diff options
Diffstat (limited to 'arch/x86/mach-voyager/voyager_smp.c')
| -rw-r--r-- | arch/x86/mach-voyager/voyager_smp.c | 1952 |
1 files changed, 1952 insertions, 0 deletions
diff --git a/arch/x86/mach-voyager/voyager_smp.c b/arch/x86/mach-voyager/voyager_smp.c new file mode 100644 index 000000000000..b87f8548e75a --- /dev/null +++ b/arch/x86/mach-voyager/voyager_smp.c | |||
| @@ -0,0 +1,1952 @@ | |||
| 1 | /* -*- mode: c; c-basic-offset: 8 -*- */ | ||
| 2 | |||
| 3 | /* Copyright (C) 1999,2001 | ||
| 4 | * | ||
| 5 | * Author: J.E.J.Bottomley@HansenPartnership.com | ||
| 6 | * | ||
| 7 | * linux/arch/i386/kernel/voyager_smp.c | ||
| 8 | * | ||
| 9 | * This file provides all the same external entries as smp.c but uses | ||
| 10 | * the voyager hal to provide the functionality | ||
| 11 | */ | ||
| 12 | #include <linux/module.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/kernel_stat.h> | ||
| 15 | #include <linux/delay.h> | ||
| 16 | #include <linux/mc146818rtc.h> | ||
| 17 | #include <linux/cache.h> | ||
| 18 | #include <linux/interrupt.h> | ||
| 19 | #include <linux/init.h> | ||
| 20 | #include <linux/kernel.h> | ||
| 21 | #include <linux/bootmem.h> | ||
| 22 | #include <linux/completion.h> | ||
| 23 | #include <asm/desc.h> | ||
| 24 | #include <asm/voyager.h> | ||
| 25 | #include <asm/vic.h> | ||
| 26 | #include <asm/mtrr.h> | ||
| 27 | #include <asm/pgalloc.h> | ||
| 28 | #include <asm/tlbflush.h> | ||
| 29 | #include <asm/arch_hooks.h> | ||
| 30 | |||
| 31 | /* TLB state -- visible externally, indexed physically */ | ||
| 32 | DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 }; | ||
| 33 | |||
| 34 | /* CPU IRQ affinity -- set to all ones initially */ | ||
| 35 | static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL }; | ||
| 36 | |||
| 37 | /* per CPU data structure (for /proc/cpuinfo et al), visible externally | ||
| 38 | * indexed physically */ | ||
| 39 | struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; | ||
| 40 | EXPORT_SYMBOL(cpu_data); | ||
| 41 | |||
| 42 | /* physical ID of the CPU used to boot the system */ | ||
| 43 | unsigned char boot_cpu_id; | ||
| 44 | |||
| 45 | /* The memory line addresses for the Quad CPIs */ | ||
| 46 | struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned; | ||
| 47 | |||
| 48 | /* The masks for the Extended VIC processors, filled in by cat_init */ | ||
| 49 | __u32 voyager_extended_vic_processors = 0; | ||
| 50 | |||
| 51 | /* Masks for the extended Quad processors which cannot be VIC booted */ | ||
| 52 | __u32 voyager_allowed_boot_processors = 0; | ||
| 53 | |||
| 54 | /* The mask for the Quad Processors (both extended and non-extended) */ | ||
| 55 | __u32 voyager_quad_processors = 0; | ||
| 56 | |||
| 57 | /* Total count of live CPUs, used in process.c to display | ||
| 58 | * the CPU information and in irq.c for the per CPU irq | ||
| 59 | * activity count. Finally exported by i386_ksyms.c */ | ||
| 60 | static int voyager_extended_cpus = 1; | ||
| 61 | |||
| 62 | /* Have we found an SMP box - used by time.c to do the profiling | ||
| 63 | interrupt for timeslicing; do not set to 1 until the per CPU timer | ||
| 64 | interrupt is active */ | ||
| 65 | int smp_found_config = 0; | ||
| 66 | |||
| 67 | /* Used for the invalidate map that's also checked in the spinlock */ | ||
| 68 | static volatile unsigned long smp_invalidate_needed; | ||
| 69 | |||
| 70 | /* Bitmask of currently online CPUs - used by setup.c for | ||
| 71 | /proc/cpuinfo, visible externally but still physical */ | ||
| 72 | cpumask_t cpu_online_map = CPU_MASK_NONE; | ||
| 73 | EXPORT_SYMBOL(cpu_online_map); | ||
| 74 | |||
| 75 | /* Bitmask of CPUs present in the system - exported by i386_syms.c, used | ||
| 76 | * by scheduler but indexed physically */ | ||
| 77 | cpumask_t phys_cpu_present_map = CPU_MASK_NONE; | ||
| 78 | |||
| 79 | |||
| 80 | /* The internal functions */ | ||
| 81 | static void send_CPI(__u32 cpuset, __u8 cpi); | ||
| 82 | static void ack_CPI(__u8 cpi); | ||
| 83 | static int ack_QIC_CPI(__u8 cpi); | ||
| 84 | static void ack_special_QIC_CPI(__u8 cpi); | ||
| 85 | static void ack_VIC_CPI(__u8 cpi); | ||
| 86 | static void send_CPI_allbutself(__u8 cpi); | ||
| 87 | static void mask_vic_irq(unsigned int irq); | ||
| 88 | static void unmask_vic_irq(unsigned int irq); | ||
| 89 | static unsigned int startup_vic_irq(unsigned int irq); | ||
| 90 | static void enable_local_vic_irq(unsigned int irq); | ||
| 91 | static void disable_local_vic_irq(unsigned int irq); | ||
| 92 | static void before_handle_vic_irq(unsigned int irq); | ||
| 93 | static void after_handle_vic_irq(unsigned int irq); | ||
| 94 | static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask); | ||
| 95 | static void ack_vic_irq(unsigned int irq); | ||
| 96 | static void vic_enable_cpi(void); | ||
| 97 | static void do_boot_cpu(__u8 cpuid); | ||
| 98 | static void do_quad_bootstrap(void); | ||
| 99 | |||
| 100 | int hard_smp_processor_id(void); | ||
| 101 | int safe_smp_processor_id(void); | ||
| 102 | |||
| 103 | /* Inline functions */ | ||
| 104 | static inline void | ||
| 105 | send_one_QIC_CPI(__u8 cpu, __u8 cpi) | ||
| 106 | { | ||
| 107 | voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi = | ||
| 108 | (smp_processor_id() << 16) + cpi; | ||
| 109 | } | ||
| 110 | |||
| 111 | static inline void | ||
| 112 | send_QIC_CPI(__u32 cpuset, __u8 cpi) | ||
| 113 | { | ||
| 114 | int cpu; | ||
| 115 | |||
| 116 | for_each_online_cpu(cpu) { | ||
| 117 | if(cpuset & (1<<cpu)) { | ||
| 118 | #ifdef VOYAGER_DEBUG | ||
| 119 | if(!cpu_isset(cpu, cpu_online_map)) | ||
| 120 | VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu)); | ||
| 121 | #endif | ||
| 122 | send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); | ||
| 123 | } | ||
| 124 | } | ||
| 125 | } | ||
| 126 | |||
| 127 | static inline void | ||
| 128 | wrapper_smp_local_timer_interrupt(void) | ||
| 129 | { | ||
| 130 | irq_enter(); | ||
| 131 | smp_local_timer_interrupt(); | ||
| 132 | irq_exit(); | ||
| 133 | } | ||
| 134 | |||
| 135 | static inline void | ||
| 136 | send_one_CPI(__u8 cpu, __u8 cpi) | ||
| 137 | { | ||
| 138 | if(voyager_quad_processors & (1<<cpu)) | ||
| 139 | send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); | ||
| 140 | else | ||
| 141 | send_CPI(1<<cpu, cpi); | ||
| 142 | } | ||
| 143 | |||
| 144 | static inline void | ||
| 145 | send_CPI_allbutself(__u8 cpi) | ||
| 146 | { | ||
| 147 | __u8 cpu = smp_processor_id(); | ||
| 148 | __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu); | ||
| 149 | send_CPI(mask, cpi); | ||
| 150 | } | ||
| 151 | |||
| 152 | static inline int | ||
| 153 | is_cpu_quad(void) | ||
| 154 | { | ||
| 155 | __u8 cpumask = inb(VIC_PROC_WHO_AM_I); | ||
| 156 | return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER); | ||
| 157 | } | ||
| 158 | |||
| 159 | static inline int | ||
| 160 | is_cpu_extended(void) | ||
| 161 | { | ||
| 162 | __u8 cpu = hard_smp_processor_id(); | ||
| 163 | |||
| 164 | return(voyager_extended_vic_processors & (1<<cpu)); | ||
| 165 | } | ||
| 166 | |||
| 167 | static inline int | ||
| 168 | is_cpu_vic_boot(void) | ||
| 169 | { | ||
| 170 | __u8 cpu = hard_smp_processor_id(); | ||
| 171 | |||
| 172 | return(voyager_extended_vic_processors | ||
| 173 | & voyager_allowed_boot_processors & (1<<cpu)); | ||
| 174 | } | ||
| 175 | |||
| 176 | |||
| 177 | static inline void | ||
| 178 | ack_CPI(__u8 cpi) | ||
| 179 | { | ||
| 180 | switch(cpi) { | ||
| 181 | case VIC_CPU_BOOT_CPI: | ||
| 182 | if(is_cpu_quad() && !is_cpu_vic_boot()) | ||
| 183 | ack_QIC_CPI(cpi); | ||
| 184 | else | ||
| 185 | ack_VIC_CPI(cpi); | ||
| 186 | break; | ||
| 187 | case VIC_SYS_INT: | ||
| 188 | case VIC_CMN_INT: | ||
| 189 | /* These are slightly strange. Even on the Quad card, | ||
| 190 | * They are vectored as VIC CPIs */ | ||
| 191 | if(is_cpu_quad()) | ||
| 192 | ack_special_QIC_CPI(cpi); | ||
| 193 | else | ||
| 194 | ack_VIC_CPI(cpi); | ||
| 195 | break; | ||
| 196 | default: | ||
| 197 | printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi); | ||
| 198 | break; | ||
| 199 | } | ||
| 200 | } | ||
| 201 | |||
| 202 | /* local variables */ | ||
| 203 | |||
| 204 | /* The VIC IRQ descriptors -- these look almost identical to the | ||
| 205 | * 8259 IRQs except that masks and things must be kept per processor | ||
| 206 | */ | ||
| 207 | static struct irq_chip vic_chip = { | ||
| 208 | .name = "VIC", | ||
| 209 | .startup = startup_vic_irq, | ||
| 210 | .mask = mask_vic_irq, | ||
| 211 | .unmask = unmask_vic_irq, | ||
| 212 | .set_affinity = set_vic_irq_affinity, | ||
| 213 | }; | ||
| 214 | |||
| 215 | /* used to count up as CPUs are brought on line (starts at 0) */ | ||
| 216 | static int cpucount = 0; | ||
| 217 | |||
| 218 | /* steal a page from the bottom of memory for the trampoline and | ||
| 219 | * squirrel its address away here. This will be in kernel virtual | ||
| 220 | * space */ | ||
| 221 | static __u32 trampoline_base; | ||
| 222 | |||
| 223 | /* The per cpu profile stuff - used in smp_local_timer_interrupt */ | ||
| 224 | static DEFINE_PER_CPU(int, prof_multiplier) = 1; | ||
| 225 | static DEFINE_PER_CPU(int, prof_old_multiplier) = 1; | ||
| 226 | static DEFINE_PER_CPU(int, prof_counter) = 1; | ||
| 227 | |||
| 228 | /* the map used to check if a CPU has booted */ | ||
| 229 | static __u32 cpu_booted_map; | ||
| 230 | |||
| 231 | /* the synchronize flag used to hold all secondary CPUs spinning in | ||
| 232 | * a tight loop until the boot sequence is ready for them */ | ||
