aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r--arch/x86/mm/fault.c1333
1 files changed, 772 insertions, 561 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index c76ef1d701c9..a03b7279efa0 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -1,73 +1,79 @@
1/* 1/*
2 * Copyright (C) 1995 Linus Torvalds 2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
4 */ 5 */
5
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
13#include <linux/mmiotrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h> 6#include <linux/interrupt.h>
18#include <linux/init.h> 7#include <linux/mmiotrace.h>
19#include <linux/tty.h> 8#include <linux/bootmem.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/compiler.h> 9#include <linux/compiler.h>
22#include <linux/highmem.h> 10#include <linux/highmem.h>
23#include <linux/bootmem.h> /* for max_low_pfn */
24#include <linux/vmalloc.h>
25#include <linux/module.h>
26#include <linux/kprobes.h> 11#include <linux/kprobes.h>
27#include <linux/uaccess.h> 12#include <linux/uaccess.h>
13#include <linux/vmalloc.h>
14#include <linux/vt_kern.h>
15#include <linux/signal.h>
16#include <linux/kernel.h>
17#include <linux/ptrace.h>
18#include <linux/string.h>
19#include <linux/module.h>
28#include <linux/kdebug.h> 20#include <linux/kdebug.h>
21#include <linux/errno.h>
22#include <linux/magic.h>
23#include <linux/sched.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/mman.h>
27#include <linux/tty.h>
28#include <linux/smp.h>
29#include <linux/mm.h>
30
31#include <asm-generic/sections.h>
29 32
30#include <asm/system.h>
31#include <asm/desc.h>
32#include <asm/segment.h>
33#include <asm/pgalloc.h>
34#include <asm/smp.h>
35#include <asm/tlbflush.h> 33#include <asm/tlbflush.h>
34#include <asm/pgalloc.h>
35#include <asm/segment.h>
36#include <asm/system.h>
36#include <asm/proto.h> 37#include <asm/proto.h>
37#include <asm-generic/sections.h>
38#include <asm/traps.h> 38#include <asm/traps.h>
39#include <asm/desc.h>
39 40
40/* 41/*
41 * Page fault error code bits 42 * Page fault error code bits:
42 * bit 0 == 0 means no page found, 1 means protection fault 43 *
43 * bit 1 == 0 means read, 1 means write 44 * bit 0 == 0: no page found 1: protection fault
44 * bit 2 == 0 means kernel, 1 means user-mode 45 * bit 1 == 0: read access 1: write access
45 * bit 3 == 1 means use of reserved bit detected 46 * bit 2 == 0: kernel-mode access 1: user-mode access
46 * bit 4 == 1 means fault was an instruction fetch 47 * bit 3 == 1: use of reserved bit detected
48 * bit 4 == 1: fault was an instruction fetch
47 */ 49 */
48#define PF_PROT (1<<0) 50enum x86_pf_error_code {
49#define PF_WRITE (1<<1) 51
50#define PF_USER (1<<2) 52 PF_PROT = 1 << 0,
51#define PF_RSVD (1<<3) 53 PF_WRITE = 1 << 1,
52#define PF_INSTR (1<<4) 54 PF_USER = 1 << 2,
55 PF_RSVD = 1 << 3,
56 PF_INSTR = 1 << 4,
57};
53 58
59/*
60 * Returns 0 if mmiotrace is disabled, or if the fault is not
61 * handled by mmiotrace:
62 */
54static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 63static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
55{ 64{
56#ifdef CONFIG_MMIOTRACE
57 if (unlikely(is_kmmio_active())) 65 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1) 66 if (kmmio_handler(regs, addr) == 1)
59 return -1; 67 return -1;
60#endif
61 return 0; 68 return 0;
62} 69}
63 70
64static inline int notify_page_fault(struct pt_regs *regs) 71static inline int notify_page_fault(struct pt_regs *regs)
65{ 72{
66#ifdef CONFIG_KPROBES
67 int ret = 0; 73 int ret = 0;
68 74
69 /* kprobe_running() needs smp_processor_id() */ 75 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode_vm(regs)) { 76 if (kprobes_built_in() && !user_mode_vm(regs)) {
71 preempt_disable(); 77 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 78 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1; 79 ret = 1;
@@ -75,29 +81,76 @@ static inline int notify_page_fault(struct pt_regs *regs)
75 } 81 }
76 82
77 return ret; 83 return ret;
78#else
79 return 0;
80#endif
81} 84}
82 85
83/* 86/*
84 * X86_32 87 * Prefetch quirks:
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 88 *
86 * Check that here and ignore it. 89 * 32-bit mode:
90 *
91 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
92 * Check that here and ignore it.
93 *
94 * 64-bit mode:
87 * 95 *
88 * X86_64 96 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Sometimes the CPU reports invalid exceptions on prefetch. 97 * Check that here and ignore it.
90 * Check that here and ignore it.
91 * 98 *
92 * Opcode checker based on code by Richard Brunner 99 * Opcode checker based on code by Richard Brunner.
93 */ 100 */
94static int is_prefetch(struct pt_regs *regs, unsigned long addr, 101static inline int
95 unsigned long error_code) 102check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
103 unsigned char opcode, int *prefetch)
96{ 104{
105 unsigned char instr_hi = opcode & 0xf0;
106 unsigned char instr_lo = opcode & 0x0f;
107
108 switch (instr_hi) {
109 case 0x20:
110 case 0x30:
111 /*
112 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
113 * In X86_64 long mode, the CPU will signal invalid
114 * opcode if some of these prefixes are present so
115 * X86_64 will never get here anyway
116 */
117 return ((instr_lo & 7) == 0x6);
118#ifdef CONFIG_X86_64
119 case 0x40:
120 /*
121 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
122 * Need to figure out under what instruction mode the
123 * instruction was issued. Could check the LDT for lm,
124 * but for now it's good enough to assume that long
125 * mode only uses well known segments or kernel.
