diff options
Diffstat (limited to 'arch/x86/math-emu/poly_tan.c')
-rw-r--r-- | arch/x86/math-emu/poly_tan.c | 338 |
1 files changed, 164 insertions, 174 deletions
diff --git a/arch/x86/math-emu/poly_tan.c b/arch/x86/math-emu/poly_tan.c index 8df3e03b6e6f..c0d181e39229 100644 --- a/arch/x86/math-emu/poly_tan.c +++ b/arch/x86/math-emu/poly_tan.c | |||
@@ -17,206 +17,196 @@ | |||
17 | #include "control_w.h" | 17 | #include "control_w.h" |
18 | #include "poly.h" | 18 | #include "poly.h" |
19 | 19 | ||
20 | |||
21 | #define HiPOWERop 3 /* odd poly, positive terms */ | 20 | #define HiPOWERop 3 /* odd poly, positive terms */ |
22 | static const unsigned long long oddplterm[HiPOWERop] = | 21 | static const unsigned long long oddplterm[HiPOWERop] = { |
23 | { | 22 | 0x0000000000000000LL, |
24 | 0x0000000000000000LL, | 23 | 0x0051a1cf08fca228LL, |
25 | 0x0051a1cf08fca228LL, | 24 | 0x0000000071284ff7LL |
26 | 0x0000000071284ff7LL | ||
27 | }; | 25 | }; |
28 | 26 | ||
29 | #define HiPOWERon 2 /* odd poly, negative terms */ | 27 | #define HiPOWERon 2 /* odd poly, negative terms */ |
30 | static const unsigned long long oddnegterm[HiPOWERon] = | 28 | static const unsigned long long oddnegterm[HiPOWERon] = { |
31 | { | 29 | 0x1291a9a184244e80LL, |
32 | 0x1291a9a184244e80LL, | 30 | 0x0000583245819c21LL |
33 | 0x0000583245819c21LL | ||
34 | }; | 31 | }; |
35 | 32 | ||
36 | #define HiPOWERep 2 /* even poly, positive terms */ | 33 | #define HiPOWERep 2 /* even poly, positive terms */ |
37 | static const unsigned long long evenplterm[HiPOWERep] = | 34 | static const unsigned long long evenplterm[HiPOWERep] = { |
38 | { | 35 | 0x0e848884b539e888LL, |
39 | 0x0e848884b539e888LL, | 36 | 0x00003c7f18b887daLL |
40 | 0x00003c7f18b887daLL | ||
41 | }; | 37 | }; |
42 | 38 | ||
43 | #define HiPOWERen 2 /* even poly, negative terms */ | 39 | #define HiPOWERen 2 /* even poly, negative terms */ |
44 | static const unsigned long long evennegterm[HiPOWERen] = | 40 | static const unsigned long long evennegterm[HiPOWERen] = { |
45 | { | 41 | 0xf1f0200fd51569ccLL, |
46 | 0xf1f0200fd51569ccLL, | 42 | 0x003afb46105c4432LL |
47 | 0x003afb46105c4432LL | ||
48 | }; | 43 | }; |
49 | 44 | ||
50 | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; | 45 | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; |
51 | 46 | ||
52 | |||
53 | /*--- poly_tan() ------------------------------------------------------------+ | 47 | /*--- poly_tan() ------------------------------------------------------------+ |
54 | | | | 48 | | | |
55 | +---------------------------------------------------------------------------*/ | 49 | +---------------------------------------------------------------------------*/ |
56 | void poly_tan(FPU_REG *st0_ptr) | 50 | void poly_tan(FPU_REG * st0_ptr) |
57 | { | 51 | { |
58 | long int exponent; | 52 | long int exponent; |
59 | int invert; | 53 | int invert; |
60 | Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, | 54 | Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, |
61 | argSignif, fix_up; | 55 | argSignif, fix_up; |
62 | unsigned long adj; | 56 | unsigned long adj; |
63 | 57 | ||
64 | exponent = exponent(st0_ptr); | 58 | exponent = exponent(st0_ptr); |
65 | 59 | ||
66 | #ifdef PARANOID | 60 | #ifdef PARANOID |
67 | if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */ | 61 | if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */ |
68 | { arith_invalid(0); return; } /* Need a positive number */ | 62 | arith_invalid(0); |
63 | return; | ||
64 | } /* Need a positive number */ | ||
69 | #endif /* PARANOID */ | 65 | #endif /* PARANOID */ |
70 | 66 | ||