| 233 | static cpumask_t smp_commenced_mask = CPU_MASK_NONE; | ||
| 234 | |||
| 235 | /* This is for the new dynamic CPU boot code */ | ||
| 236 | cpumask_t cpu_callin_map = CPU_MASK_NONE; | ||
| 237 | cpumask_t cpu_callout_map = CPU_MASK_NONE; | ||
| 238 | EXPORT_SYMBOL(cpu_callout_map); | ||
| 239 | cpumask_t cpu_possible_map = CPU_MASK_NONE; | ||
| 240 | EXPORT_SYMBOL(cpu_possible_map); | ||
| 241 | |||
| 242 | /* The per processor IRQ masks (these are usually kept in sync) */ | ||
| 243 | static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned; | ||
| 244 | |||
| 245 | /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */ | ||
| 246 | static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 }; | ||
| 247 | |||
| 248 | /* Lock for enable/disable of VIC interrupts */ | ||
| 249 | static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock); | ||
| 250 | |||
| 251 | /* The boot processor is correctly set up in PC mode when it | ||
| 252 | * comes up, but the secondaries need their master/slave 8259 | ||
| 253 | * pairs initializing correctly */ | ||
| 254 | |||
| 255 | /* Interrupt counters (per cpu) and total - used to try to | ||
| 256 | * even up the interrupt handling routines */ | ||
| 257 | static long vic_intr_total = 0; | ||
| 258 | static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 }; | ||
| 259 | static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 }; | ||
| 260 | |||
| 261 | /* Since we can only use CPI0, we fake all the other CPIs */ | ||
| 262 | static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned; | ||
| 263 | |||
| 264 | /* debugging routine to read the isr of the cpu's pic */ | ||
| 265 | static inline __u16 | ||
| 266 | vic_read_isr(void) | ||
| 267 | { | ||
| 268 | __u16 isr; | ||
| 269 | |||
| 270 | outb(0x0b, 0xa0); | ||
| 271 | isr = inb(0xa0) << 8; | ||
| 272 | outb(0x0b, 0x20); | ||
| 273 | isr |= inb(0x20); | ||
| 274 | |||
| 275 | return isr; | ||
| 276 | } | ||
| 277 | |||
| 278 | static __init void | ||
| 279 | qic_setup(void) | ||
| 280 | { | ||
| 281 | if(!is_cpu_quad()) { | ||
| 282 | /* not a quad, no setup */ | ||
| 283 | return; | ||
| 284 | } | ||
| 285 | outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); | ||
| 286 | outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); | ||
| 287 | |||
| 288 | if(is_cpu_extended()) { | ||
| 289 | /* the QIC duplicate of the VIC base register */ | ||
| 290 | outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER); | ||
| 291 | outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER); | ||
| 292 | |||
| 293 | /* FIXME: should set up the QIC timer and memory parity | ||
| 294 | * error vectors here */ | ||
| 295 | } | ||
| 296 | } | ||
| 297 | |||
| 298 | static __init void | ||
| 299 | vic_setup_pic(void) | ||
| 300 | { | ||
| 301 | outb(1, VIC_REDIRECT_REGISTER_1); | ||
| 302 | /* clear the claim registers for dynamic routing */ | ||
| 303 | outb(0, VIC_CLAIM_REGISTER_0); | ||
| 304 | outb(0, VIC_CLAIM_REGISTER_1); | ||
| 305 | |||
| 306 | outb(0, VIC_PRIORITY_REGISTER); | ||
| 307 | /* Set the Primary and Secondary Microchannel vector | ||
| 308 | * bases to be the same as the ordinary interrupts | ||
| 309 | * | ||
| 310 | * FIXME: This would be more efficient using separate | ||
| 311 | * vectors. */ | ||
| 312 | outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); | ||
| 313 | outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); | ||
| 314 | /* Now initiallise the master PIC belonging to this CPU by | ||
| 315 | * sending the four ICWs */ | ||
| 316 | |||
| 317 | /* ICW1: level triggered, ICW4 needed */ | ||
| 318 | outb(0x19, 0x20); | ||
| 319 | |||
| 320 | /* ICW2: vector base */ | ||
| 321 | outb(FIRST_EXTERNAL_VECTOR, 0x21); | ||
| 322 | |||
| 323 | /* ICW3: slave at line 2 */ | ||
| 324 | outb(0x04, 0x21); | ||
| 325 | |||
| 326 | /* ICW4: 8086 mode */ | ||
| 327 | outb(0x01, 0x21); | ||
| 328 | |||
| 329 | /* now the same for the slave PIC */ | ||
| 330 | |||
| 331 | /* ICW1: level trigger, ICW4 needed */ | ||
| 332 | outb(0x19, 0xA0); | ||
| 333 | |||
| 334 | /* ICW2: slave vector base */ | ||
| 335 | outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1); | ||
| 336 | |||
| 337 | /* ICW3: slave ID */ | ||
| 338 | outb(0x02, 0xA1); | ||
| 339 | |||
| 340 | /* ICW4: 8086 mode */ | ||
| 341 | outb(0x01, 0xA1); | ||
| 342 | } | ||
| 343 | |||
| 344 | static void | ||
| 345 | do_quad_bootstrap(void) | ||
| 346 | { | ||
| 347 | if(is_cpu_quad() && is_cpu_vic_boot()) { | ||
| 348 | int i; | ||
| 349 | unsigned long flags; | ||
| 350 | __u8 cpuid = hard_smp_processor_id(); | ||
| 351 | |||
| 352 | local_irq_save(flags); | ||
| 353 | |||
| 354 | for(i = 0; i<4; i++) { | ||
| 355 | /* FIXME: this would be >>3 &0x7 on the 32 way */ | ||
| 356 | if(((cpuid >> 2) & 0x03) == i) | ||
| 357 | /* don't lower our own mask! */ | ||
| 358 | continue; | ||
| 359 | |||
| 360 | /* masquerade as local Quad CPU */ | ||
| 361 | outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID); | ||
| 362 | /* enable the startup CPI */ | ||
| 363 | outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1); | ||
| 364 | /* restore cpu id */ | ||
| 365 | outb(0, QIC_PROCESSOR_ID); | ||
| 366 | } | ||
| 367 | local_irq_restore(flags); | ||
| 368 | } | ||
| 369 | } | ||
| 370 | |||
| 371 | |||
| 372 | /* Set up all the basic stuff: read the SMP config and make all the | ||
| 373 | * SMP information reflect only the boot cpu. All others will be | ||
| 374 | * brought on-line later. */ | ||
| 375 | void __init | ||
| 376 | find_smp_config(void) | ||
| 377 | { | ||
| 378 | int i; | ||
| 379 | |||
| 380 | boot_cpu_id = hard_smp_processor_id(); | ||
| 381 | |||
| 382 | printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id); | ||
| 383 | |||
| 384 | /* initialize the CPU structures (moved from smp_boot_cpus) */ | ||
| 385 | for(i=0; i<NR_CPUS; i++) { | ||
| 386 | cpu_irq_affinity[i] = ~0; | ||
| 387 | } | ||
| 388 | cpu_online_map = cpumask_of_cpu(boot_cpu_id); | ||
| 389 | |||
| 390 | /* The boot CPU must be extended */ | ||
| 391 | voyager_extended_vic_processors = 1<<boot_cpu_id; | ||
| 392 | /* initially, all of the first 8 cpu's can boot */ | ||
| 393 | voyager_allowed_boot_processors = 0xff; | ||
| 394 | /* set up everything for just this CPU, we can alter | ||
| 395 | * this as we start the other CPUs later */ | ||
| 396 | /* now get the CPU disposition from the extended CMOS */ | ||
| 397 | cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK); | ||
| 398 | cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8; | ||
| 399 | cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16; | ||
| 400 | cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24; | ||
| 401 | cpu_possible_map = phys_cpu_present_map; | ||
| 402 | printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]); | ||
| 403 | /* Here we set up the VIC to enable SMP */ | ||
| 404 | /* enable the CPIs by writing the base vector to their register */ | ||
| 405 | outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER); | ||
| 406 | outb(1, VIC_REDIRECT_REGISTER_1); | ||
| 407 | /* set the claim registers for static routing --- Boot CPU gets | ||
| 408 | * all interrupts untill all other CPUs started */ | ||
| 409 | outb(0xff, VIC_CLAIM_REGISTER_0); | ||
| 410 | outb(0xff, VIC_CLAIM_REGISTER_1); | ||
| 411 | /* Set the Primary and Secondary Microchannel vector | ||
| 412 | * bases to be the same as the ordinary interrupts | ||
| 413 | * | ||
| 414 | * FIXME: This would be more efficient using separate | ||
| 415 | * vectors. */ | ||
| 416 | outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); | ||
| 417 | outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); | ||
| 418 | |||
| 419 | /* Finally tell the firmware that we're driving */ | ||
| 420 | outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG, | ||
| 421 | VOYAGER_SUS_IN_CONTROL_PORT); | ||
| 422 | |||
| 423 | current_thread_info()->cpu = boot_cpu_id; | ||
| 424 | x86_write_percpu(cpu_number, boot_cpu_id); | ||
| 425 | } | ||
| 426 | |||
| 427 | /* | ||
| 428 | * The bootstrap kernel entry code has set these up. Save them | ||
| 429 | * for a given CPU, id is physical */ | ||
| 430 | void __init | ||
| 431 | smp_store_cpu_info(int id) | ||
| 432 | { | ||
| 433 | struct cpuinfo_x86 *c=&cpu_data[id]; | ||
| 434 | |||
| 435 | *c = boot_cpu_data; | ||
| 436 | |||
| 437 | identify_secondary_cpu(c); | ||
| 438 | } | ||
| 439 | |||
| 440 | /* set up the trampoline and return the physical address of the code */ | ||
| 441 | static __u32 __init | ||
| 442 | setup_trampoline(void) | ||
| 443 | { | ||
| 444 | /* these two are global symbols in trampoline.S */ | ||
| 445 | extern __u8 trampoline_end[]; | ||
| 446 | extern __u8 trampoline_data[]; | ||
| 447 | |||
| 448 | memcpy((__u8 *)trampoline_base, trampoline_data, | ||
| 449 | trampoline_end - trampoline_data); | ||
| 450 | return virt_to_phys((__u8 *)trampoline_base); | ||
| 451 | } | ||
| 452 | |||
| 453 | /* Routine initially called when a non-boot CPU is brought online */ | ||
| 454 | static void __init | ||
| 455 | start_secondary(void *unused) | ||
| 456 | { | ||
| 457 | __u8 cpuid = hard_smp_processor_id(); | ||
| 458 | /* external functions not defined in the headers */ | ||
| 459 | extern void calibrate_delay(void); | ||
| 460 | |||
| 461 | cpu_init(); | ||
| 462 | |||
| 463 | /* OK, we're in the routine */ | ||
| 464 | ack_CPI(VIC_CPU_BOOT_CPI); | ||
| 465 | |||
| 466 | /* setup the 8259 master slave pair belonging to this CPU --- | ||