126 */
127 return (!user_mode(regs)) || (regs->cs == __USER_CS);
128#endif
129 case 0x60:
130 /* 0x64 thru 0x67 are valid prefixes in all modes. */
131 return (instr_lo & 0xC) == 0x4;
132 case 0xF0:
133 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
134 return !instr_lo || (instr_lo>>1) == 1;
135 case 0x00:
136 /* Prefetch instruction is 0x0F0D or 0x0F18 */
137 if (probe_kernel_address(instr, opcode))
138 return 0;
139
140 *prefetch = (instr_lo == 0xF) &&
141 (opcode == 0x0D || opcode == 0x18);
142 return 0;
143 default:
144 return 0;
145 }
146}
147
148static int
149is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
150{
151 unsigned char *max_instr;
97 unsigned char *instr; 152 unsigned char *instr;
98 int scan_more = 1;
99 int prefetch = 0; 153 int prefetch = 0;
100 unsigned char *max_instr;
101 154
102 /* 155 /*
103 * If it was a exec (instruction fetch) fault on NX page, then 156 * If it was a exec (instruction fetch) fault on NX page, then
@@ -106,106 +159,170 @@ static int is_prefetch(struct pt_regs *regs, unsigned long addr,
106 if (error_code & PF_INSTR) 159 if (error_code & PF_INSTR)
107 return 0; 160 return 0;
108 161
109 instr = (unsigned char *)convert_ip_to_linear(current, regs); 162 instr = (void *)convert_ip_to_linear(current, regs);
110 max_instr = instr + 15; 163 max_instr = instr + 15;
111 164
112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 165 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113 return 0; 166 return 0;
114 167
115 while (scan_more && instr < max_instr) { 168 while (instr < max_instr) {
116 unsigned char opcode; 169 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
119 170
120 if (probe_kernel_address(instr, opcode)) 171 if (probe_kernel_address(instr, opcode))
121 break; 172 break;
122 173
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
125 instr++; 174 instr++;
126 175
127 switch (instr_hi) { 176 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
128 case 0x20:
129 case 0x30:
130 /*
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
135 */
136 scan_more = ((instr_lo & 7) == 0x6);
137 break; 177 break;
138#ifdef CONFIG_X86_64
139 case 0x40:
140 /*
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
146 */
147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148 break;
149#endif
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
153 break;
154 case 0xF0:
155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156 scan_more = !instr_lo || (instr_lo>>1) == 1;
157 break;
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
161
162 if (probe_kernel_address(instr, opcode))
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
166 break;
167 default:
168 scan_more = 0;
169 break;
170 }
171 } 178 }
172 return prefetch; 179 return prefetch;
173} 180}
174 181
175static void force_sig_info_fault(int si_signo, int si_code, 182static void
176 unsigned long address, struct task_struct *tsk) 183force_sig_info_fault(int si_signo, int si_code, unsigned long address,
184 struct task_struct *tsk)
177{ 185{
178 siginfo_t info; 186 siginfo_t info;
179 187
180 info.si_signo = si_signo; 188 info.si_signo = si_signo;
181 info.si_errno = 0; 189 info.si_errno = 0;
182 info.si_code = si_code; 190 info.si_code = si_code;
183 info.si_addr = (void __user *)address; 191 info.si_addr = (void __user *)address;
192
184 force_sig_info(si_signo, &info, tsk); 193 force_sig_info(si_signo, &info, tsk);
185} 194}
186 195
187#ifdef CONFIG_X86_64 196DEFINE_SPINLOCK(pgd_lock);
188static int bad_address(void *p) 197LIST_HEAD(pgd_list);
198
199#ifdef CONFIG_X86_32
200static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
189{ 201{
190 unsigned long dummy; 202 unsigned index = pgd_index(address);
191 return probe_kernel_address((unsigned long *)p, dummy); 203 pgd_t *pgd_k;
204 pud_t *pud, *pud_k;
205 pmd_t *pmd, *pmd_k;
206
207 pgd += index;
208 pgd_k = init_mm.pgd + index;
209
210 if (!pgd_present(*pgd_k))
211 return NULL;
212
213 /*
214 * set_pgd(pgd, *pgd_k); here would be useless on PAE
215 * and redundant with the set_pmd() on non-PAE. As would
216 * set_pud.
217 */
218 pud = pud_offset(pgd, address);
219 pud_k = pud_offset(pgd_k, address);
220 if (!pud_present(*pud_k))
221 return NULL;
222
223 pmd = pmd_offset(pud, address);
224 pmd_k = pmd_offset(pud_k, address);
225 if (!pmd_present(*pmd_k))
226 return NULL;
227
228 if (!pmd_present(*pmd)) {
229 set_pmd(pmd, *pmd_k);
230 arch_flush_lazy_mmu_mode();
231 } else {
232 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
233 }
234
235 return pmd_k;
236}
237
238void vmalloc_sync_all(void)
239{
240 unsigned long address;
241
242 if (SHARED_KERNEL_PMD)
243 return;
244
245 for (address = VMALLOC_START & PMD_MASK;
246 address >= TASK_SIZE && address < FIXADDR_TOP;
247 address += PMD_SIZE) {
248
249 unsigned long flags;
250 struct page *page;
251
252 spin_lock_irqsave(&pgd_lock, flags);
253 list_for_each_entry(page, &pgd_list, lru) {
254 if (!vmalloc_sync_one(page_address(page), address))
255 break;
256 }
257 spin_unlock_irqrestore(&pgd_lock, flags);
258 }
259}
260
261/*
262 * 32-bit:
263 *
264 * Handle a fault on the vmalloc or module mapping area
265 */
266static noinline int vmalloc_fault(unsigned long address)
267{
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
271
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
192} 310}
193#endif
194 311
195static void dump_pagetable(unsigned long address) 312static void dump_pagetable(unsigned long address)
196{ 313{
197#ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page; 314 __typeof__(pte_val(__pte(0))) page;
199 315
200 page = read_cr3(); 316 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; 317 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
318
202#ifdef CONFIG_X86_PAE 319#ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page); 320 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn 321 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) { 322 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK; 323 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) 324 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)]; 325 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page); 326 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX; 327 page &= ~_PAGE_NX;
211 } 328 }
@@ -217,19 +334,145 @@ static void dump_pagetable(unsigned long address)
217 * We must not directly access the pte in the highpte 334 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem. 335 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case 336 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already. 337 * it's allocated already:
221 */ 338 */
222 if ((page >> PAGE_SHIFT) < max_low_pfn 339 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT) 340 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) { 341 && !(page & _PAGE_PSE)) {
342
225 page &= PAGE_MASK; 343 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) 344 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)]; 345 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); 346 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 } 347 }
230 348
231 printk("\n"); 349 printk("\n");
232#else /* CONFIG_X86_64 */ 350}
351
352#else /* CONFIG_X86_64: */
353
354void vmalloc_sync_all(void)
355{
356 unsigned long address;
357
358 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
359 address += PGDIR_SIZE) {
360
361 const pgd_t *pgd_ref = pgd_offset_k(address);
362 unsigned long flags;
363 struct page *page;
364
365 if (pgd_none(*pgd_ref))
366 continue;
367
368 spin_lock_irqsave(&pgd_lock, flags);
369 list_for_each_entry(page, &pgd_list, lru) {
370 pgd_t *pgd;
371 pgd = (pgd_t *)page_address(page) + pgd_index(address);
372 if (pgd_none(*pgd))
373 set_pgd(pgd, *pgd_ref);
374 else
375 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
376 }
377 spin_unlock_irqrestore(&pgd_lock, flags);
378 }
379}
380
381/*
382 * 64-bit:
383 *
384 * Handle a fault on the vmalloc area
385 *
386 * This assumes no large pages in there.
