diff options
Diffstat (limited to 'arch/x86/mach-voyager/voyager_smp.c')
-rw-r--r-- | arch/x86/mach-voyager/voyager_smp.c | 1807 |
1 files changed, 0 insertions, 1807 deletions
diff --git a/arch/x86/mach-voyager/voyager_smp.c b/arch/x86/mach-voyager/voyager_smp.c deleted file mode 100644 index b9cc84a2a4fc..000000000000 --- a/arch/x86/mach-voyager/voyager_smp.c +++ /dev/null | |||
@@ -1,1807 +0,0 @@ | |||
1 | /* -*- mode: c; c-basic-offset: 8 -*- */ | ||
2 | |||
3 | /* Copyright (C) 1999,2001 | ||
4 | * | ||
5 | * Author: J.E.J.Bottomley@HansenPartnership.com | ||
6 | * | ||
7 | * This file provides all the same external entries as smp.c but uses | ||
8 | * the voyager hal to provide the functionality | ||
9 | */ | ||
10 | #include <linux/cpu.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/mm.h> | ||
13 | #include <linux/kernel_stat.h> | ||
14 | #include <linux/delay.h> | ||
15 | #include <linux/mc146818rtc.h> | ||
16 | #include <linux/cache.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/bootmem.h> | ||
21 | #include <linux/completion.h> | ||
22 | #include <asm/desc.h> | ||
23 | #include <asm/voyager.h> | ||
24 | #include <asm/vic.h> | ||
25 | #include <asm/mtrr.h> | ||
26 | #include <asm/pgalloc.h> | ||
27 | #include <asm/tlbflush.h> | ||
28 | #include <asm/arch_hooks.h> | ||
29 | #include <asm/trampoline.h> | ||
30 | |||
31 | /* TLB state -- visible externally, indexed physically */ | ||
32 | DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 }; | ||
33 | |||
34 | /* CPU IRQ affinity -- set to all ones initially */ | ||
35 | static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = | ||
36 | {[0 ... NR_CPUS-1] = ~0UL }; | ||
37 | |||
38 | /* per CPU data structure (for /proc/cpuinfo et al), visible externally | ||
39 | * indexed physically */ | ||
40 | DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); | ||
41 | EXPORT_PER_CPU_SYMBOL(cpu_info); | ||
42 | |||
43 | /* physical ID of the CPU used to boot the system */ | ||
44 | unsigned char boot_cpu_id; | ||
45 | |||
46 | /* The memory line addresses for the Quad CPIs */ | ||
47 | struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned; | ||
48 | |||
49 | /* The masks for the Extended VIC processors, filled in by cat_init */ | ||
50 | __u32 voyager_extended_vic_processors = 0; | ||
51 | |||
52 | /* Masks for the extended Quad processors which cannot be VIC booted */ | ||
53 | __u32 voyager_allowed_boot_processors = 0; | ||
54 | |||
55 | /* The mask for the Quad Processors (both extended and non-extended) */ | ||
56 | __u32 voyager_quad_processors = 0; | ||
57 | |||
58 | /* Total count of live CPUs, used in process.c to display | ||
59 | * the CPU information and in irq.c for the per CPU irq | ||
60 | * activity count. Finally exported by i386_ksyms.c */ | ||
61 | static int voyager_extended_cpus = 1; | ||
62 | |||
63 | /* Used for the invalidate map that's also checked in the spinlock */ | ||
64 | static volatile unsigned long smp_invalidate_needed; | ||
65 | |||
66 | /* Bitmask of CPUs present in the system - exported by i386_syms.c, used | ||
67 | * by scheduler but indexed physically */ | ||
68 | static cpumask_t voyager_phys_cpu_present_map = CPU_MASK_NONE; | ||
69 | |||
70 | /* The internal functions */ | ||
71 | static void send_CPI(__u32 cpuset, __u8 cpi); | ||
72 | static void ack_CPI(__u8 cpi); | ||
73 | static int ack_QIC_CPI(__u8 cpi); | ||
74 | static void ack_special_QIC_CPI(__u8 cpi); | ||
75 | static void ack_VIC_CPI(__u8 cpi); | ||
76 | static void send_CPI_allbutself(__u8 cpi); | ||
77 | static void mask_vic_irq(unsigned int irq); | ||
78 | static void unmask_vic_irq(unsigned int irq); | ||
79 | static unsigned int startup_vic_irq(unsigned int irq); | ||
80 | static void enable_local_vic_irq(unsigned int irq); | ||
81 | static void disable_local_vic_irq(unsigned int irq); | ||
82 | static void before_handle_vic_irq(unsigned int irq); | ||
83 | static void after_handle_vic_irq(unsigned int irq); | ||
84 | static void set_vic_irq_affinity(unsigned int irq, const struct cpumask *mask); | ||
85 | static void ack_vic_irq(unsigned int irq); | ||
86 | static void vic_enable_cpi(void); | ||
87 | static void do_boot_cpu(__u8 cpuid); | ||
88 | static void do_quad_bootstrap(void); | ||
89 | static void initialize_secondary(void); | ||
90 | |||
91 | int hard_smp_processor_id(void); | ||
92 | int safe_smp_processor_id(void); | ||
93 | |||
94 | /* Inline functions */ | ||
95 | static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi) | ||
96 | { | ||
97 | voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi = | ||
98 | (smp_processor_id() << 16) + cpi; | ||
99 | } | ||
100 | |||
101 | static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi) | ||
102 | { | ||
103 | int cpu; | ||
104 | |||
105 | for_each_online_cpu(cpu) { | ||
106 | if (cpuset & (1 << cpu)) { | ||
107 | #ifdef VOYAGER_DEBUG | ||
108 | if (!cpu_online(cpu)) | ||
109 | VDEBUG(("CPU%d sending cpi %d to CPU%d not in " | ||
110 | "cpu_online_map\n", | ||
111 | hard_smp_processor_id(), cpi, cpu)); | ||
112 | #endif | ||
113 | send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); | ||
114 | } | ||
115 | } | ||
116 | } | ||
117 | |||
118 | static inline void wrapper_smp_local_timer_interrupt(void) | ||
119 | { | ||
120 | irq_enter(); | ||
121 | smp_local_timer_interrupt(); | ||
122 | irq_exit(); | ||
123 | } | ||
124 | |||
125 | static inline void send_one_CPI(__u8 cpu, __u8 cpi) | ||
126 | { | ||
127 | if (voyager_quad_processors & (1 << cpu)) | ||
128 | send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET); | ||
129 | else | ||
130 | send_CPI(1 << cpu, cpi); | ||
131 | } | ||
132 | |||
133 | static inline void send_CPI_allbutself(__u8 cpi) | ||
134 | { | ||
135 | __u8 cpu = smp_processor_id(); | ||
136 | __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu); | ||
137 | send_CPI(mask, cpi); | ||
138 | } | ||
139 | |||
140 | static inline int is_cpu_quad(void) | ||
141 | { | ||
142 | __u8 cpumask = inb(VIC_PROC_WHO_AM_I); | ||
143 | return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER); | ||
144 | } | ||
145 | |||
146 | static inline int is_cpu_extended(void) | ||
147 | { | ||
148 | __u8 cpu = hard_smp_processor_id(); | ||
149 | |||
150 | return (voyager_extended_vic_processors & (1 << cpu)); | ||
151 | } | ||
152 | |||
153 | static inline int is_cpu_vic_boot(void) | ||
154 | { | ||
155 | __u8 cpu = hard_smp_processor_id(); | ||
156 | |||
157 | return (voyager_extended_vic_processors | ||
158 | & voyager_allowed_boot_processors & (1 << cpu)); | ||
159 | } | ||
160 | |||
161 | static inline void ack_CPI(__u8 cpi) | ||
162 | { | ||
163 | switch (cpi) { | ||
164 | case VIC_CPU_BOOT_CPI: | ||
165 | if (is_cpu_quad() && !is_cpu_vic_boot()) | ||
166 | ack_QIC_CPI(cpi); | ||
167 | else | ||
168 | ack_VIC_CPI(cpi); | ||
169 | break; | ||
170 | case VIC_SYS_INT: | ||
171 | case VIC_CMN_INT: | ||
172 | /* These are slightly strange. Even on the Quad card, | ||
173 | * They are vectored as VIC CPIs */ | ||
174 | if (is_cpu_quad()) | ||
175 | ack_special_QIC_CPI(cpi); | ||
176 | else | ||
177 | ack_VIC_CPI(cpi); | ||
178 | break; | ||
179 | default: | ||
180 | printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi); | ||
181 | break; | ||
182 | } | ||
183 | } | ||
184 | |||
185 | /* local variables */ | ||
186 | |||
187 | /* The VIC IRQ descriptors -- these look almost identical to the | ||
188 | * 8259 IRQs except that masks and things must be kept per processor | ||
189 | */ | ||
190 | static struct irq_chip vic_chip = { | ||
191 | .name = "VIC", | ||
192 | .startup = startup_vic_irq, | ||
193 | .mask = mask_vic_irq, | ||
194 | .unmask = unmask_vic_irq, | ||
195 | .set_affinity = set_vic_irq_affinity, | ||
196 | }; | ||
197 | |||
198 | /* used to count up as CPUs are brought on line (starts at 0) */ | ||
199 | static int cpucount = 0; | ||
200 | |||
201 | /* The per cpu profile stuff - used in smp_local_timer_interrupt */ | ||
202 | static DEFINE_PER_CPU(int, prof_multiplier) = 1; | ||
203 | static DEFINE_PER_CPU(int, prof_old_multiplier) = 1; | ||
204 | static DEFINE_PER_CPU(int, prof_counter) = 1; | ||
205 | |||
206 | /* the map used to check if a CPU has booted */ | ||
207 | static __u32 cpu_booted_map; | ||
208 | |||
209 | /* the synchronize flag used to hold all secondary CPUs spinning in | ||
210 | * a tight loop until the boot sequence is ready for them */ | ||
211 | static cpumask_t smp_commenced_mask = CPU_MASK_NONE; | ||
212 | |||
213 | /* This is for the new dynamic CPU boot code */ | ||
214 | |||
215 | /* The per processor IRQ masks (these are usually kept in sync) */ | ||