71 | /* Split the problem into two domains, smaller and larger than pi/4 */ | 67 | /* Split the problem into two domains, smaller and larger than pi/4 */ |
72 | if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) | 68 | if ((exponent == 0) |
73 | { | 69 | || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) { |
74 | /* The argument is greater than (approx) pi/4 */ | 70 | /* The argument is greater than (approx) pi/4 */ |
75 | invert = 1; | 71 | invert = 1; |
76 | accum.lsw = 0; | 72 | accum.lsw = 0; |
77 | XSIG_LL(accum) = significand(st0_ptr); | 73 | XSIG_LL(accum) = significand(st0_ptr); |
78 | 74 | ||
79 | if ( exponent == 0 ) | 75 | if (exponent == 0) { |
80 | { | 76 | /* The argument is >= 1.0 */ |
81 | /* The argument is >= 1.0 */ | 77 | /* Put the binary point at the left. */ |
82 | /* Put the binary point at the left. */ | 78 | XSIG_LL(accum) <<= 1; |
83 | XSIG_LL(accum) <<= 1; | 79 | } |
84 | } | 80 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ |
85 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 81 | XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); |
86 | XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); | 82 | /* This is a special case which arises due to rounding. */ |
87 | /* This is a special case which arises due to rounding. */ | 83 | if (XSIG_LL(accum) == 0xffffffffffffffffLL) { |
88 | if ( XSIG_LL(accum) == 0xffffffffffffffffLL ) | 84 | FPU_settag0(TAG_Valid); |
89 | { | 85 | significand(st0_ptr) = 0x8a51e04daabda360LL; |
90 | FPU_settag0(TAG_Valid); | 86 | setexponent16(st0_ptr, |
91 | significand(st0_ptr) = 0x8a51e04daabda360LL; | 87 | (0x41 + EXTENDED_Ebias) | SIGN_Negative); |
92 | setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); | 88 | return; |
93 | return; | 89 | } |
90 | |||
91 | argSignif.lsw = accum.lsw; | ||
92 | XSIG_LL(argSignif) = XSIG_LL(accum); | ||
93 | exponent = -1 + norm_Xsig(&argSignif); | ||
94 | } else { | ||
95 | invert = 0; | ||
96 | argSignif.lsw = 0; | ||
97 | XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); | ||
98 | |||
99 | if (exponent < -1) { | ||
100 | /* shift the argument right by the required places */ | ||
101 | if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >= | ||
102 | 0x80000000U) | ||
103 | XSIG_LL(accum)++; /* round up */ | ||
104 | } | ||
94 | } | 105 | } |
95 | 106 | ||
96 | argSignif.lsw = accum.lsw; | 107 | XSIG_LL(argSq) = XSIG_LL(accum); |
97 | XSIG_LL(argSignif) = XSIG_LL(accum); | 108 | argSq.lsw = accum.lsw; |
98 | exponent = -1 + norm_Xsig(&argSignif); | 109 | mul_Xsig_Xsig(&argSq, &argSq); |
99 | } | 110 | XSIG_LL(argSqSq) = XSIG_LL(argSq); |
100 | else | 111 | argSqSq.lsw = argSq.lsw; |
101 | { | 112 | mul_Xsig_Xsig(&argSqSq, &argSqSq); |
102 | invert = 0; | 113 | |
103 | argSignif.lsw = 0; | 114 | /* Compute the negative terms for the numerator polynomial */ |
104 | XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); | 115 | accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; |
105 | 116 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, | |
106 | if ( exponent < -1 ) | 117 | HiPOWERon - 1); |
107 | { | 118 | mul_Xsig_Xsig(&accumulatoro, &argSq); |
108 | /* shift the argument right by the required places */ | 119 | negate_Xsig(&accumulatoro); |
109 | if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) | 120 | /* Add the positive terms */ |
110 | XSIG_LL(accum) ++; /* round up */ | 121 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, |
111 | } | 122 | HiPOWERop - 1); |
112 | } | 123 | |
113 | 124 | /* Compute the positive terms for the denominator polynomial */ | |
114 | XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; | 125 | accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; |