387 */
388static noinline int vmalloc_fault(unsigned long address)
389{
390 pgd_t *pgd, *pgd_ref;
391 pud_t *pud, *pud_ref;
392 pmd_t *pmd, *pmd_ref;
393 pte_t *pte, *pte_ref;
394
395 /* Make sure we are in vmalloc area: */
396 if (!(address >= VMALLOC_START && address < VMALLOC_END))
397 return -1;
398
399 /*
400 * Copy kernel mappings over when needed. This can also
401 * happen within a race in page table update. In the later
402 * case just flush:
403 */
404 pgd = pgd_offset(current->active_mm, address);
405 pgd_ref = pgd_offset_k(address);
406 if (pgd_none(*pgd_ref))
407 return -1;
408
409 if (pgd_none(*pgd))
410 set_pgd(pgd, *pgd_ref);
411 else
412 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
413
414 /*
415 * Below here mismatches are bugs because these lower tables
416 * are shared:
417 */
418
419 pud = pud_offset(pgd, address);
420 pud_ref = pud_offset(pgd_ref, address);
421 if (pud_none(*pud_ref))
422 return -1;
423
424 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
425 BUG();
426
427 pmd = pmd_offset(pud, address);
428 pmd_ref = pmd_offset(pud_ref, address);
429 if (pmd_none(*pmd_ref))
430 return -1;
431
432 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
433 BUG();
434
435 pte_ref = pte_offset_kernel(pmd_ref, address);
436 if (!pte_present(*pte_ref))
437 return -1;
438
439 pte = pte_offset_kernel(pmd, address);
440
441 /*
442 * Don't use pte_page here, because the mappings can point
443 * outside mem_map, and the NUMA hash lookup cannot handle
444 * that:
445 */
446 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
447 BUG();
448
449 return 0;
450}
451
452static const char errata93_warning[] =
453KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
454KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
455KERN_ERR "******* Please consider a BIOS update.\n"
456KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
457
458/*
459 * No vm86 mode in 64-bit mode:
460 */
461static inline void
462check_v8086_mode(struct pt_regs *regs, unsigned long address,
463 struct task_struct *tsk)
464{
465}
466
467static int bad_address(void *p)
468{
469 unsigned long dummy;
470
471 return probe_kernel_address((unsigned long *)p, dummy);
472}
473
474static void dump_pagetable(unsigned long address)
475{
233 pgd_t *pgd; 476 pgd_t *pgd;
234 pud_t *pud; 477 pud_t *pud;
235 pmd_t *pmd; 478 pmd_t *pmd;
@@ -238,102 +481,77 @@ static void dump_pagetable(unsigned long address)
238 pgd = (pgd_t *)read_cr3(); 481 pgd = (pgd_t *)read_cr3();
239 482
240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 483 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
484
241 pgd += pgd_index(address); 485 pgd += pgd_index(address);
242 if (bad_address(pgd)) goto bad; 486 if (bad_address(pgd))
487 goto bad;
488
243 printk("PGD %lx ", pgd_val(*pgd)); 489 printk("PGD %lx ", pgd_val(*pgd));
244 if (!pgd_present(*pgd)) goto ret; 490
491 if (!pgd_present(*pgd))
492 goto out;
245 493
246 pud = pud_offset(pgd, address); 494 pud = pud_offset(pgd, address);
247 if (bad_address(pud)) goto bad; 495 if (bad_address(pud))
496 goto bad;
497
248 printk("PUD %lx ", pud_val(*pud)); 498 printk("PUD %lx ", pud_val(*pud));
249 if (!pud_present(*pud) || pud_large(*pud)) 499 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret; 500 goto out;
251 501
252 pmd = pmd_offset(pud, address); 502 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad; 503 if (bad_address(pmd))
504 goto bad;
505
254 printk("PMD %lx ", pmd_val(*pmd)); 506 printk("PMD %lx ", pmd_val(*pmd));
255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; 507 if (!pmd_present(*pmd) || pmd_large(*pmd))
508 goto out;
256 509
257 pte = pte_offset_kernel(pmd, address); 510 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad; 511 if (bad_address(pte))
512 goto bad;
513
259 printk("PTE %lx", pte_val(*pte)); 514 printk("PTE %lx", pte_val(*pte));
260ret: 515out:
261 printk("\n"); 516 printk("\n");
262 return; 517 return;
263bad: 518bad:
264 printk("BAD\n"); 519 printk("BAD\n");
265#endif
266}
267
268#ifdef CONFIG_X86_32
269static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270{
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
275
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
278
279 if (!pgd_present(*pgd_k))
280 return NULL;
281
282 /*
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
286 */
287
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
292
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
303} 520}
304#endif
305 521
306#ifdef CONFIG_X86_64 522#endif /* CONFIG_X86_64 */
307static const char errata93_warning[] =
308KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310KERN_ERR "******* Please consider a BIOS update.\n"
311KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312#endif
313 523
314/* Workaround for K8 erratum #93 & buggy BIOS. 524/*
315 BIOS SMM functions are required to use a specific workaround 525 * Workaround for K8 erratum #93 & buggy BIOS.
316 to avoid corruption of the 64bit RIP register on C stepping K8. 526 *
317 A lot of BIOS that didn't get tested properly miss this. 527 * BIOS SMM functions are required to use a specific workaround
318 The OS sees this as a page fault with the upper 32bits of RIP cleared. 528 * to avoid corruption of the 64bit RIP register on C stepping K8.
319 Try to work around it here. 529 *
320 Note we only handle faults in kernel here. 530 * A lot of BIOS that didn't get tested properly miss this.
321 Does nothing for X86_32 531 *
532 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
533 * Try to work around it here.
534 *
535 * Note we only handle faults in kernel here.
536 * Does nothing on 32-bit.
