diff options
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu.c | 1805 |
1 files changed, 1805 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c new file mode 100644 index 000000000000..401eb7ce3207 --- /dev/null +++ b/arch/x86/kvm/mmu.c | |||
@@ -0,0 +1,1805 @@ | |||
1 | /* | ||
2 | * Kernel-based Virtual Machine driver for Linux | ||
3 | * | ||
4 | * This module enables machines with Intel VT-x extensions to run virtual | ||
5 | * machines without emulation or binary translation. | ||
6 | * | ||
7 | * MMU support | ||
8 | * | ||
9 | * Copyright (C) 2006 Qumranet, Inc. | ||
10 | * | ||
11 | * Authors: | ||
12 | * Yaniv Kamay <yaniv@qumranet.com> | ||
13 | * Avi Kivity <avi@qumranet.com> | ||
14 | * | ||
15 | * This work is licensed under the terms of the GNU GPL, version 2. See | ||
16 | * the COPYING file in the top-level directory. | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #include "vmx.h" | ||
21 | #include "mmu.h" | ||
22 | |||
23 | #include <linux/kvm_host.h> | ||
24 | #include <linux/types.h> | ||
25 | #include <linux/string.h> | ||
26 | #include <linux/mm.h> | ||
27 | #include <linux/highmem.h> | ||
28 | #include <linux/module.h> | ||
29 | #include <linux/swap.h> | ||
30 | |||
31 | #include <asm/page.h> | ||
32 | #include <asm/cmpxchg.h> | ||
33 | #include <asm/io.h> | ||
34 | |||
35 | #undef MMU_DEBUG | ||
36 | |||
37 | #undef AUDIT | ||
38 | |||
39 | #ifdef AUDIT | ||
40 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); | ||
41 | #else | ||
42 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} | ||
43 | #endif | ||
44 | |||
45 | #ifdef MMU_DEBUG | ||
46 | |||
47 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | ||
48 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | ||
49 | |||
50 | #else | ||
51 | |||
52 | #define pgprintk(x...) do { } while (0) | ||
53 | #define rmap_printk(x...) do { } while (0) | ||
54 | |||
55 | #endif | ||
56 | |||
57 | #if defined(MMU_DEBUG) || defined(AUDIT) | ||
58 | static int dbg = 1; | ||
59 | #endif | ||
60 | |||
61 | #ifndef MMU_DEBUG | ||
62 | #define ASSERT(x) do { } while (0) | ||
63 | #else | ||
64 | #define ASSERT(x) \ | ||
65 | if (!(x)) { \ | ||
66 | printk(KERN_WARNING "assertion failed %s:%d: %s\n", \ | ||
67 | __FILE__, __LINE__, #x); \ | ||
68 | } | ||
69 | #endif | ||
70 | |||
71 | #define PT64_PT_BITS 9 | ||
72 | #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) | ||
73 | #define PT32_PT_BITS 10 | ||
74 | #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) | ||
75 | |||
76 | #define PT_WRITABLE_SHIFT 1 | ||
77 | |||
78 | #define PT_PRESENT_MASK (1ULL << 0) | ||
79 | #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) | ||
80 | #define PT_USER_MASK (1ULL << 2) | ||
81 | #define PT_PWT_MASK (1ULL << 3) | ||
82 | #define PT_PCD_MASK (1ULL << 4) | ||
83 | #define PT_ACCESSED_MASK (1ULL << 5) | ||
84 | #define PT_DIRTY_MASK (1ULL << 6) | ||
85 | #define PT_PAGE_SIZE_MASK (1ULL << 7) | ||
86 | #define PT_PAT_MASK (1ULL << 7) | ||
87 | #define PT_GLOBAL_MASK (1ULL << 8) | ||
88 | #define PT64_NX_SHIFT 63 | ||
89 | #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) | ||
90 | |||
91 | #define PT_PAT_SHIFT 7 | ||
92 | #define PT_DIR_PAT_SHIFT 12 | ||
93 | #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) | ||
94 | |||
95 | #define PT32_DIR_PSE36_SIZE 4 | ||
96 | #define PT32_DIR_PSE36_SHIFT 13 | ||
97 | #define PT32_DIR_PSE36_MASK \ | ||
98 | (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) | ||
99 | |||
100 | |||
101 | #define PT_FIRST_AVAIL_BITS_SHIFT 9 | ||
102 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | ||
103 | |||
104 | #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | ||
105 | |||
106 | #define VALID_PAGE(x) ((x) != INVALID_PAGE) | ||
107 | |||
108 | #define PT64_LEVEL_BITS 9 | ||
109 | |||
110 | #define PT64_LEVEL_SHIFT(level) \ | ||
111 | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | ||
112 | |||
113 | #define PT64_LEVEL_MASK(level) \ | ||
114 | (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) | ||
115 | |||