216 | static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned; | ||
217 | |||
218 | /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */ | ||
219 | static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 }; | ||
220 | |||
221 | /* Lock for enable/disable of VIC interrupts */ | ||
222 | static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock); | ||
223 | |||
224 | /* The boot processor is correctly set up in PC mode when it | ||
225 | * comes up, but the secondaries need their master/slave 8259 | ||
226 | * pairs initializing correctly */ | ||
227 | |||
228 | /* Interrupt counters (per cpu) and total - used to try to | ||
229 | * even up the interrupt handling routines */ | ||
230 | static long vic_intr_total = 0; | ||
231 | static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 }; | ||
232 | static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 }; | ||
233 | |||
234 | /* Since we can only use CPI0, we fake all the other CPIs */ | ||
235 | static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned; | ||
236 | |||
237 | /* debugging routine to read the isr of the cpu's pic */ | ||
238 | static inline __u16 vic_read_isr(void) | ||
239 | { | ||
240 | __u16 isr; | ||
241 | |||
242 | outb(0x0b, 0xa0); | ||
243 | isr = inb(0xa0) << 8; | ||
244 | outb(0x0b, 0x20); | ||
245 | isr |= inb(0x20); | ||
246 | |||
247 | return isr; | ||
248 | } | ||
249 | |||
250 | static __init void qic_setup(void) | ||
251 | { | ||
252 | if (!is_cpu_quad()) { | ||
253 | /* not a quad, no setup */ | ||
254 | return; | ||
255 | } | ||
256 | outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); | ||
257 | outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); | ||
258 | |||
259 | if (is_cpu_extended()) { | ||
260 | /* the QIC duplicate of the VIC base register */ | ||
261 | outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER); | ||
262 | outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER); | ||
263 | |||
264 | /* FIXME: should set up the QIC timer and memory parity | ||
265 | * error vectors here */ | ||
266 | } | ||
267 | } | ||
268 | |||
269 | static __init void vic_setup_pic(void) | ||
270 | { | ||
271 | outb(1, VIC_REDIRECT_REGISTER_1); | ||
272 | /* clear the claim registers for dynamic routing */ | ||
273 | outb(0, VIC_CLAIM_REGISTER_0); | ||
274 | outb(0, VIC_CLAIM_REGISTER_1); | ||
275 | |||
276 | outb(0, VIC_PRIORITY_REGISTER); | ||
277 | /* Set the Primary and Secondary Microchannel vector | ||
278 | * bases to be the same as the ordinary interrupts | ||
279 | * | ||
280 | * FIXME: This would be more efficient using separate | ||
281 | * vectors. */ | ||
282 | outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); | ||
283 | outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); | ||
284 | /* Now initiallise the master PIC belonging to this CPU by | ||
285 | * sending the four ICWs */ | ||
286 | |||
287 | /* ICW1: level triggered, ICW4 needed */ | ||
288 | outb(0x19, 0x20); | ||
289 | |||
290 | /* ICW2: vector base */ | ||
291 | outb(FIRST_EXTERNAL_VECTOR, 0x21); | ||
292 | |||
293 | /* ICW3: slave at line 2 */ | ||
294 | outb(0x04, 0x21); | ||
295 | |||
296 | /* ICW4: 8086 mode */ | ||
297 | outb(0x01, 0x21); | ||
298 | |||
299 | /* now the same for the slave PIC */ | ||
300 | |||
301 | /* ICW1: level trigger, ICW4 needed */ | ||
302 | outb(0x19, 0xA0); | ||
303 | |||
304 | /* ICW2: slave vector base */ | ||
305 | outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1); | ||
306 | |||
307 | /* ICW3: slave ID */ | ||
308 | outb(0x02, 0xA1); | ||
309 | |||
310 | /* ICW4: 8086 mode */ | ||
311 | outb(0x01, 0xA1); | ||
312 | } | ||
313 | |||
314 | static void do_quad_bootstrap(void) | ||
315 | { | ||
316 | if (is_cpu_quad() && is_cpu_vic_boot()) { | ||
317 | int i; | ||
318 | unsigned long flags; | ||
319 | __u8 cpuid = hard_smp_processor_id(); | ||
320 | |||
321 | local_irq_save(flags); | ||
322 | |||
323 | for (i = 0; i < 4; i++) { | ||
324 | /* FIXME: this would be >>3 &0x7 on the 32 way */ | ||
325 | if (((cpuid >> 2) & 0x03) == i) | ||
326 | /* don't lower our own mask! */ | ||
327 | continue; | ||
328 | |||
329 | /* masquerade as local Quad CPU */ | ||
330 | outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID); | ||
331 | /* enable the startup CPI */ | ||
332 | outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1); | ||
333 | /* restore cpu id */ | ||
334 | outb(0, QIC_PROCESSOR_ID); | ||
335 | } | ||
336 | local_irq_restore(flags); | ||
337 | } | ||
338 | } | ||
339 | |||
340 | void prefill_possible_map(void) | ||
341 | { | ||
342 | /* This is empty on voyager because we need a much | ||
343 | * earlier detection which is done in find_smp_config */ | ||
344 | } | ||
345 | |||
346 | /* Set up all the basic stuff: read the SMP config and make all the | ||
347 | * SMP information reflect only the boot cpu. All others will be | ||
348 | * brought on-line later. */ | ||
349 | void __init find_smp_config(void) | ||
350 | { | ||
351 | int i; | ||
352 | |||
353 | boot_cpu_id = hard_smp_processor_id(); | ||
354 | |||
355 | printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id); | ||
356 | |||
357 | /* initialize the CPU structures (moved from smp_boot_cpus) */ | ||
358 | for (i = 0; i < nr_cpu_ids; i++) | ||
359 | cpu_irq_affinity[i] = ~0; | ||
360 | cpu_online_map = cpumask_of_cpu(boot_cpu_id); | ||
361 | |||
362 | /* The boot CPU must be extended */ | ||
363 | voyager_extended_vic_processors = 1 << boot_cpu_id; | ||
364 | /* initially, all of the first 8 CPUs can boot */ | ||
365 | voyager_allowed_boot_processors = 0xff; | ||
366 | /* set up everything for just this CPU, we can alter | ||
367 | * this as we start the other CPUs later */ | ||
368 | /* now get the CPU disposition from the extended CMOS */ | ||
369 | cpus_addr(voyager_phys_cpu_present_map)[0] = | ||
370 | voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK); | ||
371 | cpus_addr(voyager_phys_cpu_present_map)[0] |= | ||
372 | voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8; | ||
373 | cpus_addr(voyager_phys_cpu_present_map)[0] |= | ||
374 | voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + | ||
375 | 2) << 16; | ||
376 | cpus_addr(voyager_phys_cpu_present_map)[0] |= | ||
377 | voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + | ||
378 | 3) << 24; | ||
379 | init_cpu_possible(&voyager_phys_cpu_present_map); | ||
380 | printk("VOYAGER SMP: voyager_phys_cpu_present_map = 0x%lx\n", | ||
381 | cpus_addr(voyager_phys_cpu_present_map)[0]); | ||
382 | /* Here we set up the VIC to enable SMP */ | ||
383 | /* enable the CPIs by writing the base vector to their register */ | ||
384 | outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER); | ||
385 | outb(1, VIC_REDIRECT_REGISTER_1); | ||
386 | /* set the claim registers for static routing --- Boot CPU gets | ||
387 | * all interrupts untill all other CPUs started */ | ||
388 | outb(0xff, VIC_CLAIM_REGISTER_0); | ||
389 | outb(0xff, VIC_CLAIM_REGISTER_1); | ||
390 | /* Set the Primary and Secondary Microchannel vector | ||
391 | * bases to be the same as the ordinary interrupts | ||
392 | * | ||
393 | * FIXME: This would be more efficient using separate | ||
394 | * vectors. */ | ||
395 | outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE); | ||
396 | outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE); | ||
397 | |||
398 | /* Finally tell the firmware that we're driving */ | ||
399 | outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG, | ||
400 | VOYAGER_SUS_IN_CONTROL_PORT); | ||
401 | |||
402 | current_thread_info()->cpu = boot_cpu_id; | ||
403 | x86_write_percpu(cpu_number, boot_cpu_id); | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * The bootstrap kernel entry code has set these up. Save them | ||
408 | * for a given CPU, id is physical */ | ||
409 | void __init smp_store_cpu_info(int id) | ||
410 | { | ||
411 | struct cpuinfo_x86 *c = &cpu_data(id); | ||
412 | |||
413 | *c = boot_cpu_data; | ||
414 | c->cpu_index = id; | ||
415 | |||
416 | identify_secondary_cpu(c); | ||
417 | } | ||
418 | |||
419 | /* Routine initially called when a non-boot CPU is brought online */ | ||
420 | static void __init start_secondary(void *unused) | ||
421 | { | ||
422 | __u8 cpuid = hard_smp_processor_id(); | ||
423 | |||
424 | cpu_init(); | ||
425 | |||
426 | /* OK, we're in the routine */ | ||
427 | ack_CPI(VIC_CPU_BOOT_CPI); | ||
428 | |||
429 | /* setup the 8259 master slave pair belonging to this CPU --- | ||
430 | * we won't actually receive any until the boot CPU | ||
431 | * relinquishes it's static routing mask */ | ||
432 | vic_setup_pic(); | ||
433 | |||
434 | qic_setup(); | ||