322 */ 537 */
323static int is_errata93(struct pt_regs *regs, unsigned long address) 538static int is_errata93(struct pt_regs *regs, unsigned long address)
324{ 539{
325#ifdef CONFIG_X86_64 540#ifdef CONFIG_X86_64
326 static int warned; 541 static int once;
542
327 if (address != regs->ip) 543 if (address != regs->ip)
328 return 0; 544 return 0;
545
329 if ((address >> 32) != 0) 546 if ((address >> 32) != 0)
330 return 0; 547 return 0;
548
331 address |= 0xffffffffUL << 32; 549 address |= 0xffffffffUL << 32;
332 if ((address >= (u64)_stext && address <= (u64)_etext) || 550 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) { 551 (address >= MODULES_VADDR && address <= MODULES_END)) {
334 if (!warned) { 552 if (!once) {
335 printk(errata93_warning); 553 printk(errata93_warning);
336 warned = 1; 554 once = 1;
337 } 555 }
338 regs->ip = address; 556 regs->ip = address;
339 return 1; 557 return 1;
@@ -343,16 +561,17 @@ static int is_errata93(struct pt_regs *regs, unsigned long address)
343} 561}
344 562
345/* 563/*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal 564 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
347 * addresses >4GB. We catch this in the page fault handler because these 565 * to illegal addresses >4GB.
348 * addresses are not reachable. Just detect this case and return. Any code 566 *
567 * We catch this in the page fault handler because these addresses
568 * are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode. 569 * segment in LDT is compatibility mode.
350 */ 570 */
351static int is_errata100(struct pt_regs *regs, unsigned long address) 571static int is_errata100(struct pt_regs *regs, unsigned long address)
352{ 572{
353#ifdef CONFIG_X86_64 573#ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && 574 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
355 (address >> 32))
356 return 1; 575 return 1;
357#endif 576#endif
358 return 0; 577 return 0;
@@ -362,8 +581,9 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{ 581{
363#ifdef CONFIG_X86_F00F_BUG 582#ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr; 583 unsigned long nr;
584
365 /* 585 /*
366 * Pentium F0 0F C7 C8 bug workaround. 586 * Pentium F0 0F C7 C8 bug workaround:
367 */ 587 */
368 if (boot_cpu_data.f00f_bug) { 588 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3; 589 nr = (address - idt_descr.address) >> 3;
@@ -377,62 +597,277 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
377 return 0; 597 return 0;
378} 598}
379 599
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, 600static const char nx_warning[] = KERN_CRIT
381 unsigned long address) 601"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
602
603static void
604show_fault_oops(struct pt_regs *regs, unsigned long error_code,
605 unsigned long address)
382{ 606{
383#ifdef CONFIG_X86_32
384 if (!oops_may_print()) 607 if (!oops_may_print())
385 return; 608 return;
386#endif
387 609
388#ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) { 610 if (error_code & PF_INSTR) {
390 unsigned int level; 611 unsigned int level;
612
391 pte_t *pte = lookup_address(address, &level); 613 pte_t *pte = lookup_address(address, &level);
392 614
393 if (pte && pte_present(*pte) && !pte_exec(*pte)) 615 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute " 616 printk(nx_warning, current_uid());
395 "NX-protected page - exploit attempt? "
396 "(uid: %d)\n", current_uid());
397 } 617 }
398#endif
399 618
400 printk(KERN_ALERT "BUG: unable to handle kernel "); 619 printk(KERN_ALERT "BUG: unable to handle kernel ");
401 if (address < PAGE_SIZE) 620 if (address < PAGE_SIZE)
402 printk(KERN_CONT "NULL pointer dereference"); 621 printk(KERN_CONT "NULL pointer dereference");
403 else 622 else
404 printk(KERN_CONT "paging request"); 623 printk(KERN_CONT "paging request");
624
405 printk(KERN_CONT " at %p\n", (void *) address); 625 printk(KERN_CONT " at %p\n", (void *) address);
406 printk(KERN_ALERT "IP:"); 626 printk(KERN_ALERT "IP:");
407 printk_address(regs->ip, 1); 627 printk_address(regs->ip, 1);
628
408 dump_pagetable(address); 629 dump_pagetable(address);
409} 630}
410 631
411#ifdef CONFIG_X86_64 632static noinline void
412static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, 633pgtable_bad(struct pt_regs *regs, unsigned long error_code,
413 unsigned long error_code) 634 unsigned long address)
414{ 635{
415 unsigned long flags = oops_begin();
416 int sig = SIGKILL;
417 struct task_struct *tsk; 636 struct task_struct *tsk;
637 unsigned long flags;
638 int sig;
639
640 flags = oops_begin();
641 tsk = current;
642 sig = SIGKILL;
418 643
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 644 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 current->comm, address); 645 tsk->comm, address);
421 dump_pagetable(address); 646 dump_pagetable(address);
422 tsk = current; 647
423 tsk->thread.cr2 = address; 648 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14; 649 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code; 650 tsk->thread.error_code = error_code;
651
426 if (__die("Bad pagetable", regs, error_code)) 652 if (__die("Bad pagetable", regs, error_code))
427 sig = 0; 653 sig = 0;
654
428 oops_end(flags, regs, sig); 655 oops_end(flags, regs, sig);
429} 656}
430#endif 657
658static noinline void
659no_context(struct pt_regs *regs, unsigned long error_code,
660 unsigned long address)
661{
662 struct task_struct *tsk = current;
663 unsigned long *stackend;
664 unsigned long flags;
665 int sig;
666
667 /* Are we prepared to handle this kernel fault? */
668 if (fixup_exception(regs))
669 return;
670
671 /*
672 * 32-bit:
673 *
674 * Valid to do another page fault here, because if this fault
675 * had been triggered by is_prefetch fixup_exception would have
676 * handled it.
677 *
678 * 64-bit:
679 *
680 * Hall of shame of CPU/BIOS bugs.