116 | #define PT64_INDEX(address, level)\ | ||
117 | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | ||
118 | |||
119 | |||
120 | #define PT32_LEVEL_BITS 10 | ||
121 | |||
122 | #define PT32_LEVEL_SHIFT(level) \ | ||
123 | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | ||
124 | |||
125 | #define PT32_LEVEL_MASK(level) \ | ||
126 | (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) | ||
127 | |||
128 | #define PT32_INDEX(address, level)\ | ||
129 | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | ||
130 | |||
131 | |||
132 | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | ||
133 | #define PT64_DIR_BASE_ADDR_MASK \ | ||
134 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | ||
135 | |||
136 | #define PT32_BASE_ADDR_MASK PAGE_MASK | ||
137 | #define PT32_DIR_BASE_ADDR_MASK \ | ||
138 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | ||
139 | |||
140 | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ | ||
141 | | PT64_NX_MASK) | ||
142 | |||
143 | #define PFERR_PRESENT_MASK (1U << 0) | ||
144 | #define PFERR_WRITE_MASK (1U << 1) | ||
145 | #define PFERR_USER_MASK (1U << 2) | ||
146 | #define PFERR_FETCH_MASK (1U << 4) | ||
147 | |||
148 | #define PT64_ROOT_LEVEL 4 | ||
149 | #define PT32_ROOT_LEVEL 2 | ||
150 | #define PT32E_ROOT_LEVEL 3 | ||
151 | |||
152 | #define PT_DIRECTORY_LEVEL 2 | ||
153 | #define PT_PAGE_TABLE_LEVEL 1 | ||
154 | |||
155 | #define RMAP_EXT 4 | ||
156 | |||
157 | #define ACC_EXEC_MASK 1 | ||
158 | #define ACC_WRITE_MASK PT_WRITABLE_MASK | ||
159 | #define ACC_USER_MASK PT_USER_MASK | ||
160 | #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | ||
161 | |||
162 | struct kvm_rmap_desc { | ||
163 | u64 *shadow_ptes[RMAP_EXT]; | ||
164 | struct kvm_rmap_desc *more; | ||
165 | }; | ||
166 | |||
167 | static struct kmem_cache *pte_chain_cache; | ||
168 | static struct kmem_cache *rmap_desc_cache; | ||
169 | static struct kmem_cache *mmu_page_header_cache; | ||
170 | |||
171 | static u64 __read_mostly shadow_trap_nonpresent_pte; | ||
172 | static u64 __read_mostly shadow_notrap_nonpresent_pte; | ||
173 | |||
174 | void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte) | ||
175 | { | ||
176 | shadow_trap_nonpresent_pte = trap_pte; | ||
177 | shadow_notrap_nonpresent_pte = notrap_pte; | ||
178 | } | ||
179 | EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes); | ||
180 | |||
181 | static int is_write_protection(struct kvm_vcpu *vcpu) | ||
182 | { | ||
183 | return vcpu->arch.cr0 & X86_CR0_WP; | ||
184 | } | ||
185 | |||
186 | static int is_cpuid_PSE36(void) | ||
187 | { | ||
188 | return 1; | ||
189 | } | ||
190 | |||
191 | static int is_nx(struct kvm_vcpu *vcpu) | ||
192 | { | ||
193 | return vcpu->arch.shadow_efer & EFER_NX; | ||
194 | } | ||
195 | |||
196 | static int is_present_pte(unsigned long pte) | ||
197 | { | ||
198 | return pte & PT_PRESENT_MASK; | ||
199 | } | ||
200 | |||
201 | static int is_shadow_present_pte(u64 pte) | ||
202 | { | ||
203 | pte &= ~PT_SHADOW_IO_MARK; | ||
204 | return pte != shadow_trap_nonpresent_pte | ||
205 | && pte != shadow_notrap_nonpresent_pte; | ||
206 | } | ||
207 | |||
208 | static int is_writeble_pte(unsigned long pte) | ||
209 | { | ||
210 | return pte & PT_WRITABLE_MASK; | ||
211 | } | ||
212 | |||
213 | static int is_dirty_pte(unsigned long pte) | ||
214 | { | ||
215 | return pte & PT_DIRTY_MASK; | ||
216 | } | ||
217 | |||
218 | static int is_io_pte(unsigned long pte) | ||
219 | { | ||
220 | return pte & PT_SHADOW_IO_MARK; | ||
221 | } | ||
222 | |||
223 | static int is_rmap_pte(u64 pte) | ||
224 | { | ||
225 | return pte != shadow_trap_nonpresent_pte | ||
226 | && pte != shadow_notrap_nonpresent_pte; | ||
227 | } | ||
228 | |||
229 | static gfn_t pse36_gfn_delta(u32 gpte) | ||
230 | { | ||
231 | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | ||
232 | |||
233 | return (gpte & PT32_DIR_PSE36_MASK) << shift; | ||
234 | } | ||
235 | |||
236 | static void set_shadow_pte(u64 *sptep, u64 spte) | ||
237 | { | ||
238 | #ifdef CONFIG_X86_64 | ||
239 | set_64bit((unsigned long *)sptep, spte); | ||