435 | |||
436 | if (is_cpu_quad() && !is_cpu_vic_boot()) { | ||
437 | /* clear the boot CPI */ | ||
438 | __u8 dummy; | ||
439 | |||
440 | dummy = | ||
441 | voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi; | ||
442 | printk("read dummy %d\n", dummy); | ||
443 | } | ||
444 | |||
445 | /* lower the mask to receive CPIs */ | ||
446 | vic_enable_cpi(); | ||
447 | |||
448 | VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid)); | ||
449 | |||
450 | notify_cpu_starting(cpuid); | ||
451 | |||
452 | /* enable interrupts */ | ||
453 | local_irq_enable(); | ||
454 | |||
455 | /* get our bogomips */ | ||
456 | calibrate_delay(); | ||
457 | |||
458 | /* save our processor parameters */ | ||
459 | smp_store_cpu_info(cpuid); | ||
460 | |||
461 | /* if we're a quad, we may need to bootstrap other CPUs */ | ||
462 | do_quad_bootstrap(); | ||
463 | |||
464 | /* FIXME: this is rather a poor hack to prevent the CPU | ||
465 | * activating softirqs while it's supposed to be waiting for | ||
466 | * permission to proceed. Without this, the new per CPU stuff | ||
467 | * in the softirqs will fail */ | ||
468 | local_irq_disable(); | ||
469 | cpu_set(cpuid, cpu_callin_map); | ||
470 | |||
471 | /* signal that we're done */ | ||
472 | cpu_booted_map = 1; | ||
473 | |||
474 | while (!cpu_isset(cpuid, smp_commenced_mask)) | ||
475 | rep_nop(); | ||
476 | local_irq_enable(); | ||
477 | |||
478 | local_flush_tlb(); | ||
479 | |||
480 | cpu_set(cpuid, cpu_online_map); | ||
481 | wmb(); | ||
482 | cpu_idle(); | ||
483 | } | ||
484 | |||
485 | /* Routine to kick start the given CPU and wait for it to report ready | ||
486 | * (or timeout in startup). When this routine returns, the requested | ||
487 | * CPU is either fully running and configured or known to be dead. | ||
488 | * | ||
489 | * We call this routine sequentially 1 CPU at a time, so no need for | ||
490 | * locking */ | ||
491 | |||
492 | static void __init do_boot_cpu(__u8 cpu) | ||
493 | { | ||
494 | struct task_struct *idle; | ||
495 | int timeout; | ||
496 | unsigned long flags; | ||
497 | int quad_boot = (1 << cpu) & voyager_quad_processors | ||
498 | & ~(voyager_extended_vic_processors | ||
499 | & voyager_allowed_boot_processors); | ||
500 | |||
501 | /* This is the format of the CPI IDT gate (in real mode) which | ||
502 | * we're hijacking to boot the CPU */ | ||
503 | union IDTFormat { | ||
504 | struct seg { | ||
505 | __u16 Offset; | ||
506 | __u16 Segment; | ||
507 | } idt; | ||
508 | __u32 val; | ||
509 | } hijack_source; | ||
510 | |||
511 | __u32 *hijack_vector; | ||
512 | __u32 start_phys_address = setup_trampoline(); | ||
513 | |||
514 | /* There's a clever trick to this: The linux trampoline is | ||
515 | * compiled to begin at absolute location zero, so make the | ||
516 | * address zero but have the data segment selector compensate | ||
517 | * for the actual address */ | ||
518 | hijack_source.idt.Offset = start_phys_address & 0x000F; | ||
519 | hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF; | ||
520 | |||
521 | cpucount++; | ||
522 | alternatives_smp_switch(1); | ||
523 | |||
524 | idle = fork_idle(cpu); | ||
525 | if (IS_ERR(idle)) | ||
526 | panic("failed fork for CPU%d", cpu); | ||
527 | idle->thread.ip = (unsigned long)start_secondary; | ||
528 | /* init_tasks (in sched.c) is indexed logically */ | ||
529 | stack_start.sp = (void *)idle->thread.sp; | ||
530 | |||
531 | init_gdt(cpu); | ||
532 | per_cpu(current_task, cpu) = idle; | ||
533 | early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); | ||
534 | irq_ctx_init(cpu); | ||
535 | |||
536 | /* Note: Don't modify initial ss override */ | ||
537 | VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu, | ||
538 | (unsigned long)hijack_source.val, hijack_source.idt.Segment, | ||
539 | hijack_source.idt.Offset, stack_start.sp)); | ||
540 | |||
541 | /* init lowmem identity mapping */ | ||
542 | clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY, | ||
543 | min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY)); | ||
544 | flush_tlb_all(); | ||
545 | |||
546 | if (quad_boot) { | ||
547 | printk("CPU %d: non extended Quad boot\n", cpu); | ||
548 | hijack_vector = | ||
549 | (__u32 *) | ||
550 | phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4); | ||
551 | *hijack_vector = hijack_source.val; | ||
552 | } else { | ||
553 | printk("CPU%d: extended VIC boot\n", cpu); | ||
554 | hijack_vector = | ||
555 | (__u32 *) | ||
556 | phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4); | ||
557 | *hijack_vector = hijack_source.val; | ||
558 | /* VIC errata, may also receive interrupt at this address */ | ||
559 | hijack_vector = | ||
560 | (__u32 *) | ||
561 | phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + | ||
562 | VIC_DEFAULT_CPI_BASE) * 4); | ||
563 | *hijack_vector = hijack_source.val; | ||
564 | } | ||
565 | /* All non-boot CPUs start with interrupts fully masked. Need | ||
566 | * to lower the mask of the CPI we're about to send. We do | ||
567 | * this in the VIC by masquerading as the processor we're | ||
568 | * about to boot and lowering its interrupt mask */ | ||
569 | local_irq_save(flags); | ||
570 | if (quad_boot) { | ||
571 | send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI); | ||
572 | } else { | ||
573 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); | ||
574 | /* here we're altering registers belonging to `cpu' */ | ||
575 | |||
576 | outb(VIC_BOOT_INTERRUPT_MASK, 0x21); | ||
577 | /* now go back to our original identity */ | ||
578 | outb(boot_cpu_id, VIC_PROCESSOR_ID); | ||
579 | |||
580 | /* and boot the CPU */ | ||
581 | |||
582 | send_CPI((1 << cpu), VIC_CPU_BOOT_CPI); | ||
583 | } | ||
584 | cpu_booted_map = 0; | ||
585 | local_irq_restore(flags); | ||
586 | |||
587 | /* now wait for it to become ready (or timeout) */ | ||
588 | for (timeout = 0; timeout < 50000; timeout++) { | ||
589 | if (cpu_booted_map) | ||
590 | break; | ||
591 | udelay(100); | ||
592 | } | ||
593 | /* reset the page table */ | ||
594 | zap_low_mappings(); | ||
595 | |||
596 | if (cpu_booted_map) { | ||
597 | VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n", | ||
598 | cpu, smp_processor_id())); | ||
599 | |||
600 | printk("CPU%d: ", cpu); | ||
601 | print_cpu_info(&cpu_data(cpu)); | ||
602 | wmb(); | ||
603 | cpu_set(cpu, cpu_callout_map); | ||
604 | cpu_set(cpu, cpu_present_map); | ||
605 | } else { | ||
606 | printk("CPU%d FAILED TO BOOT: ", cpu); | ||
607 | if (* | ||
608 | ((volatile unsigned char *)phys_to_virt(start_phys_address)) | ||
609 | == 0xA5) | ||
610 | printk("Stuck.\n"); | ||
611 | else | ||
612 | printk("Not responding.\n"); | ||
613 | |||
614 | cpucount--; | ||
615 | } | ||
616 | } | ||
617 | |||
618 | void __init smp_boot_cpus(void) | ||
619 | { | ||
620 | int i; | ||
621 | |||
622 | /* CAT BUS initialisation must be done after the memory */ | ||
623 | /* FIXME: The L4 has a catbus too, it just needs to be | ||
624 | * accessed in a totally different way */ | ||
625 | if (voyager_level == 5) { | ||
626 | voyager_cat_init(); | ||
627 | |||
628 | /* now that the cat has probed the Voyager System Bus, sanity | ||
629 | * check the cpu map */ | ||
630 | if (((voyager_quad_processors | voyager_extended_vic_processors) | ||
631 | & cpus_addr(voyager_phys_cpu_present_map)[0]) != | ||
632 | cpus_addr(voyager_phys_cpu_present_map)[0]) { | ||
633 | /* should panic */ | ||
634 | printk("\n\n***WARNING*** " | ||
635 | "Sanity check of CPU present map FAILED\n"); | ||
636 | } | ||
637 | } else if (voyager_level == 4) | ||
638 | voyager_extended_vic_processors = | ||
639 | cpus_addr(voyager_phys_cpu_present_map)[0]; | ||
640 | |||
641 | /* this sets up the idle task to run on the current cpu */ | ||
642 | voyager_extended_cpus = 1; | ||
643 | /* Remove the global_irq_holder setting, it triggers a BUG() on | ||
644 | * schedule at the moment */ | ||
645 | //global_irq_holder = boot_cpu_id; | ||
646 | |||
647 | /* FIXME: Need to do something about this but currently only works | ||
648 | * on CPUs with a tsc which none of mine have. | ||
649 | smp_tune_scheduling(); | ||
650 | */ | ||
651 | smp_store_cpu_info(boot_cpu_id); | ||
652 | /* setup the jump vector */ | ||
653 | initial_code = (unsigned long)initialize_secondary; | ||
654 | printk("CPU%d: ", boot_cpu_id); | ||
655 | print_cpu_info(&cpu_data(boot_cpu_id)); | ||
656 | |||
657 | if (is_cpu_quad()) { | ||
658 | /* booting on a Quad CPU */ | ||
659 | printk("VOYAGER SMP: Boot CPU is Quad\n"); | ||
660 | qic_setup(); | ||
661 | do_quad_bootstrap(); | ||
662 | } | ||
663 | |||
664 | /* enable our own CPIs */ | ||
665 | vic_enable_cpi(); | ||