681 */
682 if (is_prefetch(regs, error_code, address))
683 return;
684
685 if (is_errata93(regs, address))
686 return;
687
688 /*
689 * Oops. The kernel tried to access some bad page. We'll have to
690 * terminate things with extreme prejudice:
691 */
692 flags = oops_begin();
693
694 show_fault_oops(regs, error_code, address);
695
696 stackend = end_of_stack(tsk);
697 if (*stackend != STACK_END_MAGIC)
698 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
699
700 tsk->thread.cr2 = address;
701 tsk->thread.trap_no = 14;
702 tsk->thread.error_code = error_code;
703
704 sig = SIGKILL;
705 if (__die("Oops", regs, error_code))
706 sig = 0;
707
708 /* Executive summary in case the body of the oops scrolled away */
709 printk(KERN_EMERG "CR2: %016lx\n", address);
710
711 oops_end(flags, regs, sig);
712}
713
714/*
715 * Print out info about fatal segfaults, if the show_unhandled_signals
716 * sysctl is set:
717 */
718static inline void
719show_signal_msg(struct pt_regs *regs, unsigned long error_code,
720 unsigned long address, struct task_struct *tsk)
721{
722 if (!unhandled_signal(tsk, SIGSEGV))
723 return;
724
725 if (!printk_ratelimit())
726 return;
727
728 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
729 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
730 tsk->comm, task_pid_nr(tsk), address,
731 (void *)regs->ip, (void *)regs->sp, error_code);
732
733 print_vma_addr(KERN_CONT " in ", regs->ip);
734
735 printk(KERN_CONT "\n");
736}
737
738static void
739__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
740 unsigned long address, int si_code)
741{
742 struct task_struct *tsk = current;
743
744 /* User mode accesses just cause a SIGSEGV */
745 if (error_code & PF_USER) {
746 /*
747 * It's possible to have interrupts off here:
748 */
749 local_irq_enable();
750
751 /*
752 * Valid to do another page fault here because this one came
753 * from user space:
754 */
755 if (is_prefetch(regs, error_code, address))
756 return;
757
758 if (is_errata100(regs, address))
759 return;
760
761 if (unlikely(show_unhandled_signals))
762 show_signal_msg(regs, error_code, address, tsk);
763
764 /* Kernel addresses are always protection faults: */
765 tsk->thread.cr2 = address;
766 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
767 tsk->thread.trap_no = 14;
768
769 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
770
771 return;
772 }
773
774 if (is_f00f_bug(regs, address))
775 return;
776
777 no_context(regs, error_code, address);
778}
779
780static noinline void
781bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
782 unsigned long address)
783{
784 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
785}
786
787static void
788__bad_area(struct pt_regs *regs, unsigned long error_code,
789 unsigned long address, int si_code)
790{
791 struct mm_struct *mm = current->mm;
792
793 /*
794 * Something tried to access memory that isn't in our memory map..
795 * Fix it, but check if it's kernel or user first..
796 */
797 up_read(&mm->mmap_sem);
798
799 __bad_area_nosemaphore(regs, error_code, address, si_code);
800}
801
802static noinline void
803bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
804{
805 __bad_area(regs, error_code, address, SEGV_MAPERR);
806}
807
808static noinline void
809bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address)
811{
812 __bad_area(regs, error_code, address, SEGV_ACCERR);
813}
814
815/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
816static void
817out_of_memory(struct pt_regs *regs, unsigned long error_code,
818 unsigned long address)
819{
820 /*
821 * We ran out of memory, call the OOM killer, and return the userspace
822 * (which will retry the fault, or kill us if we got oom-killed):
823 */
824 up_read(&current->mm->mmap_sem);
825
826 pagefault_out_of_memory();
827}
828
829static void
830do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
831{
832 struct task_struct *tsk = current;
833 struct mm_struct *mm = tsk->mm;
834
835 up_read(&mm->mmap_sem);
836
837 /* Kernel mode? Handle exceptions or die: */
838 if (!(error_code & PF_USER))
839 no_context(regs, error_code, address);
840
841 /* User-space => ok to do another page fault: */
842 if (is_prefetch(regs, error_code, address))
843 return;
844
845 tsk->thread.cr2 = address;
846 tsk->thread.error_code = error_code;
847 tsk->thread.trap_no = 14;
848
849 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
850}
851
852static noinline void
853mm_fault_error(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, unsigned int fault)
855{
856 if (fault & VM_FAULT_OOM) {
857 out_of_memory(regs, error_code, address);
858 } else {
859 if (fault & VM_FAULT_SIGBUS)
860 do_sigbus(regs, error_code, address);
861 else
862 BUG();
863 }
864}
431 865
432static int spurious_fault_check(unsigned long error_code, pte_t *pte) 866static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433{ 867{
434 if ((error_code & PF_WRITE) && !pte_write(*pte)) 868 if ((error_code & PF_WRITE) && !pte_write(*pte))
435 return 0; 869 return 0;
870
436 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 871 if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 return 0; 872 return 0;
438 873
@@ -440,21 +875,25 @@ static int spurious_fault_check(unsigned long error_code, pte_t *pte)
440} 875}
441 876
442/* 877/*
443 * Handle a spurious fault caused by a stale TLB entry. This allows 878 * Handle a spurious fault caused by a stale TLB entry.
444 * us to lazily refresh the TLB when increasing the permissions of a 879 *
445 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very 880 * This allows us to lazily refresh the TLB when increasing the
446 * expensive since that implies doing a full cross-processor TLB 881 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
447 * flush, even if no stale TLB entries exist on other processors. 882 * eagerly is very expensive since that implies doing a full
883 * cross-processor TLB flush, even if no stale TLB entries exist
884 * on other processors.
885 *
448 * There are no security implications to leaving a stale TLB when 886 * There are no security implications to leaving a stale TLB when
449 * increasing the permissions on a page. 887 * increasing the permissions on a page.
450 */ 888 */
451static int spurious_fault(unsigned long address, 889static noinline int
452 unsigned long error_code) 890spurious_fault(unsigned long error_code, unsigned long address)
453{ 891{
454 pgd_t *pgd; 892 pgd_t *pgd;
455 pud_t *pud; 893 pud_t *pud;
456 pmd_t *pmd; 894 pmd_t *pmd;
457 pte_t *pte; 895 pte_t *pte;
896 int ret;
458 897
459 /* Reserved-bit violation or user access to kernel space? */ 898 /* Reserved-bit violation or user access to kernel space? */
460 if (error_code & (PF_USER | PF_RSVD)) 899 if (error_code & (PF_USER | PF_RSVD))
@@ -482,127 +921,71 @@ static int spurious_fault(unsigned long address,
482 if (!pte_present(*pte)) 921 if (!pte_present(*pte))
483 return 0; 922 return 0;
484 923
485 return spurious_fault_check(error_code, pte); 924 ret = spurious_fault_check(error_code, pte);
486} 925 if (!ret)
487 926 return 0;
488/*
489 * X86_32
490 * Handle a fault on the vmalloc or module mapping area
491 *
492 * X86_64
493 * Handle a fault on the vmalloc area
494 *
495 * This assumes no large pages in there.