115 | mul_Xsig_Xsig(&argSq, &argSq); | 126 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, |
116 | XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; | 127 | HiPOWERep - 1); |
117 | mul_Xsig_Xsig(&argSqSq, &argSqSq); | 128 | mul_Xsig_Xsig(&accumulatore, &argSq); |
118 | 129 | negate_Xsig(&accumulatore); | |
119 | /* Compute the negative terms for the numerator polynomial */ | 130 | /* Add the negative terms */ |
120 | accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; | 131 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, |
121 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); | 132 | HiPOWERen - 1); |
122 | mul_Xsig_Xsig(&accumulatoro, &argSq); | 133 | /* Multiply by arg^2 */ |
123 | negate_Xsig(&accumulatoro); | 134 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
124 | /* Add the positive terms */ | 135 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
125 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); | 136 | /* de-normalize and divide by 2 */ |
126 | 137 | shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1); | |
127 | 138 | negate_Xsig(&accumulatore); /* This does 1 - accumulator */ | |
128 | /* Compute the positive terms for the denominator polynomial */ | 139 | |
129 | accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; | 140 | /* Now find the ratio. */ |
130 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); | 141 | if (accumulatore.msw == 0) { |
131 | mul_Xsig_Xsig(&accumulatore, &argSq); | 142 | /* accumulatoro must contain 1.0 here, (actually, 0) but it |
132 | negate_Xsig(&accumulatore); | 143 | really doesn't matter what value we use because it will |
133 | /* Add the negative terms */ | 144 | have negligible effect in later calculations |
134 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); | 145 | */ |
135 | /* Multiply by arg^2 */ | 146 | XSIG_LL(accum) = 0x8000000000000000LL; |
136 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 147 | accum.lsw = 0; |
137 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 148 | } else { |
138 | /* de-normalize and divide by 2 */ | 149 | div_Xsig(&accumulatoro, &accumulatore, &accum); |
139 | shr_Xsig(&accumulatore, -2*(1+exponent) + 1); | ||
140 | negate_Xsig(&accumulatore); /* This does 1 - accumulator */ | ||
141 | |||
142 | /* Now find the ratio. */ | ||
143 | if ( accumulatore.msw == 0 ) | ||
144 | { | ||
145 | /* accumulatoro must contain 1.0 here, (actually, 0) but it | ||
146 | really doesn't matter what value we use because it will | ||
147 | have negligible effect in later calculations | ||
148 | */ | ||
149 | XSIG_LL(accum) = 0x8000000000000000LL; | ||
150 | accum.lsw = 0; | ||
151 | } | ||
152 | else | ||
153 | { | ||
154 | div_Xsig(&accumulatoro, &accumulatore, &accum); | ||
155 | } | ||
156 | |||
157 | /* Multiply by 1/3 * arg^3 */ | ||
158 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
159 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
160 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | ||
161 | mul64_Xsig(&accum, &twothirds); | ||
162 | shr_Xsig(&accum, -2*(exponent+1)); | ||
163 | |||
164 | /* tan(arg) = arg + accum */ | ||
165 | add_two_Xsig(&accum, &argSignif, &exponent); | ||
166 | |||
167 | if ( invert ) | ||
168 | { | ||
169 | /* We now have the value of tan(pi_2 - arg) where pi_2 is an | ||
170 | approximation for pi/2 | ||
171 | */ | ||
172 | /* The next step is to fix the answer to compensate for the | ||
173 | error due to the approximation used for pi/2 | ||
174 | */ | ||
175 | |||
176 | /* This is (approx) delta, the error in our approx for pi/2 | ||
177 | (see above). It has an exponent of -65 | ||
178 | */ | ||