666 | |||
667 | cpu_set(boot_cpu_id, cpu_online_map); | ||
668 | cpu_set(boot_cpu_id, cpu_callout_map); | ||
669 | |||
670 | /* loop over all the extended VIC CPUs and boot them. The | ||
671 | * Quad CPUs must be bootstrapped by their extended VIC cpu */ | ||
672 | for (i = 0; i < nr_cpu_ids; i++) { | ||
673 | if (i == boot_cpu_id || !cpu_isset(i, voyager_phys_cpu_present_map)) | ||
674 | continue; | ||
675 | do_boot_cpu(i); | ||
676 | /* This udelay seems to be needed for the Quad boots | ||
677 | * don't remove unless you know what you're doing */ | ||
678 | udelay(1000); | ||
679 | } | ||
680 | /* we could compute the total bogomips here, but why bother?, | ||
681 | * Code added from smpboot.c */ | ||
682 | { | ||
683 | unsigned long bogosum = 0; | ||
684 | |||
685 | for_each_online_cpu(i) | ||
686 | bogosum += cpu_data(i).loops_per_jiffy; | ||
687 | printk(KERN_INFO "Total of %d processors activated " | ||
688 | "(%lu.%02lu BogoMIPS).\n", | ||
689 | cpucount + 1, bogosum / (500000 / HZ), | ||
690 | (bogosum / (5000 / HZ)) % 100); | ||
691 | } | ||
692 | voyager_extended_cpus = hweight32(voyager_extended_vic_processors); | ||
693 | printk("VOYAGER: Extended (interrupt handling CPUs): " | ||
694 | "%d, non-extended: %d\n", voyager_extended_cpus, | ||
695 | num_booting_cpus() - voyager_extended_cpus); | ||
696 | /* that's it, switch to symmetric mode */ | ||
697 | outb(0, VIC_PRIORITY_REGISTER); | ||
698 | outb(0, VIC_CLAIM_REGISTER_0); | ||
699 | outb(0, VIC_CLAIM_REGISTER_1); | ||
700 | |||
701 | VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus())); | ||
702 | } | ||
703 | |||
704 | /* Reload the secondary CPUs task structure (this function does not | ||
705 | * return ) */ | ||
706 | static void __init initialize_secondary(void) | ||
707 | { | ||
708 | #if 0 | ||
709 | // AC kernels only | ||
710 | set_current(hard_get_current()); | ||
711 | #endif | ||
712 | |||
713 | /* | ||
714 | * We don't actually need to load the full TSS, | ||
715 | * basically just the stack pointer and the eip. | ||
716 | */ | ||
717 | |||
718 | asm volatile ("movl %0,%%esp\n\t" | ||
719 | "jmp *%1"::"r" (current->thread.sp), | ||
720 | "r"(current->thread.ip)); | ||
721 | } | ||
722 | |||
723 | /* handle a Voyager SYS_INT -- If we don't, the base board will | ||
724 | * panic the system. | ||
725 | * | ||
726 | * System interrupts occur because some problem was detected on the | ||
727 | * various busses. To find out what you have to probe all the | ||
728 | * hardware via the CAT bus. FIXME: At the moment we do nothing. */ | ||
729 | void smp_vic_sys_interrupt(struct pt_regs *regs) | ||
730 | { | ||
731 | ack_CPI(VIC_SYS_INT); | ||
732 | printk("Voyager SYSTEM INTERRUPT\n"); | ||
733 | } | ||
734 | |||
735 | /* Handle a voyager CMN_INT; These interrupts occur either because of | ||
736 | * a system status change or because a single bit memory error | ||
737 | * occurred. FIXME: At the moment, ignore all this. */ | ||
738 | void smp_vic_cmn_interrupt(struct pt_regs *regs) | ||
739 | { | ||
740 | static __u8 in_cmn_int = 0; | ||
741 | static DEFINE_SPINLOCK(cmn_int_lock); | ||
742 | |||
743 | /* common ints are broadcast, so make sure we only do this once */ | ||
744 | _raw_spin_lock(&cmn_int_lock); | ||
745 | if (in_cmn_int) | ||
746 | goto unlock_end; | ||
747 | |||
748 | in_cmn_int++; | ||
749 | _raw_spin_unlock(&cmn_int_lock); | ||
750 | |||
751 | VDEBUG(("Voyager COMMON INTERRUPT\n")); | ||
752 | |||
753 | if (voyager_level == 5) | ||
754 | voyager_cat_do_common_interrupt(); | ||
755 | |||
756 | _raw_spin_lock(&cmn_int_lock); | ||
757 | in_cmn_int = 0; | ||
758 | unlock_end: | ||
759 | _raw_spin_unlock(&cmn_int_lock); | ||
760 | ack_CPI(VIC_CMN_INT); | ||
761 | } | ||
762 | |||
763 | /* | ||
764 | * Reschedule call back. Nothing to do, all the work is done | ||
765 | * automatically when we return from the interrupt. */ | ||
766 | static void smp_reschedule_interrupt(void) | ||
767 | { | ||
768 | /* do nothing */ | ||
769 | } | ||
770 | |||
771 | static struct mm_struct *flush_mm; | ||
772 | static unsigned long flush_va; | ||
773 | static DEFINE_SPINLOCK(tlbstate_lock); | ||
774 | |||
775 | /* | ||
776 | * We cannot call mmdrop() because we are in interrupt context, | ||
777 | * instead update mm->cpu_vm_mask. | ||
778 | * | ||
779 | * We need to reload %cr3 since the page tables may be going | ||
780 | * away from under us.. | ||
781 | */ | ||
782 | static inline void voyager_leave_mm(unsigned long cpu) | ||
783 | { | ||
784 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) | ||
785 | BUG(); | ||
786 | cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); | ||
787 | load_cr3(swapper_pg_dir); | ||
788 | } | ||
789 | |||
790 | /* | ||
791 | * Invalidate call-back | ||
792 | */ | ||
793 | static void smp_invalidate_interrupt(void) | ||
794 | { | ||
795 | __u8 cpu = smp_processor_id(); | ||
796 | |||
797 | if (!test_bit(cpu, &smp_invalidate_needed)) | ||
798 | return; | ||
799 | /* This will flood messages. Don't uncomment unless you see | ||
800 | * Problems with cross cpu invalidation | ||
801 | VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n", | ||
802 | smp_processor_id())); | ||
803 | */ | ||
804 | |||
805 | if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { | ||
806 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { | ||
807 | if (flush_va == TLB_FLUSH_ALL) | ||
808 | local_flush_tlb(); | ||
809 | else | ||
810 | __flush_tlb_one(flush_va); | ||
811 | } else | ||
812 | voyager_leave_mm(cpu); | ||
813 | } | ||
814 | smp_mb__before_clear_bit(); | ||
815 | clear_bit(cpu, &smp_invalidate_needed); | ||
816 | smp_mb__after_clear_bit(); | ||
817 | } | ||
818 | |||
819 | /* All the new flush operations for 2.4 */ | ||
820 | |||
821 | /* This routine is called with a physical cpu mask */ | ||
822 | static void | ||
823 | voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm, | ||
824 | unsigned long va) | ||
825 | { | ||
826 | int stuck = 50000; | ||
827 | |||
828 | if (!cpumask) | ||
829 | BUG(); | ||
830 | if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask) | ||
831 | BUG(); | ||
832 | if (cpumask & (1 << smp_processor_id())) | ||
833 | BUG(); | ||
834 | if (!mm) | ||
835 | BUG(); | ||
836 | |||
837 | spin_lock(&tlbstate_lock); | ||
838 | |||
839 | flush_mm = mm; | ||
840 | flush_va = va; | ||
841 | atomic_set_mask(cpumask, &smp_invalidate_needed); | ||
842 | /* | ||
843 | * We have to send the CPI only to | ||
844 | * CPUs affected. | ||
845 | */ | ||
846 | send_CPI(cpumask, VIC_INVALIDATE_CPI); | ||
847 | |||
848 | while (smp_invalidate_needed) { | ||
849 | mb(); | ||
850 | if (--stuck == 0) { | ||
851 | printk("***WARNING*** Stuck doing invalidate CPI " | ||
852 | "(CPU%d)\n", smp_processor_id()); | ||
853 | break; | ||
854 | } | ||
855 | } | ||
856 | |||
857 | /* Uncomment only to debug invalidation problems | ||
858 | VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu)); | ||
859 | */ | ||
860 | |||
861 | flush_mm = NULL; | ||
862 | flush_va = 0; | ||
863 | spin_unlock(&tlbstate_lock); | ||
864 | } | ||
865 | |||
866 | void flush_tlb_current_task(void) | ||
867 | { | ||
868 | struct mm_struct *mm = current->mm; | ||
869 | unsigned long cpu_mask; | ||
870 | |||
871 | preempt_disable(); | ||
872 | |||
873 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
874 | local_flush_tlb(); | ||
875 | if (cpu_mask) | ||
876 | voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | ||
877 | |||
878 | preempt_enable(); | ||
879 | } | ||
880 | |||
881 | void flush_tlb_mm(struct mm_struct *mm) | ||
882 | { | ||
883 | unsigned long cpu_mask; | ||
884 | |||
885 | preempt_disable(); | ||
886 | |||
887 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
888 | |||
889 | if (current->active_mm == mm) { | ||
890 | if (current->mm) | ||
891 | local_flush_tlb(); | ||
892 | else | ||
893 | voyager_leave_mm(smp_processor_id()); | ||
894 | } | ||
895 | if (cpu_mask) | ||
896 | voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | ||
897 | |||
898 | preempt_enable(); | ||
899 | } | ||
900 | |||
901 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) | ||
902 | { | ||
903 | struct mm_struct *mm = vma->vm_mm; | ||
904 | unsigned long cpu_mask; | ||
905 | |||
906 | preempt_disable(); | ||
907 | |||
908 | cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id()); | ||
909 | if (current->active_mm == mm) { | ||
910 | if (current->mm) | ||
911 | __flush_tlb_one(va); | ||
912 | else | ||
913 | voyager_leave_mm(smp_processor_id()); | ||
914 | } | ||
915 | |||
916 | if (cpu_mask) | ||
917 | voyager_flush_tlb_others(cpu_mask, mm, va); | ||
918 | |||