| 467 | * we won't actually receive any until the boot CPU | ||
| 468 | * relinquishes it's static routing mask */ | ||
| 469 | vic_setup_pic(); | ||
| 470 | |||
| 471 | qic_setup(); | ||
| 472 | |||
| 473 | if(is_cpu_quad() && !is_cpu_vic_boot()) { | ||
| 474 | /* clear the boot CPI */ | ||
| 475 | __u8 dummy; | ||
| 476 | |||
| 477 | dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi; | ||
| 478 | printk("read dummy %d\n", dummy); | ||
| 479 | } | ||
| 480 | |||
| 481 | /* lower the mask to receive CPIs */ | ||
| 482 | vic_enable_cpi(); | ||
| 483 | |||
| 484 | VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid)); | ||
| 485 | |||
| 486 | /* enable interrupts */ | ||
| 487 | local_irq_enable(); | ||
| 488 | |||
| 489 | /* get our bogomips */ | ||
| 490 | calibrate_delay(); | ||
| 491 | |||
| 492 | /* save our processor parameters */ | ||
| 493 | smp_store_cpu_info(cpuid); | ||
| 494 | |||
| 495 | /* if we're a quad, we may need to bootstrap other CPUs */ | ||
| 496 | do_quad_bootstrap(); | ||
| 497 | |||
| 498 | /* FIXME: this is rather a poor hack to prevent the CPU | ||
| 499 | * activating softirqs while it's supposed to be waiting for | ||
| 500 | * permission to proceed. Without this, the new per CPU stuff | ||
| 501 | * in the softirqs will fail */ | ||
| 502 | local_irq_disable(); | ||
| 503 | cpu_set(cpuid, cpu_callin_map); | ||
| 504 | |||
| 505 | /* signal that we're done */ | ||
| 506 | cpu_booted_map = 1; | ||
| 507 | |||
| 508 | while (!cpu_isset(cpuid, smp_commenced_mask)) | ||
| 509 | rep_nop(); | ||
| 510 | local_irq_enable(); | ||
| 511 | |||
| 512 | local_flush_tlb(); | ||
| 513 | |||
| 514 | cpu_set(cpuid, cpu_online_map); | ||
| 515 | wmb(); | ||
| 516 | cpu_idle(); | ||
| 517 | } | ||
| 518 | |||
| 519 | |||
| 520 | /* Routine to kick start the given CPU and wait for it to report ready | ||
| 521 | * (or timeout in startup). When this routine returns, the requested | ||
| 522 | * CPU is either fully running and configured or known to be dead. | ||
| 523 | * | ||
| 524 | * We call this routine sequentially 1 CPU at a time, so no need for | ||
| 525 | * locking */ | ||
| 526 | |||
| 527 | static void __init | ||
| 528 | do_boot_cpu(__u8 cpu) | ||
| 529 | { | ||
| 530 | struct task_struct *idle; | ||
| 531 | int timeout; | ||
| 532 | unsigned long flags; | ||
| 533 | int quad_boot = (1<<cpu) & voyager_quad_processors | ||
| 534 | & ~( voyager_extended_vic_processors | ||
| 535 | & voyager_allowed_boot_processors); | ||
| 536 | |||
| 537 | /* This is an area in head.S which was used to set up the | ||
| 538 | * initial kernel stack. We need to alter this to give the | ||
| 539 | * booting CPU a new stack (taken from its idle process) */ | ||
| 540 | extern struct { | ||
| 541 | __u8 *esp; | ||
| 542 | unsigned short ss; | ||
| 543 | } stack_start; | ||
| 544 | /* This is the format of the CPI IDT gate (in real mode) which | ||
| 545 | * we're hijacking to boot the CPU */ | ||
| 546 | union IDTFormat { | ||
| 547 | struct seg { | ||
| 548 | __u16 Offset; | ||
| 549 | __u16 Segment; | ||
| 550 | } idt; | ||
| 551 | __u32 val; | ||
| 552 | } hijack_source; | ||
| 553 | |||
| 554 | __u32 *hijack_vector; | ||
| 555 | __u32 start_phys_address = setup_trampoline(); | ||
| 556 | |||
| 557 | /* There's a clever trick to this: The linux trampoline is | ||
| 558 | * compiled to begin at absolute location zero, so make the | ||
| 559 | * address zero but have the data segment selector compensate | ||
| 560 | * for the actual address */ | ||
| 561 | hijack_source.idt.Offset = start_phys_address & 0x000F; | ||
| 562 | hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF; | ||
| 563 | |||
| 564 | cpucount++; | ||
| 565 | alternatives_smp_switch(1); | ||
| 566 | |||
| 567 | idle = fork_idle(cpu); | ||
| 568 | if(IS_ERR(idle)) | ||
| 569 | panic("failed fork for CPU%d", cpu); | ||
| 570 | idle->thread.eip = (unsigned long) start_secondary; | ||
| 571 | /* init_tasks (in sched.c) is indexed logically */ | ||
| 572 | stack_start.esp = (void *) idle->thread.esp; | ||
| 573 | |||
| 574 | init_gdt(cpu); | ||
| 575 | per_cpu(current_task, cpu) = idle; | ||
| 576 | early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); | ||
| 577 | irq_ctx_init(cpu); | ||
| 578 | |||
| 579 | /* Note: Don't modify initial ss override */ | ||
| 580 | VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu, | ||
| 581 | (unsigned long)hijack_source.val, hijack_source.idt.Segment, | ||
| 582 | hijack_source.idt.Offset, stack_start.esp)); | ||
| 583 | |||
| 584 | /* init lowmem identity mapping */ | ||
| 585 | clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS, | ||
| 586 | min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS)); | ||
| 587 | flush_tlb_all(); | ||
| 588 | |||
| 589 | if(quad_boot) { | ||
| 590 | printk("CPU %d: non extended Quad boot\n", cpu); | ||
| 591 | hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4); | ||
| 592 | *hijack_vector = hijack_source.val; | ||
| 593 | } else { | ||
| 594 | printk("CPU%d: extended VIC boot\n", cpu); | ||
| 595 | hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4); | ||
| 596 | *hijack_vector = hijack_source.val; | ||
| 597 | /* VIC errata, may also receive interrupt at this address */ | ||
| 598 | hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4); | ||
| 599 | *hijack_vector = hijack_source.val; | ||
| 600 | } | ||
| 601 | /* All non-boot CPUs start with interrupts fully masked. Need | ||
| 602 | * to lower the mask of the CPI we're about to send. We do | ||
| 603 | * this in the VIC by masquerading as the processor we're | ||
| 604 | * about to boot and lowering its interrupt mask */ | ||
| 605 | local_irq_save(flags); | ||
| 606 | if(quad_boot) { | ||
| 607 | send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI); | ||
| 608 | } else { | ||
| 609 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); | ||
| 610 | /* here we're altering registers belonging to `cpu' */ | ||
| 611 | |||
| 612 | outb(VIC_BOOT_INTERRUPT_MASK, 0x21); | ||
| 613 | /* now go back to our original identity */ | ||
| 614 | outb(boot_cpu_id, VIC_PROCESSOR_ID); | ||
| 615 | |||
| 616 | /* and boot the CPU */ | ||
| 617 | |||
| 618 | send_CPI((1<<cpu), VIC_CPU_BOOT_CPI); | ||
| 619 | } | ||
| 620 | cpu_booted_map = 0; | ||
| 621 | local_irq_restore(flags); | ||
| 622 | |||
| 623 | /* now wait for it to become ready (or timeout) */ | ||
| 624 | for(timeout = 0; timeout < 50000; timeout++) { | ||
| 625 | if(cpu_booted_map) | ||
| 626 | break; | ||
| 627 | udelay(100); | ||
| 628 | } | ||
| 629 | /* reset the page table */ | ||
| 630 | zap_low_mappings(); | ||
| 631 | |||
| 632 | if (cpu_booted_map) { | ||
| 633 | VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n", | ||
| 634 | cpu, smp_processor_id())); | ||
| 635 | |||
| 636 | printk("CPU%d: ", cpu); | ||
| 637 | print_cpu_info(&cpu_data[cpu]); | ||
| 638 | wmb(); | ||
| 639 | cpu_set(cpu, cpu_callout_map); | ||
| 640 | cpu_set(cpu, cpu_present_map); | ||
| 641 | } | ||
| 642 | else { | ||
| 643 | printk("CPU%d FAILED TO BOOT: ", cpu); | ||
| 644 | if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5) | ||
| 645 | printk("Stuck.\n"); | ||
| 646 | else | ||
| 647 | printk("Not responding.\n"); | ||
| 648 | |||
| 649 | cpucount--; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | |||
| 653 | void __init | ||
| 654 | smp_boot_cpus(void) | ||
| 655 | { | ||
| 656 | int i; | ||
| 657 | |||
| 658 | /* CAT BUS initialisation must be done after the memory */ | ||
| 659 | /* FIXME: The L4 has a catbus too, it just needs to be | ||
| 660 | * accessed in a totally different way */ | ||
| 661 | if(voyager_level == 5) { | ||
| 662 | voyager_cat_init(); | ||
| 663 | |||
| 664 | /* now that the cat has probed the Voyager System Bus, sanity | ||
| 665 | * check the cpu map */ | ||
| 666 | if( ((voyager_quad_processors | voyager_extended_vic_processors) | ||
| 667 | & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) { | ||
| 668 | /* should panic */ | ||
| 669 | printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n"); | ||
| 670 | } | ||
| 671 | } else if(voyager_level == 4) | ||
| 672 | voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0]; | ||
| 673 | |||
| 674 | /* this sets up the idle task to run on the current cpu */ | ||
| 675 | voyager_extended_cpus = 1; | ||
| 676 | /* Remove the global_irq_holder setting, it triggers a BUG() on | ||
| 677 | * schedule at the moment */ | ||
| 678 | //global_irq_holder = boot_cpu_id; | ||
| 679 | |||
| 680 | /* FIXME: Need to do something about this but currently only works | ||
| 681 | * on CPUs with a tsc which none of mine have. | ||
| 682 | smp_tune_scheduling(); | ||
| 683 | */ | ||
| 684 | smp_store_cpu_info(boot_cpu_id); | ||
| 685 | printk("CPU%d: ", boot_cpu_id); | ||
| 686 | print_cpu_info(&cpu_data[boot_cpu_id]); | ||
| 687 | |||
| 688 | if(is_cpu_quad()) { | ||
| 689 | /* booting on a Quad CPU */ | ||
| 690 | printk("VOYAGER SMP: Boot CPU is Quad\n"); | ||
| 691 | qic_setup(); | ||
| 692 | do_quad_bootstrap(); | ||
| 693 | } | ||
| 694 | |||
| 695 | /* enable our own CPIs */ | ||
| 696 | vic_enable_cpi(); | ||
| 697 | |||
| 698 | cpu_set(boot_cpu_id, cpu_online_map); | ||
| 699 | cpu_set(boot_cpu_id, cpu_callout_map); | ||
| 700 | |||
| 701 | /* loop over all the extended VIC CPUs and boot them. The | ||
| 702 | * Quad CPUs must be bootstrapped by their extended VIC cpu */ | ||
| 703 | for(i = 0; i < NR_CPUS; i++) { | ||
| 704 | if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map)) | ||