496 */
497static int vmalloc_fault(unsigned long address)
498{
499#ifdef CONFIG_X86_32
500 unsigned long pgd_paddr;
501 pmd_t *pmd_k;
502 pte_t *pte_k;
503
504 /* Make sure we are in vmalloc area */
505 if (!(address >= VMALLOC_START && address < VMALLOC_END))
506 return -1;
507 927
508 /* 928 /*
509 * Synchronize this task's top level page-table 929 * Make sure we have permissions in PMD.
510 * with the 'reference' page table. 930 * If not, then there's a bug in the page tables:
511 *
512 * Do _not_ use "current" here. We might be inside
513 * an interrupt in the middle of a task switch..
514 */ 931 */
515 pgd_paddr = read_cr3(); 932 ret = spurious_fault_check(error_code, (pte_t *) pmd);
516 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 933 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
517 if (!pmd_k)
518 return -1;
519 pte_k = pte_offset_kernel(pmd_k, address);
520 if (!pte_present(*pte_k))
521 return -1;
522 return 0;
523#else
524 pgd_t *pgd, *pgd_ref;
525 pud_t *pud, *pud_ref;
526 pmd_t *pmd, *pmd_ref;
527 pte_t *pte, *pte_ref;
528 934
529 /* Make sure we are in vmalloc area */ 935 return ret;
530 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 936}
531 return -1;
532 937
533 /* Copy kernel mappings over when needed. This can also 938int show_unhandled_signals = 1;
534 happen within a race in page table update. In the later
535 case just flush. */
536 939
537 pgd = pgd_offset(current->active_mm, address); 940static inline int
538 pgd_ref = pgd_offset_k(address); 941access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
539 if (pgd_none(*pgd_ref)) 942{
540 return -1; 943 if (write) {
541 if (pgd_none(*pgd)) 944 /* write, present and write, not present: */
542 set_pgd(pgd, *pgd_ref); 945 if (unlikely(!(vma->vm_flags & VM_WRITE)))
543 else 946 return 1;
544 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 947 return 0;
948 }
545 949
546 /* Below here mismatches are bugs because these lower tables 950 /* read, present: */
547 are shared */ 951 if (unlikely(error_code & PF_PROT))
952 return 1;
953
954 /* read, not present: */
955 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
956 return 1;
548 957
549 pud = pud_offset(pgd, address);
550 pud_ref = pud_offset(pgd_ref, address);
551 if (pud_none(*pud_ref))
552 return -1;
553 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
554 BUG();
555 pmd = pmd_offset(pud, address);
556 pmd_ref = pmd_offset(pud_ref, address);
557 if (pmd_none(*pmd_ref))
558 return -1;
559 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
560 BUG();
561 pte_ref = pte_offset_kernel(pmd_ref, address);
562 if (!pte_present(*pte_ref))
563 return -1;
564 pte = pte_offset_kernel(pmd, address);
565 /* Don't use pte_page here, because the mappings can point
566 outside mem_map, and the NUMA hash lookup cannot handle
567 that. */
568 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
569 BUG();
570 return 0; 958 return 0;
571#endif
572} 959}
573 960
574int show_unhandled_signals = 1; 961static int fault_in_kernel_space(unsigned long address)
962{
963 return address >= TASK_SIZE_MAX;
964}
575 965
576/* 966/*
577 * This routine handles page faults. It determines the address, 967 * This routine handles page faults. It determines the address,
578 * and the problem, and then passes it off to one of the appropriate 968 * and the problem, and then passes it off to one of the appropriate
579 * routines. 969 * routines.
580 */ 970 */
581#ifdef CONFIG_X86_64 971dotraplinkage void __kprobes
582asmlinkage 972do_page_fault(struct pt_regs *regs, unsigned long error_code)
583#endif
584void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
585{ 973{
586 struct task_struct *tsk;
587 struct mm_struct *mm;
588 struct vm_area_struct *vma; 974 struct vm_area_struct *vma;
975 struct task_struct *tsk;
589 unsigned long address; 976 unsigned long address;
590 int write, si_code; 977 struct mm_struct *mm;
978 int write;
591 int fault; 979 int fault;
592#ifdef CONFIG_X86_64
593 unsigned long flags;
594 int sig;
595#endif
596 980
597 tsk = current; 981 tsk = current;
598 mm = tsk->mm; 982 mm = tsk->mm;
983
599 prefetchw(&mm->mmap_sem); 984 prefetchw(&mm->mmap_sem);
600 985
601 /* get the address */ 986 /* Get the faulting address: */
602 address = read_cr2(); 987 address = read_cr2();
603 988
604 si_code = SEGV_MAPERR;
605
606 if (unlikely(kmmio_fault(regs, address))) 989 if (unlikely(kmmio_fault(regs, address)))
607 return; 990 return;
608 991
@@ -619,319 +1002,147 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
619 * (error_code & 4) == 0, and that the fault was not a 1002 * (error_code & 4) == 0, and that the fault was not a
620 * protection error (error_code & 9) == 0. 1003 * protection error (error_code & 9) == 0.
621 */ 1004 */
622#ifdef CONFIG_X86_32 1005 if (unlikely(fault_in_kernel_space(address))) {
623 if (unlikely(address >= TASK_SIZE)) {
624#else
625 if (unlikely(address >= TASK_SIZE64)) {
626#endif
627 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && 1006 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
628 vmalloc_fault(address) >= 0) 1007 vmalloc_fault(address) >= 0)
629 return; 1008 return;
630 1009
631 /* Can handle a stale RO->RW TLB */ 1010 /* Can handle a stale RO->RW TLB: */
632 if (spurious_fault(address, error_code)) 1011 if (spurious_fault(error_code, address))
633 return; 1012 return;
634 1013
635 /* kprobes don't want to hook the spurious faults. */ 1014 /* kprobes don't want to hook the spurious faults: */
636 if (notify_page_fault(regs)) 1015 if (notify_page_fault(regs))
637 return; 1016 return;
638 /* 1017 /*
639 * Don't take the mm semaphore here. If we fixup a prefetch 1018 * Don't take the mm semaphore here. If we fixup a prefetch
640 * fault we could otherwise deadlock. 1019 * fault we could otherwise deadlock:
641 */ 1020 */
642 goto bad_area_nosemaphore; 1021 bad_area_nosemaphore(regs, error_code, address);
643 }
644 1022
645 /* kprobes don't want to hook the spurious faults. */
646 if (notify_page_fault(regs))
647 return; 1023 return;
1024 }
648 1025
1026 /* kprobes don't want to hook the spurious faults: */
1027 if (unlikely(notify_page_fault(regs)))
1028 return;
649 /* 1029 /*
650 * It's safe to allow irq's after cr2 has been saved and the 1030 * It's safe to allow irq's after cr2 has been saved and the
651 * vmalloc fault has been handled. 1031 * vmalloc fault has been handled.