919 | preempt_enable(); | ||
920 | } | ||
921 | |||
922 | EXPORT_SYMBOL(flush_tlb_page); | ||
923 | |||
924 | /* enable the requested IRQs */ | ||
925 | static void smp_enable_irq_interrupt(void) | ||
926 | { | ||
927 | __u8 irq; | ||
928 | __u8 cpu = get_cpu(); | ||
929 | |||
930 | VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu, | ||
931 | vic_irq_enable_mask[cpu])); | ||
932 | |||
933 | spin_lock(&vic_irq_lock); | ||
934 | for (irq = 0; irq < 16; irq++) { | ||
935 | if (vic_irq_enable_mask[cpu] & (1 << irq)) | ||
936 | enable_local_vic_irq(irq); | ||
937 | } | ||
938 | vic_irq_enable_mask[cpu] = 0; | ||
939 | spin_unlock(&vic_irq_lock); | ||
940 | |||
941 | put_cpu_no_resched(); | ||
942 | } | ||
943 | |||
944 | /* | ||
945 | * CPU halt call-back | ||
946 | */ | ||
947 | static void smp_stop_cpu_function(void *dummy) | ||
948 | { | ||
949 | VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id())); | ||
950 | cpu_clear(smp_processor_id(), cpu_online_map); | ||
951 | local_irq_disable(); | ||
952 | for (;;) | ||
953 | halt(); | ||
954 | } | ||
955 | |||
956 | /* execute a thread on a new CPU. The function to be called must be | ||
957 | * previously set up. This is used to schedule a function for | ||
958 | * execution on all CPUs - set up the function then broadcast a | ||
959 | * function_interrupt CPI to come here on each CPU */ | ||
960 | static void smp_call_function_interrupt(void) | ||
961 | { | ||
962 | irq_enter(); | ||
963 | generic_smp_call_function_interrupt(); | ||
964 | __get_cpu_var(irq_stat).irq_call_count++; | ||
965 | irq_exit(); | ||
966 | } | ||
967 | |||
968 | static void smp_call_function_single_interrupt(void) | ||
969 | { | ||
970 | irq_enter(); | ||
971 | generic_smp_call_function_single_interrupt(); | ||
972 | __get_cpu_var(irq_stat).irq_call_count++; | ||
973 | irq_exit(); | ||
974 | } | ||
975 | |||
976 | /* Sorry about the name. In an APIC based system, the APICs | ||
977 | * themselves are programmed to send a timer interrupt. This is used | ||
978 | * by linux to reschedule the processor. Voyager doesn't have this, | ||
979 | * so we use the system clock to interrupt one processor, which in | ||
980 | * turn, broadcasts a timer CPI to all the others --- we receive that | ||
981 | * CPI here. We don't use this actually for counting so losing | ||
982 | * ticks doesn't matter | ||
983 | * | ||
984 | * FIXME: For those CPUs which actually have a local APIC, we could | ||
985 | * try to use it to trigger this interrupt instead of having to | ||
986 | * broadcast the timer tick. Unfortunately, all my pentium DYADs have | ||
987 | * no local APIC, so I can't do this | ||
988 | * | ||
989 | * This function is currently a placeholder and is unused in the code */ | ||
990 | void smp_apic_timer_interrupt(struct pt_regs *regs) | ||
991 | { | ||
992 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
993 | wrapper_smp_local_timer_interrupt(); | ||
994 | set_irq_regs(old_regs); | ||
995 | } | ||
996 | |||
997 | /* All of the QUAD interrupt GATES */ | ||
998 | void smp_qic_timer_interrupt(struct pt_regs *regs) | ||
999 | { | ||
1000 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
1001 | ack_QIC_CPI(QIC_TIMER_CPI); | ||
1002 | wrapper_smp_local_timer_interrupt(); | ||
1003 | set_irq_regs(old_regs); | ||
1004 | } | ||
1005 | |||
1006 | void smp_qic_invalidate_interrupt(struct pt_regs *regs) | ||
1007 | { | ||
1008 | ack_QIC_CPI(QIC_INVALIDATE_CPI); | ||
1009 | smp_invalidate_interrupt(); | ||
1010 | } | ||
1011 | |||
1012 | void smp_qic_reschedule_interrupt(struct pt_regs *regs) | ||
1013 | { | ||
1014 | ack_QIC_CPI(QIC_RESCHEDULE_CPI); | ||
1015 | smp_reschedule_interrupt(); | ||
1016 | } | ||
1017 | |||
1018 | void smp_qic_enable_irq_interrupt(struct pt_regs *regs) | ||
1019 | { | ||
1020 | ack_QIC_CPI(QIC_ENABLE_IRQ_CPI); | ||
1021 | smp_enable_irq_interrupt(); | ||
1022 | } | ||
1023 | |||
1024 | void smp_qic_call_function_interrupt(struct pt_regs *regs) | ||
1025 | { | ||
1026 | ack_QIC_CPI(QIC_CALL_FUNCTION_CPI); | ||
1027 | smp_call_function_interrupt(); | ||
1028 | } | ||
1029 | |||
1030 | void smp_qic_call_function_single_interrupt(struct pt_regs *regs) | ||
1031 | { | ||
1032 | ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI); | ||
1033 | smp_call_function_single_interrupt(); | ||
1034 | } | ||
1035 | |||
1036 | void smp_vic_cpi_interrupt(struct pt_regs *regs) | ||
1037 | { | ||
1038 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
1039 | __u8 cpu = smp_processor_id(); | ||
1040 | |||
1041 | if (is_cpu_quad()) | ||
1042 | ack_QIC_CPI(VIC_CPI_LEVEL0); | ||
1043 | else | ||
1044 | ack_VIC_CPI(VIC_CPI_LEVEL0); | ||
1045 | |||
1046 | if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu])) | ||
1047 | wrapper_smp_local_timer_interrupt(); | ||
1048 | if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu])) | ||
1049 | smp_invalidate_interrupt(); | ||
1050 | if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu])) | ||
1051 | smp_reschedule_interrupt(); | ||
1052 | if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu])) | ||
1053 | smp_enable_irq_interrupt(); | ||
1054 | if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu])) | ||
1055 | smp_call_function_interrupt(); | ||
1056 | if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu])) | ||
1057 | smp_call_function_single_interrupt(); | ||
1058 | set_irq_regs(old_regs); | ||
1059 | } | ||
1060 | |||
1061 | static void do_flush_tlb_all(void *info) | ||
1062 | { | ||
1063 | unsigned long cpu = smp_processor_id(); | ||
1064 | |||
1065 | __flush_tlb_all(); | ||
1066 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) | ||
1067 | voyager_leave_mm(cpu); | ||
1068 | } | ||
1069 | |||
1070 | /* flush the TLB of every active CPU in the system */ | ||
1071 | void flush_tlb_all(void) | ||
1072 | { | ||
1073 | on_each_cpu(do_flush_tlb_all, 0, 1); | ||
1074 | } | ||
1075 | |||
1076 | /* send a reschedule CPI to one CPU by physical CPU number*/ | ||
1077 | static void voyager_smp_send_reschedule(int cpu) | ||
1078 | { | ||
1079 | send_one_CPI(cpu, VIC_RESCHEDULE_CPI); | ||
1080 | } | ||
1081 | |||
1082 | int hard_smp_processor_id(void) | ||
1083 | { | ||
1084 | __u8 i; | ||
1085 | __u8 cpumask = inb(VIC_PROC_WHO_AM_I); | ||
1086 | if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER) | ||
1087 | return cpumask & 0x1F; | ||
1088 | |||
1089 | for (i = 0; i < 8; i++) { | ||
1090 | if (cpumask & (1 << i)) | ||
1091 | return i; | ||
1092 | } | ||
1093 | printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask); | ||
1094 | return 0; | ||
1095 | } | ||
1096 | |||
1097 | int safe_smp_processor_id(void) | ||
1098 | { | ||
1099 | return hard_smp_processor_id(); | ||
1100 | } | ||
1101 | |||
1102 | /* broadcast a halt to all other CPUs */ | ||
1103 | static void voyager_smp_send_stop(void) | ||
1104 | { | ||
1105 | smp_call_function(smp_stop_cpu_function, NULL, 1); | ||
1106 | } | ||
1107 | |||
1108 | /* this function is triggered in time.c when a clock tick fires | ||
1109 | * we need to re-broadcast the tick to all CPUs */ | ||
1110 | void smp_vic_timer_interrupt(void) | ||
1111 | { | ||
1112 | send_CPI_allbutself(VIC_TIMER_CPI); | ||
1113 | smp_local_timer_interrupt(); | ||
1114 | } | ||
1115 | |||
1116 | /* local (per CPU) timer interrupt. It does both profiling and | ||
1117 | * process statistics/rescheduling. | ||
1118 | * | ||
1119 | * We do profiling in every local tick, statistics/rescheduling | ||
1120 | * happen only every 'profiling multiplier' ticks. The default | ||
1121 | * multiplier is 1 and it can be changed by writing the new multiplier | ||
1122 | * value into /proc/profile. | ||
1123 | */ | ||
1124 | void smp_local_timer_interrupt(void) | ||
1125 | { | ||
1126 | int cpu = smp_processor_id(); | ||
1127 | long weight; | ||
1128 | |||
1129 | profile_tick(CPU_PROFILING); | ||
1130 | if (--per_cpu(prof_counter, cpu) <= 0) { | ||
1131 | /* | ||
1132 | * The multiplier may have changed since the last time we got | ||
1133 | * to this point as a result of the user writing to | ||
1134 | * /proc/profile. In this case we need to adjust the APIC | ||
1135 | * timer accordingly. | ||
1136 | * | ||
1137 | * Interrupts are already masked off at this point. | ||
1138 | */ | ||
1139 | per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu); | ||
1140 | if (per_cpu(prof_counter, cpu) != | ||
1141 | per_cpu(prof_old_multiplier, cpu)) { | ||
1142 | /* FIXME: need to update the vic timer tick here */ | ||
1143 | per_cpu(prof_old_multiplier, cpu) = | ||
1144 | per_cpu(prof_counter, cpu); | ||
1145 | } | ||
1146 | |||
1147 | update_process_times(user_mode_vm(get_irq_regs())); | ||