240 | #else | ||
241 | set_64bit((unsigned long long *)sptep, spte); | ||
242 | #endif | ||
243 | } | ||
244 | |||
245 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | ||
246 | struct kmem_cache *base_cache, int min) | ||
247 | { | ||
248 | void *obj; | ||
249 | |||
250 | if (cache->nobjs >= min) | ||
251 | return 0; | ||
252 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | ||
253 | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | ||
254 | if (!obj) | ||
255 | return -ENOMEM; | ||
256 | cache->objects[cache->nobjs++] = obj; | ||
257 | } | ||
258 | return 0; | ||
259 | } | ||
260 | |||
261 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | ||
262 | { | ||
263 | while (mc->nobjs) | ||
264 | kfree(mc->objects[--mc->nobjs]); | ||
265 | } | ||
266 | |||
267 | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | ||
268 | int min) | ||
269 | { | ||
270 | struct page *page; | ||
271 | |||
272 | if (cache->nobjs >= min) | ||
273 | return 0; | ||
274 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | ||
275 | page = alloc_page(GFP_KERNEL); | ||
276 | if (!page) | ||
277 | return -ENOMEM; | ||
278 | set_page_private(page, 0); | ||
279 | cache->objects[cache->nobjs++] = page_address(page); | ||
280 | } | ||
281 | return 0; | ||
282 | } | ||
283 | |||
284 | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | ||
285 | { | ||
286 | while (mc->nobjs) | ||
287 | free_page((unsigned long)mc->objects[--mc->nobjs]); | ||
288 | } | ||
289 | |||
290 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | ||
291 | { | ||
292 | int r; | ||
293 | |||
294 | kvm_mmu_free_some_pages(vcpu); | ||
295 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache, | ||
296 | pte_chain_cache, 4); | ||
297 | if (r) | ||
298 | goto out; | ||
299 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, | ||
300 | rmap_desc_cache, 1); | ||
301 | if (r) | ||
302 | goto out; | ||
303 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | ||
304 | if (r) | ||
305 | goto out; | ||
306 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | ||
307 | mmu_page_header_cache, 4); | ||
308 | out: | ||
309 | return r; | ||
310 | } | ||
311 | |||
312 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | ||
313 | { | ||
314 | mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache); | ||
315 | mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache); | ||
316 | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | ||
317 | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); | ||
318 | } | ||
319 | |||
320 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, | ||
321 | size_t size) | ||
322 | { | ||
323 | void *p; | ||
324 | |||
325 | BUG_ON(!mc->nobjs); | ||
326 | p = mc->objects[--mc->nobjs]; | ||
327 | memset(p, 0, size); | ||
328 | return p; | ||
329 | } | ||
330 | |||
331 | static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) | ||
332 | { | ||
333 | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache, | ||
334 | sizeof(struct kvm_pte_chain)); | ||
335 | } | ||
336 | |||
337 | static void mmu_free_pte_chain(struct kvm_pte_chain *pc) | ||
338 | { | ||
339 | kfree(pc); | ||
340 | } | ||
341 | |||
342 | static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) | ||
343 | { | ||
344 | return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache, | ||
345 | sizeof(struct kvm_rmap_desc)); | ||
346 | } | ||
347 | |||
348 | static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd) | ||
349 | { | ||
350 | kfree(rd); | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * Take gfn and return the reverse mapping to it. | ||
355 | * Note: gfn must be unaliased before this function get called | ||
356 | */ | ||
357 | |||
358 | static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn) | ||
359 | { | ||
360 | struct kvm_memory_slot *slot; | ||
361 | |||
362 | slot = gfn_to_memslot(kvm, gfn); | ||
363 | return &slot->rmap[gfn - slot->base_gfn]; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * Reverse mapping data structures: | ||
368 | * | ||