| 705 | continue; | ||
| 706 | do_boot_cpu(i); | ||
| 707 | /* This udelay seems to be needed for the Quad boots | ||
| 708 | * don't remove unless you know what you're doing */ | ||
| 709 | udelay(1000); | ||
| 710 | } | ||
| 711 | /* we could compute the total bogomips here, but why bother?, | ||
| 712 | * Code added from smpboot.c */ | ||
| 713 | { | ||
| 714 | unsigned long bogosum = 0; | ||
| 715 | for (i = 0; i < NR_CPUS; i++) | ||
| 716 | if (cpu_isset(i, cpu_online_map)) | ||
| 717 | bogosum += cpu_data[i].loops_per_jiffy; | ||
| 718 | printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", | ||
| 719 | cpucount+1, | ||
| 720 | bogosum/(500000/HZ), | ||
| 721 | (bogosum/(5000/HZ))%100); | ||
| 722 | } | ||
| 723 | voyager_extended_cpus = hweight32(voyager_extended_vic_processors); | ||
| 724 | printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus); | ||
| 725 | /* that's it, switch to symmetric mode */ | ||
| 726 | outb(0, VIC_PRIORITY_REGISTER); | ||
| 727 | outb(0, VIC_CLAIM_REGISTER_0); | ||
| 728 | outb(0, VIC_CLAIM_REGISTER_1); | ||
| 729 | |||
| 730 | VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus())); | ||
| 731 | } | ||
| 732 | |||
| 733 | /* Reload the secondary CPUs task structure (this function does not | ||
| 734 | * return ) */ | ||
| 735 | void __init | ||
| 736 | initialize_secondary(void) | ||
| 737 | { | ||
| 738 | #if 0 | ||
| 739 | // AC kernels only | ||
| 740 | set_current(hard_get_current()); | ||
| 741 | #endif | ||
| 742 | |||
| 743 | /* | ||
| 744 | * We don't actually need to load the full TSS, | ||
| 745 | * basically just the stack pointer and the eip. | ||
| 746 | */ | ||
| 747 | |||
| 748 | asm volatile( | ||
| 749 | "movl %0,%%esp\n\t" | ||
| 750 | "jmp *%1" | ||
| 751 | : | ||
| 752 | :"r" (current->thread.esp),"r" (current->thread.eip)); | ||
| 753 | } | ||
| 754 | |||
| 755 | /* handle a Voyager SYS_INT -- If we don't, the base board will | ||
| 756 | * panic the system. | ||
| 757 | * | ||
| 758 | * System interrupts occur because some problem was detected on the | ||
| 759 | * various busses. To find out what you have to probe all the | ||
| 760 | * hardware via the CAT bus. FIXME: At the moment we do nothing. */ | ||
| 761 | fastcall void | ||
| 762 | smp_vic_sys_interrupt(struct pt_regs *regs) | ||
| 763 | { | ||
| 764 | ack_CPI(VIC_SYS_INT); | ||
| 765 | printk("Voyager SYSTEM INTERRUPT\n"); | ||
| 766 | } | ||
| 767 | |||
| 768 | /* Handle a voyager CMN_INT; These interrupts occur either because of | ||
| 769 | * a system status change or because a single bit memory error | ||
| 770 | * occurred. FIXME: At the moment, ignore all this. */ | ||
| 771 | fastcall void | ||
| 772 | smp_vic_cmn_interrupt(struct pt_regs *regs) | ||
| 773 | { | ||
| 774 | static __u8 in_cmn_int = 0; | ||
| 775 | static DEFINE_SPINLOCK(cmn_int_lock); | ||
| 776 | |||
| 777 | /* common ints are broadcast, so make sure we only do this once */ | ||
| 778 | _raw_spin_lock(&cmn_int_lock); | ||
| 779 | if(in_cmn_int) | ||
| 780 | goto unlock_end; | ||
| 781 | |||
| 782 | in_cmn_int++; | ||
| 783 | _raw_spin_unlock(&cmn_int_lock); | ||
| 784 | |||
| 785 | VDEBUG(("Voyager COMMON INTERRUPT\n")); | ||
| 786 | |||
| 787 | if(voyager_level == 5) | ||
| 788 | voyager_cat_do_common_interrupt(); | ||
| 789 | |||
| 790 | _raw_spin_lock(&cmn_int_lock); | ||
| 791 | in_cmn_int = 0; | ||
| 792 | unlock_end: | ||
| 793 | _raw_spin_unlock(&cmn_int_lock); | ||
| 794 | ack_CPI(VIC_CMN_INT); | ||
| 795 | } | ||
| 796 | |||
| 797 | /* | ||
| 798 | * Reschedule call back. Nothing to do, all the work is done | ||
| 799 | * automatically when we return from the interrupt. */ | ||
| 800 | static void | ||
| 801 | smp_reschedule_interrupt(void) | ||
| 802 | { | ||
| 803 | /* do nothing */ | ||
| 804 | } | ||
| 805 | |||
| 806 | static struct mm_struct * flush_mm; | ||
| 807 | static unsigned long flush_va; | ||
| 808 | static DEFINE_SPINLOCK(tlbstate_lock); | ||
| 809 | #define FLUSH_ALL 0xffffffff | ||
| 810 | |||
| 811 | /* | ||
| 812 | * We cannot call mmdrop() because we are in interrupt context, | ||
| 813 | * instead update mm->cpu_vm_mask. | ||
| 814 | * | ||
| 815 | * We need to reload %cr3 since the page tables may be going | ||
| 816 | * away from under us.. | ||
| 817 | */ | ||
| 818 | static inline void | ||
| 819 | leave_mm (unsigned long cpu) | ||
| 820 | { | ||
| 821 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) | ||
| 822 | BUG(); | ||
| 823 | cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); | ||
| 824 | load_cr3(swapper_pg_dir); | ||
| 825 | } | ||
| 826 | |||
| 827 | |||
| 828 | /* | ||
| 829 | * Invalidate call-back | ||
| 830 | */ | ||
| 831 | static void | ||
| 832 | smp_invalidate_interrupt(void) | ||
| 833 | { | ||
| 834 | __u8 cpu = smp_processor_id(); | ||
| 835 | |||
| 836 | if (!test_bit(cpu, &smp_invalidate_needed)) | ||
| 837 | return; | ||
| 838 | /* This will flood messages. Don't uncomment unless you see | ||
| 839 | * Problems with cross cpu invalidation | ||
| 840 | VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n", | ||
| 841 | smp_processor_id())); | ||
| 842 | */ | ||
| 843 | |||
| 844 | if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { | ||
| 845 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { | ||
| 846 | if (flush_va == FLUSH_ALL) | ||
| 847 | local_flush_tlb(); | ||
| 848 | else | ||
| 849 | __flush_tlb_one(flush_va); | ||
| 850 | } else | ||
| 851 | leave_mm(cpu); | ||
| 852 | } | ||
| 853 | smp_mb__before_clear_bit(); | ||
| 854 | clear_bit(cpu, &smp_invalidate_needed); | ||
| 855 | smp_mb__after_clear_bit(); | ||
| 856 | } | ||
| 857 | |||
| 858 | /* All the new flush operations for 2.4 */ | ||
| 859 | |||
| 860 | |||
| 861 | /* This routine is called with a physical cpu mask */ | ||
| 862 | static void | ||
| 863 | voyager_flush_tlb_others (unsigned long cpumask, struct mm_struct *mm, | ||
| 864 | unsigned long va) | ||
| 865 | { | ||
| 866 | int stuck = 50000; | ||
| 867 | |||
| 868 | if (!cpumask) | ||
| 869 | BUG(); | ||
| 870 | if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask) | ||
| 871 | BUG(); | ||
| 872 | if (cpumask & (1 << smp_processor_id())) | ||
| 873 | BUG(); | ||
| 874 | if (!mm) | ||
| 875 | BUG(); | ||
| 876 | |||
| 877 | spin_lock(&tlbstate_lock); | ||
| 878 | |||
| 879 | flush_mm = mm; | ||
| 880 | flush_va = va; | ||
| 881 | atomic_set_mask(cpumask, &smp_invalidate_needed); | ||
| 882 | /* | ||
| 883 | * We have to send the CPI only to | ||
| 884 | * CPUs affected. | ||
| 885 | */ | ||
| 886 | send_CPI(cpumask, VIC_INVALIDATE_CPI); | ||
| 887 | |||
| 888 | while (smp_invalidate_needed) { | ||
| 889 | mb(); | ||
| 890 | if(--stuck == 0) { | ||
| 891 | printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id()); | ||
| 892 | break; | ||
| 893 | } | ||
| 894 | } | ||
| 895 | |||
| 896 | /* Uncomment only to debug invalidation problems | ||
| 897 | VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu)); | ||
| 898 | */ | ||
| 899 | |||
| 900 | flush_mm = NULL; | ||
| 901 | flush_va = 0; | ||
| 902 | spin_unlock(&tlbstate_lock); | ||
| 903 | } | ||
| 904 | |||
| 905 | void | ||
| 906 | flush_tlb_current_task(void) | ||
| 907 | { | ||
| 908 | struct mm_struct *mm = current->mm; | ||
| 909 | unsigned long cpu_mask; | ||
| 910 | |||
| 911 | preempt_disable(); | ||
| 912 | |||
| 913 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
| 914 | local_flush_tlb(); | ||
| 915 | if (cpu_mask) | ||
| 916 | voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL); | ||
| 917 | |||
| 918 | preempt_enable(); | ||
| 919 | } | ||
| 920 | |||
| 921 | |||
| 922 | void | ||
| 923 | flush_tlb_mm (struct mm_struct * mm) | ||
| 924 | { | ||
| 925 | unsigned long cpu_mask; | ||
| 926 | |||
| 927 | preempt_disable(); | ||
| 928 | |||
| 929 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
| 930 | |||
| 931 | if (current->active_mm == mm) { | ||
| 932 | if (current->mm) | ||
| 933 | local_flush_tlb(); | ||
| 934 | else | ||
| 935 | leave_mm(smp_processor_id()); | ||
| 936 | } | ||
| 937 | if (cpu_mask) | ||
| 938 | voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL); | ||
| 939 | |||
| 940 | preempt_enable(); | ||
| 941 | } | ||
| 942 | |||
| 943 | void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) | ||
| 944 | { | ||
| 945 | struct mm_struct *mm = vma->vm_mm; | ||
| 946 | unsigned long cpu_mask; | ||
| 947 | |||
| 948 | preempt_disable(); | ||
| 949 | |||
| 950 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
| 951 | if (current->active_mm == mm) { | ||
| 952 | if(current->mm) | ||
| 953 | __flush_tlb_one(va); | ||
| 954 | else | ||
| 955 | leave_mm(smp_processor_id()); | ||
| 956 | } | ||
| 957 | |||
| 958 | if (cpu_mask) | ||
| 959 | voyager_flush_tlb_others(cpu_mask, mm, va); | ||
| 960 | |||
| 961 | preempt_enable(); | ||
| 962 | } | ||
| 963 | EXPORT_SYMBOL(flush_tlb_page); | ||
| 964 | |||
| 965 | /* enable the requested IRQs */ | ||
| 966 | static void | ||
| 967 | smp_enable_irq_interrupt(void) | ||
| 968 | { | ||
| 969 | __u8 irq; | ||
| 970 | __u8 cpu = get_cpu(); | ||
| 971 | |||
| 972 | VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu, | ||
| 973 | vic_irq_enable_mask[cpu])); | ||
| 974 | |||
| 975 | spin_lock(&vic_irq_lock); | ||
| 976 | for(irq = 0; irq < 16; irq++) { | ||
| 977 | if(vic_irq_enable_mask[cpu] & (1<<irq)) | ||
| 978 | enable_local_vic_irq(irq); | ||
| 979 | } | ||
| 980 | vic_irq_enable_mask[cpu] = 0; | ||
| 981 | spin_unlock(&vic_irq_lock); | ||
| 982 | |||