1148 | } | ||
1149 | |||
1150 | if (((1 << cpu) & voyager_extended_vic_processors) == 0) | ||
1151 | /* only extended VIC processors participate in | ||
1152 | * interrupt distribution */ | ||
1153 | return; | ||
1154 | |||
1155 | /* | ||
1156 | * We take the 'long' return path, and there every subsystem | ||
1157 | * grabs the appropriate locks (kernel lock/ irq lock). | ||
1158 | * | ||
1159 | * we might want to decouple profiling from the 'long path', | ||
1160 | * and do the profiling totally in assembly. | ||
1161 | * | ||
1162 | * Currently this isn't too much of an issue (performance wise), | ||
1163 | * we can take more than 100K local irqs per second on a 100 MHz P5. | ||
1164 | */ | ||
1165 | |||
1166 | if ((++vic_tick[cpu] & 0x7) != 0) | ||
1167 | return; | ||
1168 | /* get here every 16 ticks (about every 1/6 of a second) */ | ||
1169 | |||
1170 | /* Change our priority to give someone else a chance at getting | ||
1171 | * the IRQ. The algorithm goes like this: | ||
1172 | * | ||
1173 | * In the VIC, the dynamically routed interrupt is always | ||
1174 | * handled by the lowest priority eligible (i.e. receiving | ||
1175 | * interrupts) CPU. If >1 eligible CPUs are equal lowest, the | ||
1176 | * lowest processor number gets it. | ||
1177 | * | ||
1178 | * The priority of a CPU is controlled by a special per-CPU | ||
1179 | * VIC priority register which is 3 bits wide 0 being lowest | ||
1180 | * and 7 highest priority.. | ||
1181 | * | ||
1182 | * Therefore we subtract the average number of interrupts from | ||
1183 | * the number we've fielded. If this number is negative, we | ||
1184 | * lower the activity count and if it is positive, we raise | ||
1185 | * it. | ||
1186 | * | ||
1187 | * I'm afraid this still leads to odd looking interrupt counts: | ||
1188 | * the totals are all roughly equal, but the individual ones | ||
1189 | * look rather skewed. | ||
1190 | * | ||
1191 | * FIXME: This algorithm is total crap when mixed with SMP | ||
1192 | * affinity code since we now try to even up the interrupt | ||
1193 | * counts when an affinity binding is keeping them on a | ||
1194 | * particular CPU*/ | ||
1195 | weight = (vic_intr_count[cpu] * voyager_extended_cpus | ||
1196 | - vic_intr_total) >> 4; | ||
1197 | weight += 4; | ||
1198 | if (weight > 7) | ||
1199 | weight = 7; | ||
1200 | if (weight < 0) | ||
1201 | weight = 0; | ||
1202 | |||
1203 | outb((__u8) weight, VIC_PRIORITY_REGISTER); | ||
1204 | |||
1205 | #ifdef VOYAGER_DEBUG | ||
1206 | if ((vic_tick[cpu] & 0xFFF) == 0) { | ||
1207 | /* print this message roughly every 25 secs */ | ||
1208 | printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n", | ||
1209 | cpu, vic_tick[cpu], weight); | ||
1210 | } | ||
1211 | #endif | ||
1212 | } | ||
1213 | |||
1214 | /* setup the profiling timer */ | ||
1215 | int setup_profiling_timer(unsigned int multiplier) | ||
1216 | { | ||
1217 | int i; | ||
1218 | |||
1219 | if ((!multiplier)) | ||
1220 | return -EINVAL; | ||
1221 | |||
1222 | /* | ||
1223 | * Set the new multiplier for each CPU. CPUs don't start using the | ||
1224 | * new values until the next timer interrupt in which they do process | ||
1225 | * accounting. | ||
1226 | */ | ||
1227 | for (i = 0; i < nr_cpu_ids; ++i) | ||
1228 | per_cpu(prof_multiplier, i) = multiplier; | ||
1229 | |||
1230 | return 0; | ||
1231 | } | ||
1232 | |||
1233 | /* This is a bit of a mess, but forced on us by the genirq changes | ||
1234 | * there's no genirq handler that really does what voyager wants | ||
1235 | * so hack it up with the simple IRQ handler */ | ||
1236 | static void handle_vic_irq(unsigned int irq, struct irq_desc *desc) | ||
1237 | { | ||
1238 | before_handle_vic_irq(irq); | ||
1239 | handle_simple_irq(irq, desc); | ||
1240 | after_handle_vic_irq(irq); | ||
1241 | } | ||
1242 | |||
1243 | /* The CPIs are handled in the per cpu 8259s, so they must be | ||
1244 | * enabled to be received: FIX: enabling the CPIs in the early | ||
1245 | * boot sequence interferes with bug checking; enable them later | ||
1246 | * on in smp_init */ | ||
1247 | #define VIC_SET_GATE(cpi, vector) \ | ||
1248 | set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector)) | ||
1249 | #define QIC_SET_GATE(cpi, vector) \ | ||
1250 | set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector)) | ||
1251 | |||
1252 | void __init voyager_smp_intr_init(void) | ||
1253 | { | ||
1254 | int i; | ||
1255 | |||
1256 | /* initialize the per cpu irq mask to all disabled */ | ||
1257 | for (i = 0; i < nr_cpu_ids; i++) | ||
1258 | vic_irq_mask[i] = 0xFFFF; | ||
1259 | |||
1260 | VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt); | ||
1261 | |||
1262 | VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt); | ||
1263 | VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt); | ||
1264 | |||
1265 | QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt); | ||
1266 | QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt); | ||
1267 | QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt); | ||
1268 | QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt); | ||
1269 | QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt); | ||
1270 | |||
1271 | /* now put the VIC descriptor into the first 48 IRQs | ||
1272 | * | ||
1273 | * This is for later: first 16 correspond to PC IRQs; next 16 | ||
1274 | * are Primary MC IRQs and final 16 are Secondary MC IRQs */ | ||
1275 | for (i = 0; i < 48; i++) | ||
1276 | set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq); | ||
1277 | } | ||
1278 | |||
1279 | /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per | ||
1280 | * processor to receive CPI */ | ||
1281 | static void send_CPI(__u32 cpuset, __u8 cpi) | ||
1282 | { | ||
1283 | int cpu; | ||
1284 | __u32 quad_cpuset = (cpuset & voyager_quad_processors); | ||
1285 | |||
1286 | if (cpi < VIC_START_FAKE_CPI) { | ||
1287 | /* fake CPI are only used for booting, so send to the | ||
1288 | * extended quads as well---Quads must be VIC booted */ | ||
1289 | outb((__u8) (cpuset), VIC_CPI_Registers[cpi]); | ||
1290 | return; | ||
1291 | } | ||
1292 | if (quad_cpuset) | ||
1293 | send_QIC_CPI(quad_cpuset, cpi); | ||
1294 | cpuset &= ~quad_cpuset; | ||
1295 | cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */ | ||
1296 | if (cpuset == 0) | ||
1297 | return; | ||
1298 | for_each_online_cpu(cpu) { | ||
1299 | if (cpuset & (1 << cpu)) | ||
1300 | set_bit(cpi, &vic_cpi_mailbox[cpu]); | ||
1301 | } | ||
1302 | if (cpuset) | ||
1303 | outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]); | ||
1304 | } | ||
1305 | |||
1306 | /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and | ||
1307 | * set the cache line to shared by reading it. | ||
1308 | * | ||
1309 | * DON'T make this inline otherwise the cache line read will be | ||
1310 | * optimised away | ||
1311 | * */ | ||
1312 | static int ack_QIC_CPI(__u8 cpi) | ||
1313 | { | ||
1314 | __u8 cpu = hard_smp_processor_id(); | ||
1315 | |||
1316 | cpi &= 7; | ||
1317 | |||
1318 | outb(1 << cpi, QIC_INTERRUPT_CLEAR1); | ||
1319 | return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi; | ||
1320 | } | ||
1321 | |||
1322 | static void ack_special_QIC_CPI(__u8 cpi) | ||
1323 | { | ||
1324 | switch (cpi) { | ||
1325 | case VIC_CMN_INT: | ||
1326 | outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0); | ||
1327 | break; | ||
1328 | case VIC_SYS_INT: | ||
1329 | outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0); | ||
1330 | break; | ||
1331 | } | ||
1332 | /* also clear at the VIC, just in case (nop for non-extended proc) */ | ||
1333 | ack_VIC_CPI(cpi); | ||
1334 | } | ||
1335 | |||
1336 | /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */ | ||
1337 | static void ack_VIC_CPI(__u8 cpi) | ||
1338 | { | ||
1339 | #ifdef VOYAGER_DEBUG | ||
1340 | unsigned long flags; | ||
1341 | __u16 isr; | ||
1342 | __u8 cpu = smp_processor_id(); | ||
1343 | |||
1344 | local_irq_save(flags); | ||
1345 | isr = vic_read_isr(); | ||
1346 | if ((isr & (1 << (cpi & 7))) == 0) { | ||
1347 | printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi); | ||
1348 | } | ||
1349 | #endif | ||
1350 | /* send specific EOI; the two system interrupts have | ||
1351 | * bit 4 set for a separate vector but behave as the | ||
1352 | * corresponding 3 bit intr */ | ||
1353 | outb_p(0x60 | (cpi & 7), 0x20); | ||
1354 | |||
1355 | #ifdef VOYAGER_DEBUG | ||
1356 | if ((vic_read_isr() & (1 << (cpi & 7))) != 0) { | ||
1357 | printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi); | ||
1358 | } | ||
1359 | local_irq_restore(flags); | ||
1360 | #endif | ||
1361 | } | ||
1362 | |||