369 | * If rmapp bit zero is zero, then rmapp point to the shadw page table entry | ||
370 | * that points to page_address(page). | ||
371 | * | ||
372 | * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc | ||
373 | * containing more mappings. | ||
374 | */ | ||
375 | static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | ||
376 | { | ||
377 | struct kvm_mmu_page *sp; | ||
378 | struct kvm_rmap_desc *desc; | ||
379 | unsigned long *rmapp; | ||
380 | int i; | ||
381 | |||
382 | if (!is_rmap_pte(*spte)) | ||
383 | return; | ||
384 | gfn = unalias_gfn(vcpu->kvm, gfn); | ||
385 | sp = page_header(__pa(spte)); | ||
386 | sp->gfns[spte - sp->spt] = gfn; | ||
387 | rmapp = gfn_to_rmap(vcpu->kvm, gfn); | ||
388 | if (!*rmapp) { | ||
389 | rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); | ||
390 | *rmapp = (unsigned long)spte; | ||
391 | } else if (!(*rmapp & 1)) { | ||
392 | rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); | ||
393 | desc = mmu_alloc_rmap_desc(vcpu); | ||
394 | desc->shadow_ptes[0] = (u64 *)*rmapp; | ||
395 | desc->shadow_ptes[1] = spte; | ||
396 | *rmapp = (unsigned long)desc | 1; | ||
397 | } else { | ||
398 | rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); | ||
399 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | ||
400 | while (desc->shadow_ptes[RMAP_EXT-1] && desc->more) | ||
401 | desc = desc->more; | ||
402 | if (desc->shadow_ptes[RMAP_EXT-1]) { | ||
403 | desc->more = mmu_alloc_rmap_desc(vcpu); | ||
404 | desc = desc->more; | ||
405 | } | ||
406 | for (i = 0; desc->shadow_ptes[i]; ++i) | ||
407 | ; | ||
408 | desc->shadow_ptes[i] = spte; | ||
409 | } | ||
410 | } | ||
411 | |||
412 | static void rmap_desc_remove_entry(unsigned long *rmapp, | ||
413 | struct kvm_rmap_desc *desc, | ||
414 | int i, | ||
415 | struct kvm_rmap_desc *prev_desc) | ||
416 | { | ||
417 | int j; | ||
418 | |||
419 | for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j) | ||
420 | ; | ||
421 | desc->shadow_ptes[i] = desc->shadow_ptes[j]; | ||
422 | desc->shadow_ptes[j] = NULL; | ||
423 | if (j != 0) | ||
424 | return; | ||
425 | if (!prev_desc && !desc->more) | ||
426 | *rmapp = (unsigned long)desc->shadow_ptes[0]; | ||
427 | else | ||
428 | if (prev_desc) | ||
429 | prev_desc->more = desc->more; | ||
430 | else | ||
431 | *rmapp = (unsigned long)desc->more | 1; | ||
432 | mmu_free_rmap_desc(desc); | ||
433 | } | ||
434 | |||
435 | static void rmap_remove(struct kvm *kvm, u64 *spte) | ||
436 | { | ||
437 | struct kvm_rmap_desc *desc; | ||
438 | struct kvm_rmap_desc *prev_desc; | ||
439 | struct kvm_mmu_page *sp; | ||
440 | struct page *page; | ||
441 | unsigned long *rmapp; | ||
442 | int i; | ||
443 | |||
444 | if (!is_rmap_pte(*spte)) | ||
445 | return; | ||
446 | sp = page_header(__pa(spte)); | ||
447 | page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); | ||
448 | mark_page_accessed(page); | ||
449 | if (is_writeble_pte(*spte)) | ||
450 | kvm_release_page_dirty(page); | ||
451 | else | ||
452 | kvm_release_page_clean(page); | ||
453 | rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]); | ||
454 | if (!*rmapp) { | ||
455 | printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); | ||
456 | BUG(); | ||
457 | } else if (!(*rmapp & 1)) { | ||
458 | rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte); | ||
459 | if ((u64 *)*rmapp != spte) { | ||
460 | printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n", | ||
461 | spte, *spte); | ||
462 | BUG(); | ||
463 | } | ||
464 | *rmapp = 0; | ||
465 | } else { | ||
466 | rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte); | ||
467 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | ||
468 | prev_desc = NULL; | ||
469 | while (desc) { | ||
470 | for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) | ||
471 | if (desc->shadow_ptes[i] == spte) { | ||
472 | rmap_desc_remove_entry(rmapp, | ||
473 | desc, i, | ||
474 | prev_desc); | ||
475 | return; | ||
476 | } | ||
477 | prev_desc = desc; | ||
478 | desc = desc->more; | ||
479 | } | ||
480 | BUG(); | ||
481 | } | ||