| 983 | put_cpu_no_resched(); | ||
| 984 | } | ||
| 985 | |||
| 986 | /* | ||
| 987 | * CPU halt call-back | ||
| 988 | */ | ||
| 989 | static void | ||
| 990 | smp_stop_cpu_function(void *dummy) | ||
| 991 | { | ||
| 992 | VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id())); | ||
| 993 | cpu_clear(smp_processor_id(), cpu_online_map); | ||
| 994 | local_irq_disable(); | ||
| 995 | for(;;) | ||
| 996 | halt(); | ||
| 997 | } | ||
| 998 | |||
| 999 | static DEFINE_SPINLOCK(call_lock); | ||
| 1000 | |||
| 1001 | struct call_data_struct { | ||
| 1002 | void (*func) (void *info); | ||
| 1003 | void *info; | ||
| 1004 | volatile unsigned long started; | ||
| 1005 | volatile unsigned long finished; | ||
| 1006 | int wait; | ||
| 1007 | }; | ||
| 1008 | |||
| 1009 | static struct call_data_struct * call_data; | ||
| 1010 | |||
| 1011 | /* execute a thread on a new CPU. The function to be called must be | ||
| 1012 | * previously set up. This is used to schedule a function for | ||
| 1013 | * execution on all CPU's - set up the function then broadcast a | ||
| 1014 | * function_interrupt CPI to come here on each CPU */ | ||
| 1015 | static void | ||
| 1016 | smp_call_function_interrupt(void) | ||
| 1017 | { | ||
| 1018 | void (*func) (void *info) = call_data->func; | ||
| 1019 | void *info = call_data->info; | ||
| 1020 | /* must take copy of wait because call_data may be replaced | ||
| 1021 | * unless the function is waiting for us to finish */ | ||
| 1022 | int wait = call_data->wait; | ||
| 1023 | __u8 cpu = smp_processor_id(); | ||
| 1024 | |||
| 1025 | /* | ||
| 1026 | * Notify initiating CPU that I've grabbed the data and am | ||
| 1027 | * about to execute the function | ||
| 1028 | */ | ||
| 1029 | mb(); | ||
| 1030 | if(!test_and_clear_bit(cpu, &call_data->started)) { | ||
| 1031 | /* If the bit wasn't set, this could be a replay */ | ||
| 1032 | printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu); | ||
| 1033 | return; | ||
| 1034 | } | ||
| 1035 | /* | ||
| 1036 | * At this point the info structure may be out of scope unless wait==1 | ||
| 1037 | */ | ||
| 1038 | irq_enter(); | ||
| 1039 | (*func)(info); | ||
| 1040 | irq_exit(); | ||
| 1041 | if (wait) { | ||
| 1042 | mb(); | ||
| 1043 | clear_bit(cpu, &call_data->finished); | ||
| 1044 | } | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | static int | ||
| 1048 | voyager_smp_call_function_mask (cpumask_t cpumask, | ||
| 1049 | void (*func) (void *info), void *info, | ||
| 1050 | int wait) | ||
| 1051 | { | ||
| 1052 | struct call_data_struct data; | ||
| 1053 | u32 mask = cpus_addr(cpumask)[0]; | ||
| 1054 | |||
| 1055 | mask &= ~(1<<smp_processor_id()); | ||
| 1056 | |||
| 1057 | if (!mask) | ||
| 1058 | return 0; | ||
| 1059 | |||
| 1060 | /* Can deadlock when called with interrupts disabled */ | ||
| 1061 | WARN_ON(irqs_disabled()); | ||
| 1062 | |||
| 1063 | data.func = func; | ||
| 1064 | data.info = info; | ||
| 1065 | data.started = mask; | ||
| 1066 | data.wait = wait; | ||
| 1067 | if (wait) | ||
| 1068 | data.finished = mask; | ||
| 1069 | |||
| 1070 | spin_lock(&call_lock); | ||
| 1071 | call_data = &data; | ||
| 1072 | wmb(); | ||
| 1073 | /* Send a message to all other CPUs and wait for them to respond */ | ||
| 1074 | send_CPI(mask, VIC_CALL_FUNCTION_CPI); | ||
| 1075 | |||
| 1076 | /* Wait for response */ | ||
| 1077 | while (data.started) | ||
| 1078 | barrier(); | ||
| 1079 | |||
| 1080 | if (wait) | ||
| 1081 | while (data.finished) | ||
| 1082 | barrier(); | ||
| 1083 | |||
| 1084 | spin_unlock(&call_lock); | ||
| 1085 | |||
| 1086 | return 0; | ||
| 1087 | } | ||
| 1088 | |||
| 1089 | /* Sorry about the name. In an APIC based system, the APICs | ||
| 1090 | * themselves are programmed to send a timer interrupt. This is used | ||
| 1091 | * by linux to reschedule the processor. Voyager doesn't have this, | ||
| 1092 | * so we use the system clock to interrupt one processor, which in | ||
| 1093 | * turn, broadcasts a timer CPI to all the others --- we receive that | ||
| 1094 | * CPI here. We don't use this actually for counting so losing | ||
| 1095 | * ticks doesn't matter | ||
| 1096 | * | ||
| 1097 | * FIXME: For those CPU's which actually have a local APIC, we could | ||
| 1098 | * try to use it to trigger this interrupt instead of having to | ||
| 1099 | * broadcast the timer tick. Unfortunately, all my pentium DYADs have | ||
| 1100 | * no local APIC, so I can't do this | ||
| 1101 | * | ||
| 1102 | * This function is currently a placeholder and is unused in the code */ | ||
| 1103 | fastcall void | ||
| 1104 | smp_apic_timer_interrupt(struct pt_regs *regs) | ||
| 1105 | { | ||
| 1106 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
| 1107 | wrapper_smp_local_timer_interrupt(); | ||
| 1108 | set_irq_regs(old_regs); | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | /* All of the QUAD interrupt GATES */ | ||
| 1112 | fastcall void | ||
| 1113 | smp_qic_timer_interrupt(struct pt_regs *regs) | ||
| 1114 | { | ||
| 1115 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
| 1116 | ack_QIC_CPI(QIC_TIMER_CPI); | ||
| 1117 | wrapper_smp_local_timer_interrupt(); | ||
| 1118 | set_irq_regs(old_regs); | ||
| 1119 | } | ||
| 1120 | |||
| 1121 | fastcall void | ||
| 1122 | smp_qic_invalidate_interrupt(struct pt_regs *regs) | ||
| 1123 | { | ||
| 1124 | ack_QIC_CPI(QIC_INVALIDATE_CPI); | ||
| 1125 | smp_invalidate_interrupt(); | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | fastcall void | ||
| 1129 | smp_qic_reschedule_interrupt(struct pt_regs *regs) | ||
| 1130 | { | ||
| 1131 | ack_QIC_CPI(QIC_RESCHEDULE_CPI); | ||
| 1132 | smp_reschedule_interrupt(); | ||
| 1133 | } | ||
| 1134 | |||
| 1135 | fastcall void | ||
| 1136 | smp_qic_enable_irq_interrupt(struct pt_regs *regs) | ||
| 1137 | { | ||
| 1138 | ack_QIC_CPI(QIC_ENABLE_IRQ_CPI); | ||
| 1139 | smp_enable_irq_interrupt(); | ||
| 1140 | } | ||
| 1141 | |||
| 1142 | fastcall void | ||
| 1143 | smp_qic_call_function_interrupt(struct pt_regs *regs) | ||
| 1144 | { | ||
| 1145 | ack_QIC_CPI(QIC_CALL_FUNCTION_CPI); | ||
| 1146 | smp_call_function_interrupt(); | ||
| 1147 | } | ||
| 1148 | |||
| 1149 | fastcall void | ||
| 1150 | smp_vic_cpi_interrupt(struct pt_regs *regs) | ||
| 1151 | { | ||
| 1152 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
| 1153 | __u8 cpu = smp_processor_id(); | ||
| 1154 | |||
| 1155 | if(is_cpu_quad()) | ||
| 1156 | ack_QIC_CPI(VIC_CPI_LEVEL0); | ||
| 1157 | else | ||
| 1158 | ack_VIC_CPI(VIC_CPI_LEVEL0); | ||
| 1159 | |||
| 1160 | if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu])) | ||
| 1161 | wrapper_smp_local_timer_interrupt(); | ||
| 1162 | if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu])) | ||
| 1163 | smp_invalidate_interrupt(); | ||
| 1164 | if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu])) | ||
| 1165 | smp_reschedule_interrupt(); | ||
| 1166 | if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu])) | ||
| 1167 | smp_enable_irq_interrupt(); | ||
| 1168 | if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu])) | ||
| 1169 | smp_call_function_interrupt(); | ||
| 1170 | set_irq_regs(old_regs); | ||
| 1171 | } | ||
| 1172 | |||
| 1173 | static void | ||
| 1174 | do_flush_tlb_all(void* info) | ||
| 1175 | { | ||
| 1176 | unsigned long cpu = smp_processor_id(); | ||
| 1177 | |||
| 1178 | __flush_tlb_all(); | ||
| 1179 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) | ||
| 1180 | leave_mm(cpu); | ||
| 1181 | } | ||
| 1182 | |||
| 1183 | |||
| 1184 | /* flush the TLB of every active CPU in the system */ | ||
| 1185 | void | ||
| 1186 | flush_tlb_all(void) | ||
| 1187 | { | ||
| 1188 | on_each_cpu(do_flush_tlb_all, 0, 1, 1); | ||
| 1189 | } | ||
| 1190 | |||
| 1191 | /* used to set up the trampoline for other CPUs when the memory manager | ||
| 1192 | * is sorted out */ | ||
| 1193 | void __init | ||
| 1194 | smp_alloc_memory(void) | ||
| 1195 | { | ||
| 1196 | trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE); | ||
| 1197 | if(__pa(trampoline_base) >= 0x93000) | ||
| 1198 | BUG(); | ||
| 1199 | } | ||
| 1200 | |||
| 1201 | /* send a reschedule CPI to one CPU by physical CPU number*/ | ||
| 1202 | static void | ||
| 1203 | voyager_smp_send_reschedule(int cpu) | ||
| 1204 | { | ||
| 1205 | send_one_CPI(cpu, VIC_RESCHEDULE_CPI); | ||
| 1206 | } | ||
| 1207 | |||
| 1208 | |||
| 1209 | int | ||
| 1210 | hard_smp_processor_id(void) | ||
| 1211 | { | ||
| 1212 | __u8 i; | ||
| 1213 | __u8 cpumask = inb(VIC_PROC_WHO_AM_I); | ||
| 1214 | if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER) | ||
| 1215 | return cpumask & 0x1F; | ||
| 1216 | |||
| 1217 | for(i = 0; i < 8; i++) { | ||
| 1218 | if(cpumask & (1<<i)) | ||
| 1219 | return i; | ||
| 1220 | } | ||
| 1221 | printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask); | ||
| 1222 | return 0; | ||
| 1223 | } | ||
| 1224 | |||
| 1225 | int | ||
| 1226 | safe_smp_processor_id(void) | ||
| 1227 | { | ||
| 1228 | return hard_smp_processor_id(); | ||
| 1229 | } | ||
| 1230 | |||
| 1231 | /* broadcast a halt to all other CPUs */ | ||
| 1232 | static void | ||
| 1233 | voyager_smp_send_stop(void) | ||
| 1234 | { | ||
| 1235 | smp_call_function(smp_stop_cpu_function, NULL, 1, 1); | ||
| 1236 | } | ||
| 1237 | |||
| 1238 | /* this function is triggered in time.c when a clock tick fires | ||
| 1239 | * we need to re-broadcast the tick to all CPUs */ | ||
| 1240 | void | ||
| 1241 | smp_vic_timer_interrupt(void) | ||
| 1242 | { | ||
| 1243 | send_CPI_allbutself(VIC_TIMER_CPI); | ||