1363 | /* cribbed with thanks from irq.c */ | ||
1364 | #define __byte(x,y) (((unsigned char *)&(y))[x]) | ||
1365 | #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu])) | ||
1366 | #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu])) | ||
1367 | |||
1368 | static unsigned int startup_vic_irq(unsigned int irq) | ||
1369 | { | ||
1370 | unmask_vic_irq(irq); | ||
1371 | |||
1372 | return 0; | ||
1373 | } | ||
1374 | |||
1375 | /* The enable and disable routines. This is where we run into | ||
1376 | * conflicting architectural philosophy. Fundamentally, the voyager | ||
1377 | * architecture does not expect to have to disable interrupts globally | ||
1378 | * (the IRQ controllers belong to each CPU). The processor masquerade | ||
1379 | * which is used to start the system shouldn't be used in a running OS | ||
1380 | * since it will cause great confusion if two separate CPUs drive to | ||
1381 | * the same IRQ controller (I know, I've tried it). | ||
1382 | * | ||
1383 | * The solution is a variant on the NCR lazy SPL design: | ||
1384 | * | ||
1385 | * 1) To disable an interrupt, do nothing (other than set the | ||
1386 | * IRQ_DISABLED flag). This dares the interrupt actually to arrive. | ||
1387 | * | ||
1388 | * 2) If the interrupt dares to come in, raise the local mask against | ||
1389 | * it (this will result in all the CPU masks being raised | ||
1390 | * eventually). | ||
1391 | * | ||
1392 | * 3) To enable the interrupt, lower the mask on the local CPU and | ||
1393 | * broadcast an Interrupt enable CPI which causes all other CPUs to | ||
1394 | * adjust their masks accordingly. */ | ||
1395 | |||
1396 | static void unmask_vic_irq(unsigned int irq) | ||
1397 | { | ||
1398 | /* linux doesn't to processor-irq affinity, so enable on | ||
1399 | * all CPUs we know about */ | ||
1400 | int cpu = smp_processor_id(), real_cpu; | ||
1401 | __u16 mask = (1 << irq); | ||
1402 | __u32 processorList = 0; | ||
1403 | unsigned long flags; | ||
1404 | |||
1405 | VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n", | ||
1406 | irq, cpu, cpu_irq_affinity[cpu])); | ||
1407 | spin_lock_irqsave(&vic_irq_lock, flags); | ||
1408 | for_each_online_cpu(real_cpu) { | ||
1409 | if (!(voyager_extended_vic_processors & (1 << real_cpu))) | ||
1410 | continue; | ||
1411 | if (!(cpu_irq_affinity[real_cpu] & mask)) { | ||
1412 | /* irq has no affinity for this CPU, ignore */ | ||
1413 | continue; | ||
1414 | } | ||
1415 | if (real_cpu == cpu) { | ||
1416 | enable_local_vic_irq(irq); | ||
1417 | } else if (vic_irq_mask[real_cpu] & mask) { | ||
1418 | vic_irq_enable_mask[real_cpu] |= mask; | ||
1419 | processorList |= (1 << real_cpu); | ||
1420 | } | ||
1421 | } | ||
1422 | spin_unlock_irqrestore(&vic_irq_lock, flags); | ||
1423 | if (processorList) | ||
1424 | send_CPI(processorList, VIC_ENABLE_IRQ_CPI); | ||
1425 | } | ||
1426 | |||
1427 | static void mask_vic_irq(unsigned int irq) | ||
1428 | { | ||
1429 | /* lazy disable, do nothing */ | ||
1430 | } | ||
1431 | |||
1432 | static void enable_local_vic_irq(unsigned int irq) | ||
1433 | { | ||
1434 | __u8 cpu = smp_processor_id(); | ||
1435 | __u16 mask = ~(1 << irq); | ||
1436 | __u16 old_mask = vic_irq_mask[cpu]; | ||
1437 | |||
1438 | vic_irq_mask[cpu] &= mask; | ||
1439 | if (vic_irq_mask[cpu] == old_mask) | ||
1440 | return; | ||
1441 | |||
1442 | VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n", | ||
1443 | irq, cpu)); | ||
1444 | |||
1445 | if (irq & 8) { | ||
1446 | outb_p(cached_A1(cpu), 0xA1); | ||
1447 | (void)inb_p(0xA1); | ||
1448 | } else { | ||
1449 | outb_p(cached_21(cpu), 0x21); | ||
1450 | (void)inb_p(0x21); | ||
1451 | } | ||
1452 | } | ||
1453 | |||
1454 | static void disable_local_vic_irq(unsigned int irq) | ||
1455 | { | ||
1456 | __u8 cpu = smp_processor_id(); | ||
1457 | __u16 mask = (1 << irq); | ||
1458 | __u16 old_mask = vic_irq_mask[cpu]; | ||
1459 | |||
1460 | if (irq == 7) | ||
1461 | return; | ||
1462 | |||
1463 | vic_irq_mask[cpu] |= mask; | ||
1464 | if (old_mask == vic_irq_mask[cpu]) | ||
1465 | return; | ||
1466 | |||
1467 | VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n", | ||
1468 | irq, cpu)); | ||
1469 | |||
1470 | if (irq & 8) { | ||
1471 | outb_p(cached_A1(cpu), 0xA1); | ||
1472 | (void)inb_p(0xA1); | ||
1473 | } else { | ||
1474 | outb_p(cached_21(cpu), 0x21); | ||
1475 | (void)inb_p(0x21); | ||
1476 | } | ||
1477 | } | ||
1478 | |||
1479 | /* The VIC is level triggered, so the ack can only be issued after the | ||
1480 | * interrupt completes. However, we do Voyager lazy interrupt | ||
1481 | * handling here: It is an extremely expensive operation to mask an | ||
1482 | * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If | ||
1483 | * this interrupt actually comes in, then we mask and ack here to push | ||
1484 | * the interrupt off to another CPU */ | ||
1485 | static void before_handle_vic_irq(unsigned int irq) | ||
1486 | { | ||
1487 | irq_desc_t *desc = irq_to_desc(irq); | ||
1488 | __u8 cpu = smp_processor_id(); | ||
1489 | |||
1490 | _raw_spin_lock(&vic_irq_lock); | ||
1491 | vic_intr_total++; | ||
1492 | vic_intr_count[cpu]++; | ||
1493 | |||
1494 | if (!(cpu_irq_affinity[cpu] & (1 << irq))) { | ||
1495 | /* The irq is not in our affinity mask, push it off | ||
1496 | * onto another CPU */ | ||
1497 | VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d " | ||
1498 | "on cpu %d\n", irq, cpu)); | ||
1499 | disable_local_vic_irq(irq); | ||
1500 | /* set IRQ_INPROGRESS to prevent the handler in irq.c from | ||
1501 | * actually calling the interrupt routine */ | ||
1502 | desc->status |= IRQ_REPLAY | IRQ_INPROGRESS; | ||
1503 | } else if (desc->status & IRQ_DISABLED) { | ||
1504 | /* Damn, the interrupt actually arrived, do the lazy | ||
1505 | * disable thing. The interrupt routine in irq.c will | ||
1506 | * not handle a IRQ_DISABLED interrupt, so nothing more | ||
1507 | * need be done here */ | ||
1508 | VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n", | ||
1509 | irq, cpu)); | ||
1510 | disable_local_vic_irq(irq); | ||
1511 | desc->status |= IRQ_REPLAY; | ||
1512 | } else { | ||
1513 | desc->status &= ~IRQ_REPLAY; | ||
1514 | } | ||
1515 | |||
1516 | _raw_spin_unlock(&vic_irq_lock); | ||
1517 | } | ||
1518 | |||
1519 | /* Finish the VIC interrupt: basically mask */ | ||
1520 | static void after_handle_vic_irq(unsigned int irq) | ||
1521 | { | ||
1522 | irq_desc_t *desc = irq_to_desc(irq); | ||
1523 | |||
1524 | _raw_spin_lock(&vic_irq_lock); | ||
1525 | { | ||
1526 | unsigned int status = desc->status & ~IRQ_INPROGRESS; | ||
1527 | #ifdef VOYAGER_DEBUG | ||
1528 | __u16 isr; | ||
1529 | #endif | ||
1530 | |||
1531 | desc->status = status; | ||
1532 | if ((status & IRQ_DISABLED)) | ||
1533 | disable_local_vic_irq(irq); | ||
1534 | #ifdef VOYAGER_DEBUG | ||
1535 | /* DEBUG: before we ack, check what's in progress */ | ||
1536 | isr = vic_read_isr(); | ||
1537 | if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) { | ||
1538 | int i; | ||
1539 | __u8 cpu = smp_processor_id(); | ||
1540 | __u8 real_cpu; | ||
1541 | int mask; /* Um... initialize me??? --RR */ | ||
1542 | |||
1543 | printk("VOYAGER SMP: CPU%d lost interrupt %d\n", | ||
1544 | cpu, irq); | ||
1545 | for_each_possible_cpu(real_cpu, mask) { | ||
1546 | |||
1547 | outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu, | ||
1548 | VIC_PROCESSOR_ID); | ||
1549 | isr = vic_read_isr(); | ||
1550 | if (isr & (1 << irq)) { | ||
1551 | printk | ||
1552 | ("VOYAGER SMP: CPU%d ack irq %d\n", | ||
1553 | real_cpu, irq); | ||
1554 | ack_vic_irq(irq); | ||
1555 | } | ||
1556 | outb(cpu, VIC_PROCESSOR_ID); | ||
1557 | } | ||
1558 | } | ||
1559 | #endif /* VOYAGER_DEBUG */ | ||
1560 | /* as soon as we ack, the interrupt is eligible for | ||
1561 | * receipt by another CPU so everything must be in | ||
1562 | * order here */ | ||
1563 | ack_vic_irq(irq); | ||
1564 | if (status & IRQ_REPLAY) { | ||
1565 | /* replay is set if we disable the interrupt | ||
1566 | * in the before_handle_vic_irq() routine, so | ||
1567 | * clear the in progress bit here to allow the | ||
1568 | * next CPU to handle this correctly */ | ||
1569 | desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS); | ||
1570 | } | ||
1571 | #ifdef VOYAGER_DEBUG | ||
1572 | isr = vic_read_isr(); | ||
1573 | if ((isr & (1 << irq)) != 0) | ||
1574 | printk("VOYAGER SMP: after_handle_vic_irq() after " | ||
1575 | "ack irq=%d, isr=0x%x\n", irq, isr); | ||
1576 | #endif /* VOYAGER_DEBUG */ | ||
1577 | } | ||
1578 | _raw_spin_unlock(&vic_irq_lock); | ||
1579 | |||
1580 | /* All code after this point is out of the main path - the IRQ | ||