482 | } | ||
483 | |||
484 | static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte) | ||
485 | { | ||
486 | struct kvm_rmap_desc *desc; | ||
487 | struct kvm_rmap_desc *prev_desc; | ||
488 | u64 *prev_spte; | ||
489 | int i; | ||
490 | |||
491 | if (!*rmapp) | ||
492 | return NULL; | ||
493 | else if (!(*rmapp & 1)) { | ||
494 | if (!spte) | ||
495 | return (u64 *)*rmapp; | ||
496 | return NULL; | ||
497 | } | ||
498 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | ||
499 | prev_desc = NULL; | ||
500 | prev_spte = NULL; | ||
501 | while (desc) { | ||
502 | for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) { | ||
503 | if (prev_spte == spte) | ||
504 | return desc->shadow_ptes[i]; | ||
505 | prev_spte = desc->shadow_ptes[i]; | ||
506 | } | ||
507 | desc = desc->more; | ||
508 | } | ||
509 | return NULL; | ||
510 | } | ||
511 | |||
512 | static void rmap_write_protect(struct kvm *kvm, u64 gfn) | ||
513 | { | ||
514 | unsigned long *rmapp; | ||
515 | u64 *spte; | ||
516 | |||
517 | gfn = unalias_gfn(kvm, gfn); | ||
518 | rmapp = gfn_to_rmap(kvm, gfn); | ||
519 | |||
520 | spte = rmap_next(kvm, rmapp, NULL); | ||
521 | while (spte) { | ||
522 | BUG_ON(!spte); | ||
523 | BUG_ON(!(*spte & PT_PRESENT_MASK)); | ||
524 | rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); | ||
525 | if (is_writeble_pte(*spte)) | ||
526 | set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK); | ||
527 | kvm_flush_remote_tlbs(kvm); | ||
528 | spte = rmap_next(kvm, rmapp, spte); | ||
529 | } | ||
530 | } | ||
531 | |||
532 | #ifdef MMU_DEBUG | ||
533 | static int is_empty_shadow_page(u64 *spt) | ||
534 | { | ||
535 | u64 *pos; | ||
536 | u64 *end; | ||
537 | |||
538 | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | ||
539 | if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) { | ||
540 | printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__, | ||
541 | pos, *pos); | ||
542 | return 0; | ||
543 | } | ||
544 | return 1; | ||
545 | } | ||
546 | #endif | ||
547 | |||
548 | static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) | ||
549 | { | ||
550 | ASSERT(is_empty_shadow_page(sp->spt)); | ||
551 | list_del(&sp->link); | ||
552 | __free_page(virt_to_page(sp->spt)); | ||
553 | __free_page(virt_to_page(sp->gfns)); | ||
554 | kfree(sp); | ||
555 | ++kvm->arch.n_free_mmu_pages; | ||
556 | } | ||
557 | |||
558 | static unsigned kvm_page_table_hashfn(gfn_t gfn) | ||
559 | { | ||
560 | return gfn; | ||
561 | } | ||
562 | |||
563 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | ||
564 | u64 *parent_pte) | ||
565 | { | ||
566 | struct kvm_mmu_page *sp; | ||
567 | |||
568 | if (!vcpu->kvm->arch.n_free_mmu_pages) | ||
569 | return NULL; | ||
570 | |||
571 | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp); | ||
572 | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); | ||
573 | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); | ||
574 | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | ||
575 | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | ||
576 | ASSERT(is_empty_shadow_page(sp->spt)); | ||
577 | sp->slot_bitmap = 0; | ||
578 | sp->multimapped = 0; | ||
579 | sp->parent_pte = parent_pte; | ||
580 | --vcpu->kvm->arch.n_free_mmu_pages; | ||
581 | return sp; | ||
582 | } | ||
583 | |||
584 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | ||
585 | struct kvm_mmu_page *sp, u64 *parent_pte) | ||
586 | { | ||
587 | struct kvm_pte_chain *pte_chain; | ||
588 | struct hlist_node *node; | ||
589 | int i; | ||
590 | |||
591 | if (!parent_pte) | ||
592 | return; | ||
593 | if (!sp->multimapped) { | ||
594 | u64 *old = sp->parent_pte; | ||
595 | |||
596 | if (!old) { | ||
597 | sp->parent_pte = parent_pte; | ||
598 | return; | ||
599 | } | ||
600 | sp->multimapped = 1; | ||
601 | pte_chain = mmu_alloc_pte_chain(vcpu); | ||
602 | INIT_HLIST_HEAD(&sp->parent_ptes); | ||
603 | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | ||
604 | pte_chain->parent_ptes[0] = old; | ||
605 | } | ||
606 | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) { | ||
