in the updates of insync and start aren't | ||
885 | * problematic: insync can only get set bits added, and updates to | ||
886 | * start are only improving performance (without affecting correctness | ||
887 | * if undone). | ||
888 | */ | ||
889 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
890 | static unsigned long start = TASK_SIZE; | ||
891 | unsigned long address; | ||
892 | |||
893 | if (SHARED_KERNEL_PMD) | ||
894 | return; | ||
895 | |||
896 | BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | ||
897 | for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | ||
898 | if (!test_bit(pgd_index(address), insync)) { | ||
899 | unsigned long flags; | ||
900 | struct page *page; | ||
901 | |||
902 | spin_lock_irqsave(&pgd_lock, flags); | ||
903 | for (page = pgd_list; page; page = | ||
904 | (struct page *)page->index) | ||
905 | if (!vmalloc_sync_one(page_address(page), | ||
906 | address)) { | ||
907 | BUG_ON(page != pgd_list); | ||
908 | break; | ||
909 | } | ||
910 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
911 | if (!page) | ||
912 | set_bit(pgd_index(address), insync); | ||
913 | } | ||
914 | if (address == start && test_bit(pgd_index(address), insync)) | ||
915 | start = address + PGDIR_SIZE; | ||
916 | } | ||
917 | #else /* CONFIG_X86_64 */ | ||
918 | /* | ||
919 | * Note that races in the updates of insync and start aren't | ||
920 | * problematic: insync can only get set bits added, and updates to | ||
921 | * start are only improving performance (without affecting correctness | ||
922 | * if undone). | ||
923 | */ | ||
924 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
925 | static unsigned long start = VMALLOC_START & PGDIR_MASK; | ||
926 | unsigned long address; | ||
927 | |||
928 | for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { | ||
929 | if (!test_bit(pgd_index(address), insync)) { | ||
930 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
931 | struct page *page; | ||
932 | |||
933 | if (pgd_none(*pgd_ref)) | ||
934 | continue; | ||
935 | spin_lock(&pgd_lock); | ||
936 | list_for_each_entry(page, &pgd_list, lru) { | ||
937 | pgd_t *pgd; | ||
938 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
939 | if (pgd_none(*pgd)) | ||
940 | set_pgd(pgd, *pgd_ref); | ||
941 | else | ||
942 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
943 | } | ||
944 | spin_unlock(&pgd_lock); | ||
945 | set_bit(pgd_index(address), insync); | ||
946 | } | ||
947 | if (address == start) | ||
948 | start = address + PGDIR_SIZE; | ||
949 | } | ||
950 | /* Check that there is no need to do the same for the modules area. */ | ||
951 | BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); | ||
952 | BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == | ||
953 | (__START_KERNEL & PGDIR_MASK))); | ||
954 | #endif | ||
955 | } | ||