| 1244 | smp_local_timer_interrupt(); | ||
| 1245 | } | ||
| 1246 | |||
| 1247 | /* local (per CPU) timer interrupt. It does both profiling and | ||
| 1248 | * process statistics/rescheduling. | ||
| 1249 | * | ||
| 1250 | * We do profiling in every local tick, statistics/rescheduling | ||
| 1251 | * happen only every 'profiling multiplier' ticks. The default | ||
| 1252 | * multiplier is 1 and it can be changed by writing the new multiplier | ||
| 1253 | * value into /proc/profile. | ||
| 1254 | */ | ||
| 1255 | void | ||
| 1256 | smp_local_timer_interrupt(void) | ||
| 1257 | { | ||
| 1258 | int cpu = smp_processor_id(); | ||
| 1259 | long weight; | ||
| 1260 | |||
| 1261 | profile_tick(CPU_PROFILING); | ||
| 1262 | if (--per_cpu(prof_counter, cpu) <= 0) { | ||
| 1263 | /* | ||
| 1264 | * The multiplier may have changed since the last time we got | ||
| 1265 | * to this point as a result of the user writing to | ||
| 1266 | * /proc/profile. In this case we need to adjust the APIC | ||
| 1267 | * timer accordingly. | ||
| 1268 | * | ||
| 1269 | * Interrupts are already masked off at this point. | ||
| 1270 | */ | ||
| 1271 | per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu); | ||
| 1272 | if (per_cpu(prof_counter, cpu) != | ||
| 1273 | per_cpu(prof_old_multiplier, cpu)) { | ||
| 1274 | /* FIXME: need to update the vic timer tick here */ | ||
| 1275 | per_cpu(prof_old_multiplier, cpu) = | ||
| 1276 | per_cpu(prof_counter, cpu); | ||
| 1277 | } | ||
| 1278 | |||
| 1279 | update_process_times(user_mode_vm(get_irq_regs())); | ||
| 1280 | } | ||
| 1281 | |||
| 1282 | if( ((1<<cpu) & voyager_extended_vic_processors) == 0) | ||
| 1283 | /* only extended VIC processors participate in | ||
| 1284 | * interrupt distribution */ | ||
| 1285 | return; | ||
| 1286 | |||
| 1287 | /* | ||
| 1288 | * We take the 'long' return path, and there every subsystem | ||
| 1289 | * grabs the apropriate locks (kernel lock/ irq lock). | ||
| 1290 | * | ||
| 1291 | * we might want to decouple profiling from the 'long path', | ||
| 1292 | * and do the profiling totally in assembly. | ||
| 1293 | * | ||
| 1294 | * Currently this isn't too much of an issue (performance wise), | ||
| 1295 | * we can take more than 100K local irqs per second on a 100 MHz P5. | ||
| 1296 | */ | ||
| 1297 | |||
| 1298 | if((++vic_tick[cpu] & 0x7) != 0) | ||
| 1299 | return; | ||
| 1300 | /* get here every 16 ticks (about every 1/6 of a second) */ | ||
| 1301 | |||
| 1302 | /* Change our priority to give someone else a chance at getting | ||
| 1303 | * the IRQ. The algorithm goes like this: | ||
| 1304 | * | ||
| 1305 | * In the VIC, the dynamically routed interrupt is always | ||
| 1306 | * handled by the lowest priority eligible (i.e. receiving | ||
| 1307 | * interrupts) CPU. If >1 eligible CPUs are equal lowest, the | ||
| 1308 | * lowest processor number gets it. | ||
| 1309 | * | ||
| 1310 | * The priority of a CPU is controlled by a special per-CPU | ||
| 1311 | * VIC priority register which is 3 bits wide 0 being lowest | ||
| 1312 | * and 7 highest priority.. | ||
| 1313 | * | ||
| 1314 | * Therefore we subtract the average number of interrupts from | ||
| 1315 | * the number we've fielded. If this number is negative, we | ||
| 1316 | * lower the activity count and if it is positive, we raise | ||
| 1317 | * it. | ||
| 1318 | * | ||
| 1319 | * I'm afraid this still leads to odd looking interrupt counts: | ||
| 1320 | * the totals are all roughly equal, but the individual ones | ||
| 1321 | * look rather skewed. | ||
| 1322 | * | ||
| 1323 | * FIXME: This algorithm is total crap when mixed with SMP | ||
| 1324 | * affinity code since we now try to even up the interrupt | ||
| 1325 | * counts when an affinity binding is keeping them on a | ||
| 1326 | * particular CPU*/ | ||
| 1327 | weight = (vic_intr_count[cpu]*voyager_extended_cpus | ||
| 1328 | - vic_intr_total) >> 4; | ||
| 1329 | weight += 4; | ||
| 1330 | if(weight > 7) | ||
| 1331 | weight = 7; | ||
| 1332 | if(weight < 0) | ||
| 1333 | weight = 0; | ||
| 1334 | |||
| 1335 | outb((__u8)weight, VIC_PRIORITY_REGISTER); | ||
| 1336 | |||
| 1337 | #ifdef VOYAGER_DEBUG | ||
| 1338 | if((vic_tick[cpu] & 0xFFF) == 0) { | ||
| 1339 | /* print this message roughly every 25 secs */ | ||
| 1340 | printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n", | ||
| 1341 | cpu, vic_tick[cpu], weight); | ||
| 1342 | } | ||
| 1343 | #endif | ||
| 1344 | } | ||
| 1345 | |||
| 1346 | /* setup the profiling timer */ | ||
| 1347 | int | ||
| 1348 | setup_profiling_timer(unsigned int multiplier) | ||
| 1349 | { | ||
| 1350 | int i; | ||
| 1351 | |||
| 1352 | if ( (!multiplier)) | ||
| 1353 | return -EINVAL; | ||
| 1354 | |||
| 1355 | /* | ||
| 1356 | * Set the new multiplier for each CPU. CPUs don't start using the | ||
| 1357 | * new values until the next timer interrupt in which they do process | ||
| 1358 | * accounting. | ||
| 1359 | */ | ||
| 1360 | for (i = 0; i < NR_CPUS; ++i) | ||
| 1361 | per_cpu(prof_multiplier, i) = multiplier; | ||
| 1362 | |||
| 1363 | return 0; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | /* This is a bit of a mess, but forced on us by the genirq changes | ||
| 1367 | * there's no genirq handler that really does what voyager wants | ||
| 1368 | * so hack it up with the simple IRQ handler */ | ||
| 1369 | static void fastcall | ||
| 1370 | handle_vic_irq(unsigned int irq, struct irq_desc *desc) | ||
| 1371 | { | ||
| 1372 | before_handle_vic_irq(irq); | ||
| 1373 | handle_simple_irq(irq, desc); | ||
| 1374 | after_handle_vic_irq(irq); | ||
| 1375 | } | ||
| 1376 | |||
| 1377 | |||
| 1378 | /* The CPIs are handled in the per cpu 8259s, so they must be | ||
| 1379 | * enabled to be received: FIX: enabling the CPIs in the early | ||
| 1380 | * boot sequence interferes with bug checking; enable them later | ||
| 1381 | * on in smp_init */ | ||
| 1382 | #define VIC_SET_GATE(cpi, vector) \ | ||
| 1383 | set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector)) | ||
| 1384 | #define QIC_SET_GATE(cpi, vector) \ | ||
| 1385 | set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector)) | ||
| 1386 | |||
| 1387 | void __init | ||
| 1388 | smp_intr_init(void) | ||
| 1389 | { | ||
| 1390 | int i; | ||
| 1391 | |||
| 1392 | /* initialize the per cpu irq mask to all disabled */ | ||
| 1393 | for(i = 0; i < NR_CPUS; i++) | ||
| 1394 | vic_irq_mask[i] = 0xFFFF; | ||
| 1395 | |||
| 1396 | VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt); | ||
| 1397 | |||
| 1398 | VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt); | ||
| 1399 | VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt); | ||
| 1400 | |||
| 1401 | QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt); | ||
| 1402 | QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt); | ||
| 1403 | QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt); | ||
| 1404 | QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt); | ||
| 1405 | QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt); | ||
| 1406 | |||
| 1407 | |||
| 1408 | /* now put the VIC descriptor into the first 48 IRQs | ||
| 1409 | * | ||
| 1410 | * This is for later: first 16 correspond to PC IRQs; next 16 | ||
| 1411 | * are Primary MC IRQs and final 16 are Secondary MC IRQs */ | ||
| 1412 | for(i = 0; i < 48; i++) | ||
| 1413 | set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq); | ||
| 1414 | } | ||
| 1415 | |||
| 1416 | /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per | ||
| 1417 | * processor to receive CPI */ | ||
| 1418 | static void | ||
| 1419 | send_CPI(__u32 cpuset, __u8 cpi) | ||
| 1420 | { | ||
| 1421 | int cpu; | ||
| 1422 | __u32 quad_cpuset = (cpuset & voyager_quad_processors); | ||
| 1423 | |||
| 1424 | if(cpi < VIC_START_FAKE_CPI) { | ||
| 1425 | /* fake CPI are only used for booting, so send to the | ||
| 1426 | * extended quads as well---Quads must be VIC booted */ | ||
| 1427 | outb((__u8)(cpuset), VIC_CPI_Registers[cpi]); | ||
| 1428 | return; | ||
| 1429 | } | ||
| 1430 | if(quad_cpuset) | ||
| 1431 | send_QIC_CPI(quad_cpuset, cpi); | ||
| 1432 | cpuset &= ~quad_cpuset; | ||
| 1433 | cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */ | ||
| 1434 | if(cpuset == 0) | ||
| 1435 | return; | ||
| 1436 | for_each_online_cpu(cpu) { | ||
| 1437 | if(cpuset & (1<<cpu)) | ||
| 1438 | set_bit(cpi, &vic_cpi_mailbox[cpu]); | ||
| 1439 | } | ||
| 1440 | if(cpuset) | ||
| 1441 | outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]); | ||
| 1442 | } | ||
| 1443 | |||
| 1444 | /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and | ||
| 1445 | * set the cache line to shared by reading it. | ||
| 1446 | * | ||
| 1447 | * DON'T make this inline otherwise the cache line read will be | ||
| 1448 | * optimised away | ||
| 1449 | * */ | ||
| 1450 | static int | ||
| 1451 | ack_QIC_CPI(__u8 cpi) { | ||
| 1452 | __u8 cpu = hard_smp_processor_id(); | ||
| 1453 | |||
| 1454 | cpi &= 7; | ||
| 1455 | |||
| 1456 | outb(1<<cpi, QIC_INTERRUPT_CLEAR1); | ||
| 1457 | return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi; | ||
| 1458 | } | ||
| 1459 | |||
| 1460 | static void | ||
| 1461 | ack_special_QIC_CPI(__u8 cpi) | ||
| 1462 | { | ||
| 1463 | switch(cpi) { | ||
| 1464 | case VIC_CMN_INT: | ||
| 1465 | outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0); | ||
| 1466 | break; | ||
| 1467 | case VIC_SYS_INT: | ||
| 1468 | outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0); | ||
| 1469 | break; | ||
| 1470 | } | ||