607 | if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) | ||
608 | continue; | ||
609 | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) | ||
610 | if (!pte_chain->parent_ptes[i]) { | ||
611 | pte_chain->parent_ptes[i] = parent_pte; | ||
612 | return; | ||
613 | } | ||
614 | } | ||
615 | pte_chain = mmu_alloc_pte_chain(vcpu); | ||
616 | BUG_ON(!pte_chain); | ||
617 | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | ||
618 | pte_chain->parent_ptes[0] = parent_pte; | ||
619 | } | ||
620 | |||
621 | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | ||
622 | u64 *parent_pte) | ||
623 | { | ||
624 | struct kvm_pte_chain *pte_chain; | ||
625 | struct hlist_node *node; | ||
626 | int i; | ||
627 | |||
628 | if (!sp->multimapped) { | ||
629 | BUG_ON(sp->parent_pte != parent_pte); | ||
630 | sp->parent_pte = NULL; | ||
631 | return; | ||
632 | } | ||
633 | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) | ||
634 | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { | ||
635 | if (!pte_chain->parent_ptes[i]) | ||
636 | break; | ||
637 | if (pte_chain->parent_ptes[i] != parent_pte) | ||
638 | continue; | ||
639 | while (i + 1 < NR_PTE_CHAIN_ENTRIES | ||
640 | && pte_chain->parent_ptes[i + 1]) { | ||
641 | pte_chain->parent_ptes[i] | ||
642 | = pte_chain->parent_ptes[i + 1]; | ||
643 | ++i; | ||
644 | } | ||
645 | pte_chain->parent_ptes[i] = NULL; | ||
646 | if (i == 0) { | ||
647 | hlist_del(&pte_chain->link); | ||
648 | mmu_free_pte_chain(pte_chain); | ||
649 | if (hlist_empty(&sp->parent_ptes)) { | ||
650 | sp->multimapped = 0; | ||
651 | sp->parent_pte = NULL; | ||
652 | } | ||
653 | } | ||
654 | return; | ||
655 | } | ||
656 | BUG(); | ||
657 | } | ||
658 | |||
659 | static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn) | ||
660 | { | ||
661 | unsigned index; | ||
662 | struct hlist_head *bucket; | ||
663 | struct kvm_mmu_page *sp; | ||
664 | struct hlist_node *node; | ||
665 | |||
666 | pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); | ||
667 | index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | ||
668 | bucket = &kvm->arch.mmu_page_hash[index]; | ||
669 | hlist_for_each_entry(sp, node, bucket, hash_link) | ||
670 | if (sp->gfn == gfn && !sp->role.metaphysical) { | ||
671 | pgprintk("%s: found role %x\n", | ||
672 | __FUNCTION__, sp->role.word); | ||
673 | return sp; | ||
674 | } | ||
675 | return NULL; | ||
676 | } | ||
677 | |||
678 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | ||
679 | gfn_t gfn, | ||
680 | gva_t gaddr, | ||
681 | unsigned level, | ||
682 | int metaphysical, | ||
683 | unsigned access, | ||
684 | u64 *parent_pte, | ||
685 | bool *new_page) | ||
686 | { | ||
687 | union kvm_mmu_page_role role; | ||
688 | unsigned index; | ||
689 | unsigned quadrant; | ||
690 | struct hlist_head *bucket; | ||
691 | struct kvm_mmu_page *sp; | ||
692 | struct hlist_node *node; | ||
693 | |||
694 | role.word = 0; | ||
695 | role.glevels = vcpu->arch.mmu.root_level; | ||
696 | role.level = level; | ||
697 | role.metaphysical = metaphysical; | ||
698 | role.access = access; | ||
699 | if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | ||
700 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | ||
701 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | ||
702 | role.quadrant = quadrant; | ||
703 | } | ||
704 | pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__, | ||
705 | gfn, role.word); | ||
706 | index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | ||
707 | bucket = &vcpu->kvm->arch.mmu_page_hash[index]; | ||
708 | hlist_for_each_entry(sp, node, bucket, hash_link) | ||
709 | if (sp->gfn == gfn && sp->role.word == role.word) { | ||
710 | mmu_page_add_parent_pte(vcpu, sp, parent_pte); | ||
711 | pgprintk("%s: found\n", __FUNCTION__); | ||
712 | return sp; | ||
713 | } | ||
714 | sp = kvm_mmu_alloc_page(vcpu, parent_pte); | ||
715 | if (!sp) | ||
716 | return sp; | ||
717 | pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word); | ||
718 | sp->gfn = gfn; | ||
719 | sp->role = role; | ||