652 * 1032 *
653 * User-mode registers count as a user access even for any 1033 * User-mode registers count as a user access even for any
654 * potential system fault or CPU buglet. 1034 * potential system fault or CPU buglet:
655 */ 1035 */
656 if (user_mode_vm(regs)) { 1036 if (user_mode_vm(regs)) {
657 local_irq_enable(); 1037 local_irq_enable();
658 error_code |= PF_USER; 1038 error_code |= PF_USER;
659 } else if (regs->flags & X86_EFLAGS_IF) 1039 } else {
660 local_irq_enable(); 1040 if (regs->flags & X86_EFLAGS_IF)
1041 local_irq_enable();
1042 }
661 1043
662#ifdef CONFIG_X86_64
663 if (unlikely(error_code & PF_RSVD)) 1044 if (unlikely(error_code & PF_RSVD))
664 pgtable_bad(address, regs, error_code); 1045 pgtable_bad(regs, error_code, address);
665#endif
666 1046
667 /* 1047 /*
668 * If we're in an interrupt, have no user context or are running in an 1048 * If we're in an interrupt, have no user context or are running
669 * atomic region then we must not take the fault. 1049 * in an atomic region then we must not take the fault:
670 */ 1050 */
671 if (unlikely(in_atomic() || !mm)) 1051 if (unlikely(in_atomic() || !mm)) {
672 goto bad_area_nosemaphore; 1052 bad_area_nosemaphore(regs, error_code, address);
1053 return;
1054 }
673 1055
674 /* 1056 /*
675 * When running in the kernel we expect faults to occur only to 1057 * When running in the kernel we expect faults to occur only to
676 * addresses in user space. All other faults represent errors in the 1058 * addresses in user space. All other faults represent errors in
677 * kernel and should generate an OOPS. Unfortunately, in the case of an 1059 * the kernel and should generate an OOPS. Unfortunately, in the
678 * erroneous fault occurring in a code path which already holds mmap_sem 1060 * case of an erroneous fault occurring in a code path which already
679 * we will deadlock attempting to validate the fault against the 1061 * holds mmap_sem we will deadlock attempting to validate the fault
680 * address space. Luckily the kernel only validly references user 1062 * against the address space. Luckily the kernel only validly
681 * space from well defined areas of code, which are listed in the 1063 * references user space from well defined areas of code, which are
682 * exceptions table. 1064 * listed in the exceptions table.
683 * 1065 *
684 * As the vast majority of faults will be valid we will only perform 1066 * As the vast majority of faults will be valid we will only perform
685 * the source reference check when there is a possibility of a deadlock. 1067 * the source reference check when there is a possibility of a
686 * Attempt to lock the address space, if we cannot we then validate the 1068 * deadlock. Attempt to lock the address space, if we cannot we then
687 * source. If this is invalid we can skip the address space check, 1069 * validate the source. If this is invalid we can skip the address
688 * thus avoiding the deadlock. 1070 * space check, thus avoiding the deadlock:
689 */ 1071 */
690 if (!down_read_trylock(&mm->mmap_sem)) { 1072 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
691 if ((error_code & PF_USER) == 0 && 1073 if ((error_code & PF_USER) == 0 &&
692 !search_exception_tables(regs->ip)) 1074 !search_exception_tables(regs->ip)) {
693 goto bad_area_nosemaphore; 1075 bad_area_nosemaphore(regs, error_code, address);
1076 return;
1077 }
694 down_read(&mm->mmap_sem); 1078 down_read(&mm->mmap_sem);
1079 } else {
1080 /*
1081 * The above down_read_trylock() might have succeeded in
1082 * which case we'll have missed the might_sleep() from
1083 * down_read():
1084 */
1085 might_sleep();
695 } 1086 }
696 1087
697 vma = find_vma(mm, address); 1088 vma = find_vma(mm, address);
698 if (!vma) 1089 if (unlikely(!vma)) {
699 goto bad_area; 1090 bad_area(regs, error_code, address);
700 if (vma->vm_start <= address) 1091 return;
1092 }
1093 if (likely(vma->vm_start <= address))
701 goto good_area; 1094 goto good_area;
702 if (!(vma->vm_flags & VM_GROWSDOWN)) 1095 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
703 goto bad_area; 1096 bad_area(regs, error_code, address);
1097 return;
1098 }
704 if (error_code & PF_USER) { 1099 if (error_code & PF_USER) {
705 /* 1100 /*
706 * Accessing the stack below %sp is always a bug. 1101 * Accessing the stack below %sp is always a bug.
707 * The large cushion allows instructions like enter 1102 * The large cushion allows instructions like enter
708 * and pusha to work. ("enter $65535,$31" pushes 1103 * and pusha to work. ("enter $65535, $31" pushes
709 * 32 pointers and then decrements %sp by 65535.) 1104 * 32 pointers and then decrements %sp by 65535.)
710 */ 1105 */
711 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) 1106 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
712 goto bad_area; 1107 bad_area(regs, error_code, address);
1108 return;
1109 }
713 } 1110 }
714 if (expand_stack(vma, address)) 1111 if (unlikely(expand_stack(vma, address))) {
715 goto bad_area; 1112 bad_area(regs, error_code, address);
716/* 1113 return;
717 * Ok, we have a good vm_area for this memory access, so 1114 }
718 * we can handle it.. 1115
719 */ 1116 /*
1117 * Ok, we have a good vm_area for this memory access, so
1118 * we can handle it..