| 1471 | /* also clear at the VIC, just in case (nop for non-extended proc) */ | ||
| 1472 | ack_VIC_CPI(cpi); | ||
| 1473 | } | ||
| 1474 | |||
| 1475 | /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */ | ||
| 1476 | static void | ||
| 1477 | ack_VIC_CPI(__u8 cpi) | ||
| 1478 | { | ||
| 1479 | #ifdef VOYAGER_DEBUG | ||
| 1480 | unsigned long flags; | ||
| 1481 | __u16 isr; | ||
| 1482 | __u8 cpu = smp_processor_id(); | ||
| 1483 | |||
| 1484 | local_irq_save(flags); | ||
| 1485 | isr = vic_read_isr(); | ||
| 1486 | if((isr & (1<<(cpi &7))) == 0) { | ||
| 1487 | printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi); | ||
| 1488 | } | ||
| 1489 | #endif | ||
| 1490 | /* send specific EOI; the two system interrupts have | ||
| 1491 | * bit 4 set for a separate vector but behave as the | ||
| 1492 | * corresponding 3 bit intr */ | ||
| 1493 | outb_p(0x60|(cpi & 7),0x20); | ||
| 1494 | |||
| 1495 | #ifdef VOYAGER_DEBUG | ||
| 1496 | if((vic_read_isr() & (1<<(cpi &7))) != 0) { | ||
| 1497 | printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi); | ||
| 1498 | } | ||
| 1499 | local_irq_restore(flags); | ||
| 1500 | #endif | ||
| 1501 | } | ||
| 1502 | |||
| 1503 | /* cribbed with thanks from irq.c */ | ||
| 1504 | #define __byte(x,y) (((unsigned char *)&(y))[x]) | ||
| 1505 | #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu])) | ||
| 1506 | #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu])) | ||
| 1507 | |||
| 1508 | static unsigned int | ||
| 1509 | startup_vic_irq(unsigned int irq) | ||
| 1510 | { | ||
| 1511 | unmask_vic_irq(irq); | ||
| 1512 | |||
| 1513 | return 0; | ||
| 1514 | } | ||
| 1515 | |||
| 1516 | /* The enable and disable routines. This is where we run into | ||
| 1517 | * conflicting architectural philosophy. Fundamentally, the voyager | ||
| 1518 | * architecture does not expect to have to disable interrupts globally | ||
| 1519 | * (the IRQ controllers belong to each CPU). The processor masquerade | ||
| 1520 | * which is used to start the system shouldn't be used in a running OS | ||
| 1521 | * since it will cause great confusion if two separate CPUs drive to | ||
| 1522 | * the same IRQ controller (I know, I've tried it). | ||
| 1523 | * | ||
| 1524 | * The solution is a variant on the NCR lazy SPL design: | ||
| 1525 | * | ||
| 1526 | * 1) To disable an interrupt, do nothing (other than set the | ||
| 1527 | * IRQ_DISABLED flag). This dares the interrupt actually to arrive. | ||
| 1528 | * | ||
| 1529 | * 2) If the interrupt dares to come in, raise the local mask against | ||
| 1530 | * it (this will result in all the CPU masks being raised | ||
| 1531 | * eventually). | ||
| 1532 | * | ||
| 1533 | * 3) To enable the interrupt, lower the mask on the local CPU and | ||
| 1534 | * broadcast an Interrupt enable CPI which causes all other CPUs to | ||
| 1535 | * adjust their masks accordingly. */ | ||
| 1536 | |||
| 1537 | static void | ||
| 1538 | unmask_vic_irq(unsigned int irq) | ||
| 1539 | { | ||
| 1540 | /* linux doesn't to processor-irq affinity, so enable on | ||
| 1541 | * all CPUs we know about */ | ||
| 1542 | int cpu = smp_processor_id(), real_cpu; | ||
| 1543 | __u16 mask = (1<<irq); | ||
| 1544 | __u32 processorList = 0; | ||
| 1545 | unsigned long flags; | ||
| 1546 | |||
| 1547 | VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n", | ||
| 1548 | irq, cpu, cpu_irq_affinity[cpu])); | ||
| 1549 | spin_lock_irqsave(&vic_irq_lock, flags); | ||
| 1550 | for_each_online_cpu(real_cpu) { | ||
| 1551 | if(!(voyager_extended_vic_processors & (1<<real_cpu))) | ||
| 1552 | continue; | ||
| 1553 | if(!(cpu_irq_affinity[real_cpu] & mask)) { | ||
| 1554 | /* irq has no affinity for this CPU, ignore */ | ||
| 1555 | continue; | ||
| 1556 | } | ||
| 1557 | if(real_cpu == cpu) { | ||
| 1558 | enable_local_vic_irq(irq); | ||
| 1559 | } | ||
| 1560 | else if(vic_irq_mask[real_cpu] & mask) { | ||
| 1561 | vic_irq_enable_mask[real_cpu] |= mask; | ||
| 1562 | processorList |= (1<<real_cpu); | ||
| 1563 | } | ||
| 1564 | } | ||
| 1565 | spin_unlock_irqrestore(&vic_irq_lock, flags); | ||
| 1566 | if(processorList) | ||
| 1567 | send_CPI(processorList, VIC_ENABLE_IRQ_CPI); | ||
| 1568 | } | ||
| 1569 | |||
| 1570 | static void | ||
| 1571 | mask_vic_irq(unsigned int irq) | ||
| 1572 | { | ||
| 1573 | /* lazy disable, do nothing */ | ||
| 1574 | } | ||
| 1575 | |||
| 1576 | static void | ||
| 1577 | enable_local_vic_irq(unsigned int irq) | ||
| 1578 | { | ||
| 1579 | __u8 cpu = smp_processor_id(); | ||
| 1580 | __u16 mask = ~(1 << irq); | ||
| 1581 | __u16 old_mask = vic_irq_mask[cpu]; | ||
| 1582 | |||
| 1583 | vic_irq_mask[cpu] &= mask; | ||
| 1584 | if(vic_irq_mask[cpu] == old_mask) | ||
| 1585 | return; | ||
| 1586 | |||
| 1587 | VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n", | ||
| 1588 | irq, cpu)); | ||
| 1589 | |||
| 1590 | if (irq & 8) { | ||
| 1591 | outb_p(cached_A1(cpu),0xA1); | ||
| 1592 | (void)inb_p(0xA1); | ||
| 1593 | } | ||
| 1594 | else { | ||
| 1595 | outb_p(cached_21(cpu),0x21); | ||
| 1596 | (void)inb_p(0x21); | ||
| 1597 | } | ||
| 1598 | } | ||
| 1599 | |||
| 1600 | static void | ||
| 1601 | disable_local_vic_irq(unsigned int irq) | ||
| 1602 | { | ||
| 1603 | __u8 cpu = smp_processor_id(); | ||
| 1604 | __u16 mask = (1 << irq); | ||
| 1605 | __u16 old_mask = vic_irq_mask[cpu]; | ||
| 1606 | |||
| 1607 | if(irq == 7) | ||
| 1608 | return; | ||
| 1609 | |||
| 1610 | vic_irq_mask[cpu] |= mask; | ||
| 1611 | if(old_mask == vic_irq_mask[cpu]) | ||
| 1612 | return; | ||
| 1613 | |||
| 1614 | VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n", | ||
| 1615 | irq, cpu)); | ||
| 1616 | |||
| 1617 | if (irq & 8) { | ||
| 1618 | outb_p(cached_A1(cpu),0xA1); | ||
| 1619 | (void)inb_p(0xA1); | ||
| 1620 | } | ||
| 1621 | else { | ||
| 1622 | outb_p(cached_21(cpu),0x21); | ||
| 1623 | (void)inb_p(0x21); | ||
| 1624 | } | ||
| 1625 | } | ||
| 1626 | |||
| 1627 | /* The VIC is level triggered, so the ack can only be issued after the | ||
| 1628 | * interrupt completes. However, we do Voyager lazy interrupt | ||
| 1629 | * handling here: It is an extremely expensive operation to mask an | ||
| 1630 | * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If | ||
| 1631 | * this interrupt actually comes in, then we mask and ack here to push | ||
| 1632 | * the interrupt off to another CPU */ | ||
| 1633 | static void | ||
| 1634 | before_handle_vic_irq(unsigned int irq) | ||
| 1635 | { | ||
| 1636 | irq_desc_t *desc = irq_desc + irq; | ||
| 1637 | __u8 cpu = smp_processor_id(); | ||
| 1638 | |||
| 1639 | _raw_spin_lock(&vic_irq_lock); | ||
| 1640 | vic_intr_total++; | ||
| 1641 | vic_intr_count[cpu]++; | ||
| 1642 | |||
| 1643 | if(!(cpu_irq_affinity[cpu] & (1<<irq))) { | ||
| 1644 | /* The irq is not in our affinity mask, push it off | ||
| 1645 | * onto another CPU */ | ||
| 1646 | VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n", | ||
| 1647 | irq, cpu)); | ||
| 1648 | disable_local_vic_irq(irq); | ||
| 1649 | /* set IRQ_INPROGRESS to prevent the handler in irq.c from | ||
| 1650 | * actually calling the interrupt routine */ | ||
| 1651 | desc->status |= IRQ_REPLAY | IRQ_INPROGRESS; | ||
| 1652 | } else if(desc->status & IRQ_DISABLED) { | ||
| 1653 | /* Damn, the interrupt actually arrived, do the lazy | ||
| 1654 | * disable thing. The interrupt routine in irq.c will | ||
| 1655 | * not handle a IRQ_DISABLED interrupt, so nothing more | ||
| 1656 | * need be done here */ | ||
| 1657 | VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n", | ||
| 1658 | irq, cpu)); | ||
| 1659 | disable_local_vic_irq(irq); | ||
| 1660 | desc->status |= IRQ_REPLAY; | ||
| 1661 | } else { | ||
| 1662 | desc->status &= ~IRQ_REPLAY; | ||
| 1663 | } | ||
| 1664 | |||
| 1665 | _raw_spin_unlock(&vic_irq_lock); | ||
| 1666 | } | ||
| 1667 | |||
| 1668 | /* Finish the VIC interrupt: basically mask */ | ||
| 1669 | static void | ||
| 1670 | after_handle_vic_irq(unsigned int irq) | ||
| 1671 | { | ||
| 1672 | irq_desc_t *desc = irq_desc + irq; | ||
| 1673 | |||
| 1674 | _raw_spin_lock(&vic_irq_lock); | ||
| 1675 | { | ||
| 1676 | unsigned int status = desc->status & ~IRQ_INPROGRESS; | ||
| 1677 | #ifdef VOYAGER_DEBUG | ||
| 1678 | __u16 isr; | ||
| 1679 | #endif | ||
| 1680 | |||
| 1681 | desc->status = status; | ||
| 1682 | if ((status & IRQ_DISABLED)) | ||
| 1683 | disable_local_vic_irq(irq); | ||
| 1684 | #ifdef VOYAGER_DEBUG | ||
| 1685 | /* DEBUG: before we ack, check what's in progress */ | ||
| 1686 | isr = vic_read_isr(); | ||
| 1687 | if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) { | ||
| 1688 | int i; | ||
| 1689 | __u8 cpu = smp_processor_id(); | ||
| 1690 | __u8 real_cpu; | ||
| 1691 | int mask; /* Um... initialize me??? --RR */ | ||
| 1692 | |||
| 1693 | printk("VOYAGER SMP: CPU%d lost interrupt %d\n", | ||
| 1694 | cpu, irq); | ||
| 1695 | for_each_possible_cpu(real_cpu, mask) { | ||
| 1696 | |||
| 1697 | outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu, | ||
| 1698 | VIC_PROCESSOR_ID); | ||
| 1699 | isr = vic_read_isr(); | ||
| 1700 | if(isr & (1<<irq)) { | ||
| 1701 | printk("VOYAGER SMP: CPU%d ack irq %d\n", | ||
| 1702 | real_cpu, irq); | ||
| 1703 | ack_vic_irq(irq); | ||
| 1704 | } | ||
| 1705 | outb(cpu, VIC_PROCESSOR_ID); | ||
| 1706 | } | ||
| 1707 | } | ||
| 1708 | #endif /* VOYAGER_DEBUG */ | ||
| 1709 | /* as soon as we ack, the interrupt is eligible for | ||
| 1710 | * receipt by another CPU so everything must be in | ||
| 1711 | * order here */ | ||
| 1712 | ack_vic_irq(irq); | ||