720 | hlist_add_head(&sp->hash_link, bucket); | ||
721 | vcpu->arch.mmu.prefetch_page(vcpu, sp); | ||
722 | if (!metaphysical) | ||
723 | rmap_write_protect(vcpu->kvm, gfn); | ||
724 | if (new_page) | ||
725 | *new_page = 1; | ||
726 | return sp; | ||
727 | } | ||
728 | |||
729 | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | ||
730 | struct kvm_mmu_page *sp) | ||
731 | { | ||
732 | unsigned i; | ||
733 | u64 *pt; | ||
734 | u64 ent; | ||
735 | |||
736 | pt = sp->spt; | ||
737 | |||
738 | if (sp->role.level == PT_PAGE_TABLE_LEVEL) { | ||
739 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
740 | if (is_shadow_present_pte(pt[i])) | ||
741 | rmap_remove(kvm, &pt[i]); | ||
742 | pt[i] = shadow_trap_nonpresent_pte; | ||
743 | } | ||
744 | kvm_flush_remote_tlbs(kvm); | ||
745 | return; | ||
746 | } | ||
747 | |||
748 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
749 | ent = pt[i]; | ||
750 | |||
751 | pt[i] = shadow_trap_nonpresent_pte; | ||
752 | if (!is_shadow_present_pte(ent)) | ||
753 | continue; | ||
754 | ent &= PT64_BASE_ADDR_MASK; | ||
755 | mmu_page_remove_parent_pte(page_header(ent), &pt[i]); | ||
756 | } | ||
757 | kvm_flush_remote_tlbs(kvm); | ||
758 | } | ||
759 | |||
760 | static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) | ||
761 | { | ||
762 | mmu_page_remove_parent_pte(sp, parent_pte); | ||
763 | } | ||
764 | |||
765 | static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm) | ||
766 | { | ||
767 | int i; | ||
768 | |||
769 | for (i = 0; i < KVM_MAX_VCPUS; ++i) | ||
770 | if (kvm->vcpus[i]) | ||
771 | kvm->vcpus[i]->arch.last_pte_updated = NULL; | ||
772 | } | ||
773 | |||
774 | static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp) | ||
775 | { | ||
776 | u64 *parent_pte; | ||
777 | |||
778 | ++kvm->stat.mmu_shadow_zapped; | ||
779 | while (sp->multimapped || sp->parent_pte) { | ||
780 | if (!sp->multimapped) | ||
781 | parent_pte = sp->parent_pte; | ||
782 | else { | ||
783 | struct kvm_pte_chain *chain; | ||
784 | |||
785 | chain = container_of(sp->parent_ptes.first, | ||
786 | struct kvm_pte_chain, link); | ||
787 | parent_pte = chain->parent_ptes[0]; | ||
788 | } | ||
789 | BUG_ON(!parent_pte); | ||
790 | kvm_mmu_put_page(sp, parent_pte); | ||
791 | set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte); | ||
792 | } | ||
793 | kvm_mmu_page_unlink_children(kvm, sp); | ||
794 | if (!sp->root_count) { | ||
795 | hlist_del(&sp->hash_link); | ||
796 | kvm_mmu_free_page(kvm, sp); | ||
797 | } else | ||
798 | list_move(&sp->link, &kvm->arch.active_mmu_pages); | ||
799 | kvm_mmu_reset_last_pte_updated(kvm); | ||
800 | } | ||
801 | |||
802 | /* | ||
803 | * Changing the number of mmu pages allocated to the vm | ||
804 | * Note: if kvm_nr_mmu_pages is too small, you will get dead lock | ||
805 | */ | ||
806 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages) | ||
807 | { | ||
808 | /* | ||
809 | * If we set the number of mmu pages to be smaller be than the | ||
810 | * number of actived pages , we must to free some mmu pages before we | ||
811 | * change the value | ||
812 | */ | ||
813 | |||
814 | if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) > | ||
815 | kvm_nr_mmu_pages) { | ||
816 | int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages | ||
817 | - kvm->arch.n_free_mmu_pages; | ||
818 | |||
819 | while (n_used_mmu_pages > kvm_nr_mmu_pages) { | ||
820 | struct kvm_mmu_page *page; | ||
821 | |||
822 | page = container_of(kvm->arch.active_mmu_pages.prev, | ||
823 | struct kvm_mmu_page, link); | ||
824 | kvm_mmu_zap_page(kvm, page); | ||
825 | n_used_mmu_pages--; | ||
826 | } | ||
827 | kvm->arch.n_free_mmu_pages = 0; | ||
828 | } | ||
829 | else | ||
830 | kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages | ||
831 | - kvm->arch.n_alloc_mmu_pages; | ||
832 | |||
833 | kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages; | ||
834 | } | ||
835 | |||
836 | static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | ||
837 | { | ||
838 | unsigned index; | ||