1581 | * may be intercepted by another CPU if reasserted */ | ||
1582 | } | ||
1583 | |||
1584 | /* Linux processor - interrupt affinity manipulations. | ||
1585 | * | ||
1586 | * For each processor, we maintain a 32 bit irq affinity mask. | ||
1587 | * Initially it is set to all 1's so every processor accepts every | ||
1588 | * interrupt. In this call, we change the processor's affinity mask: | ||
1589 | * | ||
1590 | * Change from enable to disable: | ||
1591 | * | ||
1592 | * If the interrupt ever comes in to the processor, we will disable it | ||
1593 | * and ack it to push it off to another CPU, so just accept the mask here. | ||
1594 | * | ||
1595 | * Change from disable to enable: | ||
1596 | * | ||
1597 | * change the mask and then do an interrupt enable CPI to re-enable on | ||
1598 | * the selected processors */ | ||
1599 | |||
1600 | void set_vic_irq_affinity(unsigned int irq, const struct cpumask *mask) | ||
1601 | { | ||
1602 | /* Only extended processors handle interrupts */ | ||
1603 | unsigned long real_mask; | ||
1604 | unsigned long irq_mask = 1 << irq; | ||
1605 | int cpu; | ||
1606 | |||
1607 | real_mask = cpus_addr(*mask)[0] & voyager_extended_vic_processors; | ||
1608 | |||
1609 | if (cpus_addr(*mask)[0] == 0) | ||
1610 | /* can't have no CPUs to accept the interrupt -- extremely | ||
1611 | * bad things will happen */ | ||
1612 | return; | ||
1613 | |||
1614 | if (irq == 0) | ||
1615 | /* can't change the affinity of the timer IRQ. This | ||
1616 | * is due to the constraint in the voyager | ||
1617 | * architecture that the CPI also comes in on and IRQ | ||
1618 | * line and we have chosen IRQ0 for this. If you | ||
1619 | * raise the mask on this interrupt, the processor | ||
1620 | * will no-longer be able to accept VIC CPIs */ | ||
1621 | return; | ||
1622 | |||
1623 | if (irq >= 32) | ||
1624 | /* You can only have 32 interrupts in a voyager system | ||
1625 | * (and 32 only if you have a secondary microchannel | ||
1626 | * bus) */ | ||
1627 | return; | ||
1628 | |||
1629 | for_each_online_cpu(cpu) { | ||
1630 | unsigned long cpu_mask = 1 << cpu; | ||
1631 | |||
1632 | if (cpu_mask & real_mask) { | ||
1633 | /* enable the interrupt for this cpu */ | ||
1634 | cpu_irq_affinity[cpu] |= irq_mask; | ||
1635 | } else { | ||
1636 | /* disable the interrupt for this cpu */ | ||
1637 | cpu_irq_affinity[cpu] &= ~irq_mask; | ||
1638 | } | ||
1639 | } | ||
1640 | /* this is magic, we now have the correct affinity maps, so | ||
1641 | * enable the interrupt. This will send an enable CPI to | ||
1642 | * those CPUs who need to enable it in their local masks, | ||
1643 | * causing them to correct for the new affinity . If the | ||
1644 | * interrupt is currently globally disabled, it will simply be | ||
1645 | * disabled again as it comes in (voyager lazy disable). If | ||
1646 | * the affinity map is tightened to disable the interrupt on a | ||
1647 | * cpu, it will be pushed off when it comes in */ | ||
1648 | unmask_vic_irq(irq); | ||
1649 | } | ||
1650 | |||
1651 | static void ack_vic_irq(unsigned int irq) | ||
1652 | { | ||
1653 | if (irq & 8) { | ||
1654 | outb(0x62, 0x20); /* Specific EOI to cascade */ | ||
1655 | outb(0x60 | (irq & 7), 0xA0); | ||
1656 | } else { | ||
1657 | outb(0x60 | (irq & 7), 0x20); | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259 | ||
1662 | * but are not vectored by it. This means that the 8259 mask must be | ||
1663 | * lowered to receive them */ | ||
1664 | static __init void vic_enable_cpi(void) | ||
1665 | { | ||
1666 | __u8 cpu = smp_processor_id(); | ||
1667 | |||
1668 | /* just take a copy of the current mask (nop for boot cpu) */ | ||
1669 | vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id]; | ||
1670 | |||
1671 | enable_local_vic_irq(VIC_CPI_LEVEL0); | ||
1672 | enable_local_vic_irq(VIC_CPI_LEVEL1); | ||
1673 | /* for sys int and cmn int */ | ||
1674 | enable_local_vic_irq(7); | ||
1675 | |||
1676 | if (is_cpu_quad()) { | ||
1677 | outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0); | ||
1678 | outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1); | ||
1679 | VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n", | ||
1680 | cpu, QIC_CPI_ENABLE)); | ||
1681 | } | ||
1682 | |||
1683 | VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n", | ||
1684 | cpu, vic_irq_mask[cpu])); | ||
1685 | } | ||
1686 | |||
1687 | void voyager_smp_dump() | ||
1688 | { | ||
1689 | int old_cpu = smp_processor_id(), cpu; | ||
1690 | |||
1691 | /* dump the interrupt masks of each processor */ | ||
1692 | for_each_online_cpu(cpu) { | ||
1693 | __u16 imr, isr, irr; | ||
1694 | unsigned long flags; | ||
1695 | |||
1696 | local_irq_save(flags); | ||
1697 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID); | ||
1698 | imr = (inb(0xa1) << 8) | inb(0x21); | ||
1699 | outb(0x0a, 0xa0); | ||
1700 | irr = inb(0xa0) << 8; | ||
1701 | outb(0x0a, 0x20); | ||
1702 | irr |= inb(0x20); | ||
1703 | outb(0x0b, 0xa0); | ||
1704 | isr = inb(0xa0) << 8; | ||
1705 | outb(0x0b, 0x20); | ||
1706 | isr |= inb(0x20); | ||
1707 | outb(old_cpu, VIC_PROCESSOR_ID); | ||
1708 | local_irq_restore(flags); | ||
1709 | printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n", | ||
1710 | cpu, vic_irq_mask[cpu], imr, irr, isr); | ||
1711 | #if 0 | ||
1712 | /* These lines are put in to try to unstick an un ack'd irq */ | ||
1713 | if (isr != 0) { | ||
1714 | int irq; | ||
1715 | for (irq = 0; irq < 16; irq++) { | ||
1716 | if (isr & (1 << irq)) { | ||
1717 | printk("\tCPU%d: ack irq %d\n", | ||
1718 | cpu, irq); | ||
1719 | local_irq_save(flags); | ||
1720 | outb(VIC_CPU_MASQUERADE_ENABLE | cpu, | ||
1721 | VIC_PROCESSOR_ID); | ||
1722 | ack_vic_irq(irq); | ||
1723 | outb(old_cpu, VIC_PROCESSOR_ID); | ||
1724 | local_irq_restore(flags); | ||
1725 | } | ||
1726 | } | ||
1727 | } | ||
1728 | #endif | ||
1729 | } | ||
1730 | } | ||
1731 | |||
1732 | void smp_voyager_power_off(void *dummy) | ||
1733 | { | ||
1734 | if (smp_processor_id() == boot_cpu_id) | ||
1735 | voyager_power_off(); | ||
1736 | else | ||
1737 | smp_stop_cpu_function(NULL); | ||
1738 | } | ||
1739 | |||
1740 | static void __init voyager_smp_prepare_cpus(unsigned int max_cpus) | ||
1741 | { | ||
1742 | /* FIXME: ignore max_cpus for now */ | ||
1743 | smp_boot_cpus(); | ||
1744 | } | ||
1745 | |||
1746 | static void __cpuinit voyager_smp_prepare_boot_cpu(void) | ||
1747 | { | ||
1748 | init_gdt(smp_processor_id()); | ||
1749 | switch_to_new_gdt(); | ||
1750 | |||
1751 | cpu_online_map = cpumask_of_cpu(smp_processor_id()); | ||
1752 | cpu_callout_map = cpumask_of_cpu(smp_processor_id()); | ||
1753 | cpu_callin_map = CPU_MASK_NONE; | ||
1754 | cpu_present_map = cpumask_of_cpu(smp_processor_id()); | ||
1755 | |||
1756 | } | ||
1757 | |||
1758 | static int __cpuinit voyager_cpu_up(unsigned int cpu) | ||
1759 | { | ||
1760 | /* This only works at boot for x86. See "rewrite" above. */ | ||
1761 | if (cpu_isset(cpu, smp_commenced_mask)) | ||
1762 | return -ENOSYS; | ||
1763 | |||
1764 | /* In case one didn't come up */ | ||
1765 | if (!cpu_isset(cpu, cpu_callin_map)) | ||
1766 | return -EIO; | ||
1767 | /* Unleash the CPU! */ | ||
1768 | cpu_set(cpu, smp_commenced_mask); | ||
1769 | while (!cpu_online(cpu)) | ||
1770 | mb(); | ||
1771 | return 0; | ||
1772 | } | ||
1773 | |||
1774 | static void __init voyager_smp_cpus_done(unsigned int max_cpus) | ||
1775 | { | ||
1776 | zap_low_mappings(); | ||
1777 | } | ||
1778 | |||
1779 | void __init smp_setup_processor_id(void) | ||
1780 | { | ||
1781 | current_thread_info()->cpu = hard_smp_processor_id(); | ||
1782 | x86_write_percpu(cpu_number, hard_smp_processor_id()); | ||
1783 | } | ||
1784 | |||
1785 | static void voyager_send_call_func(const struct cpumask *callmask) | ||
1786 | { | ||
1787 | __u32 mask = cpus_addr(*callmask)[0] & ~(1 << smp_processor_id()); | ||
1788 | send_CPI(mask, VIC_CALL_FUNCTION_CPI); | ||
1789 | } | ||
1790 | |||
1791 | static void voyager_send_call_func_single(int cpu) | ||
1792 | { | ||
1793 | send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI); | ||
1794 | } | ||
1795 | |||
1796 | struct smp_ops smp_ops = { | ||
1797 | .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu, | ||
1798 | .smp_prepare_cpus = voyager_smp_prepare_cpus, | ||
1799 | .cpu_up = voyager_cpu_up, | ||
1800 | .smp_cpus_done = voyager_smp_cpus_done, | ||
1801 | |||
1802 | .smp_send_stop = voyager_smp_send_stop, | ||
1803 | .smp_send_reschedule = voyager_smp_send_reschedule, | ||
1804 | |||
1805 | .send_call_func_ipi = voyager_send_call_func, | ||
1806 | .send_call_func_single_ipi = voyager_send_call_func_single, | ||
1807 | }; | ||