1119 */
720good_area: 1120good_area:
721 si_code = SEGV_ACCERR; 1121 write = error_code & PF_WRITE;
722 write = 0; 1122
723 switch (error_code & (PF_PROT|PF_WRITE)) { 1123 if (unlikely(access_error(error_code, write, vma))) {
724 default: /* 3: write, present */ 1124 bad_area_access_error(regs, error_code, address);
725 /* fall through */ 1125 return;
726 case PF_WRITE: /* write, not present */
727 if (!(vma->vm_flags & VM_WRITE))
728 goto bad_area;
729 write++;
730 break;
731 case PF_PROT: /* read, present */
732 goto bad_area;
733 case 0: /* read, not present */
734 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
735 goto bad_area;
736 } 1126 }
737 1127
738 /* 1128 /*
739 * If for any reason at all we couldn't handle the fault, 1129 * If for any reason at all we couldn't handle the fault,
740 * make sure we exit gracefully rather than endlessly redo 1130 * make sure we exit gracefully rather than endlessly redo
741 * the fault. 1131 * the fault:
742 */ 1132 */
743 fault = handle_mm_fault(mm, vma, address, write); 1133 fault = handle_mm_fault(mm, vma, address, write);
1134
744 if (unlikely(fault & VM_FAULT_ERROR)) { 1135 if (unlikely(fault & VM_FAULT_ERROR)) {
745 if (fault & VM_FAULT_OOM) 1136 mm_fault_error(regs, error_code, address, fault);
746 goto out_of_memory; 1137 return;
747 else if (fault & VM_FAULT_SIGBUS)
748 goto do_sigbus;
749 BUG();
750 } 1138 }
1139
751 if (fault & VM_FAULT_MAJOR) 1140 if (fault & VM_FAULT_MAJOR)
752 tsk->maj_flt++; 1141 tsk->maj_flt++;
753 else 1142 else
754 tsk->min_flt++; 1143 tsk->min_flt++;
755 1144
756#ifdef CONFIG_X86_32 1145 check_v8086_mode(regs, address, tsk);
757 /*
758 * Did it hit the DOS screen memory VA from vm86 mode?
759 */
760 if (v8086_mode(regs)) {
761 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
762 if (bit < 32)
763 tsk->thread.screen_bitmap |= 1 << bit;
764 }
765#endif
766 up_read(&mm->mmap_sem);
767 return;
768 1146
769/*
770 * Something tried to access memory that isn't in our memory map..
771 * Fix it, but check if it's kernel or user first..
772 */
773bad_area:
774 up_read(&mm->mmap_sem); 1147 up_read(&mm->mmap_sem);
775
776bad_area_nosemaphore:
777 /* User mode accesses just cause a SIGSEGV */
778 if (error_code & PF_USER) {
779 /*
780 * It's possible to have interrupts off here.
781 */
782 local_irq_enable();
783
784 /*
785 * Valid to do another page fault here because this one came
786 * from user space.
787 */
788 if (is_prefetch(regs, address, error_code))
789 return;
790
791 if (is_errata100(regs, address))
792 return;
793
794 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
795 printk_ratelimit()) {
796 printk(
797 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
798 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
799 tsk->comm, task_pid_nr(tsk), address,
800 (void *) regs->ip, (void *) regs->sp, error_code);
801 print_vma_addr(" in ", regs->ip);
802 printk("\n");
803 }
804
805 tsk->thread.cr2 = address;
806 /* Kernel addresses are always protection faults */
807 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
808 tsk->thread.trap_no = 14;
809 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
810 return;
811 }
812
813 if (is_f00f_bug(regs, address))
814 return;
815
816no_context:
817 /* Are we prepared to handle this kernel fault? */
818 if (fixup_exception(regs))
819 return;
820
821 /*
822 * X86_32
823 * Valid to do another page fault here, because if this fault
824 * had been triggered by is_prefetch fixup_exception would have
825 * handled it.
826 *
827 * X86_64
828 * Hall of shame of CPU/BIOS bugs.
829 */
830 if (is_prefetch(regs, address, error_code))
831 return;
832
833 if (is_errata93(regs, address))
834 return;
835
836/*
837 * Oops. The kernel tried to access some bad page. We'll have to
838 * terminate things with extreme prejudice.
839 */
840#ifdef CONFIG_X86_32
841 bust_spinlocks(1);
842#else
843 flags = oops_begin();
844#endif
845
846 show_fault_oops(regs, error_code, address);
847
848 tsk->thread.cr2 = address;
849 tsk->thread.trap_no = 14;
850 tsk->thread.error_code = error_code;
851
852#ifdef CONFIG_X86_32
853 die("Oops", regs, error_code);
854 bust_spinlocks(0);
855 do_exit(SIGKILL);
856#else
857 sig = SIGKILL;
858 if (__die("Oops", regs, error_code))
859 sig = 0;
860 /* Executive summary in case the body of the oops scrolled away */
861 printk(KERN_EMERG "CR2: %016lx\n", address);
862 oops_end(flags, regs, sig);
863#endif
864
865out_of_memory:
866 /*
867 * We ran out of memory, call the OOM killer, and return the userspace
868 * (which will retry the fault, or kill us if we got oom-killed).
869 */
870 up_read(&mm->mmap_sem);
871 pagefault_out_of_memory();
872 return;
873
874do_sigbus:
875 up_read(&mm->mmap_sem);
876
877 /* Kernel mode? Handle exceptions or die */
878 if (!(error_code & PF_USER))
879 goto no_context;
880#ifdef CONFIG_X86_32
881 /* User space => ok to do another page fault */
882 if (is_prefetch(regs, address, error_code))
883 return;
884#endif
885 tsk->thread.cr2 = address;
886 tsk->thread.error_code = error_code;
887 tsk->thread.trap_no = 14;
888 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
889}
890
891DEFINE_SPINLOCK(pgd_lock);
892LIST_HEAD(pgd_list);
893
894void vmalloc_sync_all(void)
895{
896 unsigned long address;
897
898#ifdef CONFIG_X86_32
899 if (SHARED_KERNEL_PMD)
900 return;
901
902 for (address = VMALLOC_START & PMD_MASK;
903 address >= TASK_SIZE && address < FIXADDR_TOP;
904 address += PMD_SIZE) {
905 unsigned long flags;
906 struct page *page;
907
908 spin_lock_irqsave(&pgd_lock, flags);
909 list_for_each_entry(page, &pgd_list, lru) {
910 if (!vmalloc_sync_one(page_address(page),
911 address))
912 break;
913 }
914 spin_unlock_irqrestore(&pgd_lock, flags);
915 }
916#else /* CONFIG_X86_64 */
917 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
918 address += PGDIR_SIZE) {
919 const pgd_t *pgd_ref = pgd_offset_k(address);
920 unsigned long flags;
921 struct page *page;
922
923 if (pgd_none(*pgd_ref))
924 continue;
925 spin_lock_irqsave(&pgd_lock, flags);
926 list_for_each_entry(page, &pgd_list, lru) {
927 pgd_t *pgd;
928 pgd = (pgd_t *)page_address(page) + pgd_index(address);
929 if (pgd_none(*pgd))
930 set_pgd(pgd, *pgd_ref);
931 else
932 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
933 }
934 spin_unlock_irqrestore(&pgd_lock, flags);
935 }
936#endif
937} 1148}