| 1713 | if(status & IRQ_REPLAY) { | ||
| 1714 | /* replay is set if we disable the interrupt | ||
| 1715 | * in the before_handle_vic_irq() routine, so | ||
| 1716 | * clear the in progress bit here to allow the | ||
| 1717 | * next CPU to handle this correctly */ | ||
| 1718 | desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS); | ||
| 1719 | } | ||
| 1720 | #ifdef VOYAGER_DEBUG | ||
| 1721 | isr = vic_read_isr(); | ||
| 1722 | if((isr & (1<<irq)) != 0) | ||
| 1723 | printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n", | ||
| 1724 | irq, isr); | ||
| 1725 | #endif /* VOYAGER_DEBUG */ | ||
| 1726 | } | ||
| 1727 | _raw_spin_unlock(&vic_irq_lock); | ||
| 1728 | |||
| 1729 | /* All code after this point is out of the main path - the IRQ | ||
| 1730 | * may be intercepted by another CPU if reasserted */ | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | |||
| 1734 | /* Linux processor - interrupt affinity manipulations. | ||
| 1735 | * | ||
| 1736 | * For each processor, we maintain a 32 bit irq affinity mask. | ||
| 1737 | * Initially it is set to all 1's so every processor accepts every | ||
| 1738 | * interrupt. In this call, we change the processor's affinity mask: | ||
| 1739 | * | ||
| 1740 | * Change from enable to disable: | ||
| 1741 | * | ||
| 1742 | * If the interrupt ever comes in to the processor, we will disable it | ||
| 1743 | * and ack it to push it off to another CPU, so just accept the mask here. | ||
| 1744 | * | ||
| 1745 | * Change from disable to enable: | ||
| 1746 | * | ||
| 1747 | * change the mask and then do an interrupt enable CPI to re-enable on | ||
| 1748 | * the selected processors */ | ||
| 1749 | |||
| 1750 | void | ||
| 1751 | set_vic_irq_affinity(unsigned int irq, cpumask_t mask) | ||
| 1752 | { | ||
| 1753 | /* Only extended processors handle interrupts */ | ||
| 1754 | unsigned long real_mask; | ||
| 1755 | unsigned long irq_mask = 1 << irq; | ||
| 1756 | int cpu; | ||
| 1757 | |||
| 1758 | real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors; | ||
| 1759 | |||
| 1760 | if(cpus_addr(mask)[0] == 0) | ||
| 1761 | /* can't have no cpu's to accept the interrupt -- extremely | ||
| 1762 | * bad things will happen */ | ||
| 1763 | return; | ||
| 1764 | |||
| 1765 | if(irq == 0) | ||
| 1766 | /* can't change the affinity of the timer IRQ. This | ||
| 1767 | * is due to the constraint in the voyager | ||
| 1768 | * architecture that the CPI also comes in on and IRQ | ||
| 1769 | * line and we have chosen IRQ0 for this. If you | ||
| 1770 | * raise the mask on this interrupt, the processor | ||
| 1771 | * will no-longer be able to accept VIC CPIs */ | ||
| 1772 | return; | ||
| 1773 | |||
| 1774 | if(irq >= 32) | ||
| 1775 | /* You can only have 32 interrupts in a voyager system | ||
| 1776 | * (and 32 only if you have a secondary microchannel | ||
| 1777 | * bus) */ | ||
| 1778 | return; | ||
| 1779 | |||
| 1780 | for_each_online_cpu(cpu) { | ||
| 1781 | unsigned long cpu_mask = 1 << cpu; | ||
| 1782 | |||
| 1783 | if(cpu_mask & real_mask) { | ||
| 1784 | /* enable the interrupt for this cpu */ | ||
| 1785 | cpu_irq_affinity[cpu] |= irq_mask; | ||
| 1786 | } else { | ||
| 1787 | /* disable the interrupt for this cpu */ | ||
| 1788 | cpu_irq_affinity[cpu] &= ~irq_mask; | ||
| 1789 | } | ||
| 1790 | } | ||
| 1791 | /* this is magic, we now have the correct affinity maps, so | ||
| 1792 | * enable the interrupt. This will send an enable CPI to | ||
| 1793 | * those cpu's who need to enable it in their local masks, | ||
| 1794 | * causing them to correct for the new affinity . If the | ||
| 1795 | * interrupt is currently globally disabled, it will simply be | ||
| 1796 | * disabled again as it comes in (voyager lazy disable). If | ||
| 1797 | * the affinity map is tightened to disable the interrupt on a | ||
| 1798 | * cpu, it will be pushed off when it comes in */ | ||
| 1799 | unmask_vic_irq(irq); | ||
| 1800 | } | ||
| 1801 | |||
| 1802 | static void | ||
| 1803 | ack_vic_irq(unsigned int irq) | ||
| 1804 | { | ||
| 1805 | if (irq & 8) { | ||
| 1806 | outb(0x62,0x20); /* Specific EOI to cascade */ | ||
| 1807 | outb(0x60|(irq & 7),0xA0); | ||
| 1808 | } else { | ||
| 1809 | outb(0x60 | (irq & 7),0x20); | ||
| 1810 | } | ||
| 1811 | } | ||
| 1812 | |||
| 1813 | /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259 | ||
| 1814 | * but are not vectored by it. This means that the 8259 mask must be | ||
| 1815 | * lowered to receive them */ | ||
| 1816 | static __init void | ||
| 1817 | vic_enable_cpi(void) | ||
| 1818 | { | ||
| 1819 | __u8 cpu = smp_processor_id(); | ||
| 1820 | |||
| 1821 | /* just take a copy of the current mask (nop for boot cpu) */ | ||
| 1822 | vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id]; | ||
| 1823 | |||
| 1824 | enable_local_vic_irq(VIC_CPI_LEVEL0); | ||
| 1825 | enable_local_vic_irq(VIC_CPI_LEVEL1); | ||
| 1826 | /* for sys int and cmn int */ | ||
| 1827 | enable_local_vic_irq(7); | ||
| 1828 | |||
| 1829 | if(is_cpu_quad()) { | ||
| 1830 | outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); | ||
| 1831 | outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); | ||
| 1832 | VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n", | ||
| 1833 | cpu, QIC_CPI_ENABLE)); | ||
| 1834 | } | ||
| 1835 | |||
| 1836 | VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n", | ||
| 1837 | cpu, vic_irq_mask[cpu])); | ||
| 1838 | } | ||
| 1839 | |||
| 1840 | void | ||
| 1841 | voyager_smp_dump() | ||
| 1842 | { | ||
| 1843 | int old_cpu = smp_processor_id(), cpu; | ||
| 1844 | |||
| 1845 | /* dump the interrupt masks of each processor */ | ||
| 1846 | for_each_online_cpu(cpu) { | ||
| 1847 | __u16 imr, isr, irr; | ||
| 1848 | unsigned long flags; | ||
| 1849 | |||
| 1850 | local_irq_save(flags); | ||
| 1851 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); | ||
| 1852 | imr = (inb(0xa1) << 8) | inb(0x21); | ||
| 1853 | outb(0x0a, 0xa0); | ||
| 1854 | irr = inb(0xa0) << 8; | ||
| 1855 | outb(0x0a, 0x20); | ||
| 1856 | irr |= inb(0x20); | ||
| 1857 | outb(0x0b, 0xa0); | ||
| 1858 | isr = inb(0xa0) << 8; | ||
| 1859 | outb(0x0b, 0x20); | ||
| 1860 | isr |= inb(0x20); | ||
| 1861 | outb(old_cpu, VIC_PROCESSOR_ID); | ||
| 1862 | local_irq_restore(flags); | ||
| 1863 | printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n", | ||
| 1864 | cpu, vic_irq_mask[cpu], imr, irr, isr); | ||
| 1865 | #if 0 | ||
| 1866 | /* These lines are put in to try to unstick an un ack'd irq */ | ||
| 1867 | if(isr != 0) { | ||
| 1868 | int irq; | ||
| 1869 | for(irq=0; irq<16; irq++) { | ||
| 1870 | if(isr & (1<<irq)) { | ||
| 1871 | printk("\tCPU%d: ack irq %d\n", | ||
| 1872 | cpu, irq); | ||
| 1873 | local_irq_save(flags); | ||
| 1874 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, | ||
| 1875 | VIC_PROCESSOR_ID); | ||
| 1876 | ack_vic_irq(irq); | ||
| 1877 | outb(old_cpu, VIC_PROCESSOR_ID); | ||
| 1878 | local_irq_restore(flags); | ||
| 1879 | } | ||
| 1880 | } | ||
| 1881 | } | ||
| 1882 | #endif | ||
| 1883 | } | ||
| 1884 | } | ||
| 1885 | |||
| 1886 | void | ||
| 1887 | smp_voyager_power_off(void *dummy) | ||
| 1888 | { | ||
| 1889 | if(smp_processor_id() == boot_cpu_id) | ||
| 1890 | voyager_power_off(); | ||
| 1891 | else | ||
| 1892 | smp_stop_cpu_function(NULL); | ||
| 1893 | } | ||
| 1894 | |||
| 1895 | static void __init | ||
| 1896 | voyager_smp_prepare_cpus(unsigned int max_cpus) | ||
| 1897 | { | ||
| 1898 | /* FIXME: ignore max_cpus for now */ | ||
| 1899 | smp_boot_cpus(); | ||
| 1900 | } | ||
| 1901 | |||
| 1902 | static void __devinit voyager_smp_prepare_boot_cpu(void) | ||
| 1903 | { | ||
| 1904 | init_gdt(smp_processor_id()); | ||
| 1905 | switch_to_new_gdt(); | ||
| 1906 | |||
| 1907 | cpu_set(smp_processor_id(), cpu_online_map); | ||
| 1908 | cpu_set(smp_processor_id(), cpu_callout_map); | ||
| 1909 | cpu_set(smp_processor_id(), cpu_possible_map); | ||
| 1910 | cpu_set(smp_processor_id(), cpu_present_map); | ||
| 1911 | } | ||
| 1912 | |||
| 1913 | static int __devinit | ||
| 1914 | voyager_cpu_up(unsigned int cpu) | ||
| 1915 | { | ||
| 1916 | /* This only works at boot for x86. See "rewrite" above. */ | ||
| 1917 | if (cpu_isset(cpu, smp_commenced_mask)) | ||
| 1918 | return -ENOSYS; | ||
| 1919 | |||
| 1920 | /* In case one didn't come up */ | ||
| 1921 | if (!cpu_isset(cpu, cpu_callin_map)) | ||
| 1922 | return -EIO; | ||
| 1923 | /* Unleash the CPU! */ | ||
| 1924 | cpu_set(cpu, smp_commenced_mask); | ||
| 1925 | while (!cpu_isset(cpu, cpu_online_map)) | ||
| 1926 | mb(); | ||
| 1927 | return 0; | ||
| 1928 | } | ||
| 1929 | |||
| 1930 | static void __init | ||
| 1931 | voyager_smp_cpus_done(unsigned int max_cpus) | ||
| 1932 | { | ||
| 1933 | zap_low_mappings(); | ||
| 1934 | } | ||
| 1935 | |||
| 1936 | void __init | ||
| 1937 | smp_setup_processor_id(void) | ||
| 1938 | { | ||
| 1939 | current_thread_info()->cpu = hard_smp_processor_id(); | ||
| 1940 | x86_write_percpu(cpu_number, hard_smp_processor_id()); | ||
| 1941 | } | ||
| 1942 | |||
| 1943 | struct smp_ops smp_ops = { | ||
| 1944 | .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu, | ||
| 1945 | .smp_prepare_cpus = voyager_smp_prepare_cpus, | ||
| 1946 | .cpu_up = voyager_cpu_up, | ||
| 1947 | .smp_cpus_done = voyager_smp_cpus_done, | ||
| 1948 | |||
| 1949 | .smp_send_stop = voyager_smp_send_stop, | ||
| 1950 | .smp_send_reschedule = voyager_smp_send_reschedule, | ||
| 1951 | .smp_call_function_mask = voyager_smp_call_function_mask, | ||
| 1952 | }; | ||