179 | XSIG_LL(fix_up) = 0x898cc51701b839a2LL; | ||
180 | fix_up.lsw = 0; | ||
181 | |||
182 | if ( exponent == 0 ) | ||
183 | adj = 0xffffffff; /* We want approx 1.0 here, but | ||
184 | this is close enough. */ | ||
185 | else if ( exponent > -30 ) | ||
186 | { | ||
187 | adj = accum.msw >> -(exponent+1); /* tan */ | ||
188 | adj = mul_32_32(adj, adj); /* tan^2 */ | ||
189 | } | 150 | } |
190 | else | 151 | |
191 | adj = 0; | 152 | /* Multiply by 1/3 * arg^3 */ |
192 | adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */ | 153 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
193 | 154 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | |
194 | fix_up.msw += adj; | 155 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
195 | if ( !(fix_up.msw & 0x80000000) ) /* did fix_up overflow ? */ | 156 | mul64_Xsig(&accum, &twothirds); |
196 | { | 157 | shr_Xsig(&accum, -2 * (exponent + 1)); |
197 | /* Yes, we need to add an msb */ | 158 | |
198 | shr_Xsig(&fix_up, 1); | 159 | /* tan(arg) = arg + accum */ |
199 | fix_up.msw |= 0x80000000; | 160 | add_two_Xsig(&accum, &argSignif, &exponent); |
200 | shr_Xsig(&fix_up, 64 + exponent); | 161 | |
162 | if (invert) { | ||
163 | /* We now have the value of tan(pi_2 - arg) where pi_2 is an | ||
164 | approximation for pi/2 | ||
165 | */ | ||
166 | /* The next step is to fix the answer to compensate for the | ||
167 | error due to the approximation used for pi/2 | ||
168 | */ | ||
169 | |||
170 | /* This is (approx) delta, the error in our approx for pi/2 | ||
171 | (see above). It has an exponent of -65 | ||
172 | */ | ||
173 | XSIG_LL(fix_up) = 0x898cc51701b839a2LL; | ||
174 | fix_up.lsw = 0; | ||
175 | |||
176 | if (exponent == 0) | ||
177 | adj = 0xffffffff; /* We want approx 1.0 here, but | ||
178 | this is close enough. */ | ||
179 | else if (exponent > -30) { | ||
180 | adj = accum.msw >> -(exponent + 1); /* tan */ | ||
181 | adj = mul_32_32(adj, adj); /* tan^2 */ | ||
182 | } else | ||
183 | adj = 0; | ||
184 | adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */ | ||
185 | |||
186 | fix_up.msw += adj; | ||
187 | if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */ | ||
188 | /* Yes, we need to add an msb */ | ||
189 | shr_Xsig(&fix_up, 1); | ||
190 | fix_up.msw |= 0x80000000; | ||
191 | shr_Xsig(&fix_up, 64 + exponent); | ||
192 | } else | ||
193 | shr_Xsig(&fix_up, 65 + exponent); | ||
194 | |||
195 | add_two_Xsig(&accum, &fix_up, &exponent); | ||
196 | |||
197 | /* accum now contains tan(pi/2 - arg). | ||
198 | Use tan(arg) = 1.0 / tan(pi/2 - arg) | ||
199 | */ | ||
200 | accumulatoro.lsw = accumulatoro.midw = 0; | ||
201 | accumulatoro.msw = 0x80000000; | ||
202 | div_Xsig(&accumulatoro, &accum, &accum); | ||
203 | exponent = -exponent - 1; | ||
201 | } | 204 | } |
202 | else | 205 | |
203 | shr_Xsig(&fix_up, 65 + exponent); | 206 | /* Transfer the result */ |
204 | 207 | round_Xsig(&accum); | |
205 | add_two_Xsig(&accum, &fix_up, &exponent); | 208 | FPU_settag0(TAG_Valid); |
206 | 209 | significand(st0_ptr) = XSIG_LL(accum); | |
207 | /* accum now contains tan(pi/2 - arg). | 210 | setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ |
208 | Use tan(arg) = 1.0 / tan(pi/2 - arg) | ||
209 | */ | ||
210 | accumulatoro.lsw = accumulatoro.midw = 0; | ||
211 | accumulatoro.msw = 0x80000000; | ||
212 | div_Xsig(&accumulatoro, &accum, &accum); | ||
213 | exponent = - exponent - 1; | ||
214 | } | ||
215 | |||
216 | /* Transfer the result */ | ||
217 | round_Xsig(&accum); | ||
218 | FPU_settag0(TAG_Valid); | ||
219 | significand(st0_ptr) = XSIG_LL(accum); | ||
220 | setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ | ||
221 | 211 | ||
222 | } | 212 | } |