839 | struct hlist_head *bucket; | ||
840 | struct kvm_mmu_page *sp; | ||
841 | struct hlist_node *node, *n; | ||
842 | int r; | ||
843 | |||
844 | pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); | ||
845 | r = 0; | ||
846 | index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | ||
847 | bucket = &kvm->arch.mmu_page_hash[index]; | ||
848 | hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) | ||
849 | if (sp->gfn == gfn && !sp->role.metaphysical) { | ||
850 | pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn, | ||
851 | sp->role.word); | ||
852 | kvm_mmu_zap_page(kvm, sp); | ||
853 | r = 1; | ||
854 | } | ||
855 | return r; | ||
856 | } | ||
857 | |||
858 | static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) | ||
859 | { | ||
860 | struct kvm_mmu_page *sp; | ||
861 | |||
862 | while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) { | ||
863 | pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word); | ||
864 | kvm_mmu_zap_page(kvm, sp); | ||
865 | } | ||
866 | } | ||
867 | |||
868 | static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) | ||
869 | { | ||
870 | int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn)); | ||
871 | struct kvm_mmu_page *sp = page_header(__pa(pte)); | ||
872 | |||
873 | __set_bit(slot, &sp->slot_bitmap); | ||
874 | } | ||
875 | |||
876 | struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva) | ||
877 | { | ||
878 | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva); | ||
879 | |||
880 | if (gpa == UNMAPPED_GVA) | ||
881 | return NULL; | ||
882 | return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | ||
883 | } | ||
884 | |||
885 | static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte, | ||
886 | unsigned pt_access, unsigned pte_access, | ||
887 | int user_fault, int write_fault, int dirty, | ||
888 | int *ptwrite, gfn_t gfn) | ||
889 | { | ||
890 | u64 spte; | ||
891 | int was_rmapped = is_rmap_pte(*shadow_pte); | ||
892 | struct page *page; | ||
893 | |||
894 | pgprintk("%s: spte %llx access %x write_fault %d" | ||
895 | " user_fault %d gfn %lx\n", | ||
896 | __FUNCTION__, *shadow_pte, pt_access, | ||
897 | write_fault, user_fault, gfn); | ||
898 | |||
899 | /* | ||
900 | * We don't set the accessed bit, since we sometimes want to see | ||
901 | * whether the guest actually used the pte (in order to detect | ||
902 | * demand paging). | ||
903 | */ | ||
904 | spte = PT_PRESENT_MASK | PT_DIRTY_MASK; | ||
905 | if (!dirty) | ||
906 | pte_access &= ~ACC_WRITE_MASK; | ||
907 | if (!(pte_access & ACC_EXEC_MASK)) | ||
908 | spte |= PT64_NX_MASK; | ||
909 | |||
910 | page = gfn_to_page(vcpu->kvm, gfn); | ||
911 | |||
912 | spte |= PT_PRESENT_MASK; | ||
913 | if (pte_access & ACC_USER_MASK) | ||
914 | spte |= PT_USER_MASK; | ||
915 | |||
916 | if (is_error_page(page)) { | ||
917 | set_shadow_pte(shadow_pte, | ||
918 | shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK); | ||
919 | kvm_release_page_clean(page); | ||
920 | return; | ||
921 | } | ||
922 | |||
923 | spte |= page_to_phys(page); | ||
924 | |||
925 | if ((pte_access & ACC_WRITE_MASK) | ||
926 | || (write_fault && !is_write_protection(vcpu) && !user_fault)) { | ||
927 | struct kvm_mmu_page *shadow; | ||
928 | |||
929 | spte |= PT_WRITABLE_MASK; | ||
930 | if (user_fault) { | ||
931 | mmu_unshadow(vcpu->kvm, gfn); | ||
932 | goto unshadowed; | ||
933 | } | ||
934 | |||
935 | shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn); | ||
936 | if (shadow) { | ||
937 | pgprintk("%s: found shadow page for %lx, marking ro\n", | ||
938 | __FUNCTION__, gfn); | ||
939 | pte_access &= ~ACC_WRITE_MASK; | ||
940 | if (is_writeble_pte(spte)) { | ||
941 | spte &= ~PT_WRITABLE_MASK; | ||
942 | kvm_x86_ops->tlb_flush(vcpu); | ||
943 | } | ||
944 | if (write_fault) | ||
945 | *ptwrite = 1; | ||
946 | } | ||
947 | } | ||
948 | |||
949 | unshadowed: | ||
950 | |||
951 | if (pte_access & ACC_WRITE_MASK) | ||
952 | mark_page_dirty(vcpu->kvm, gfn); | ||
953 | |||
954 | pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte); | ||
955 | set_shadow_pte(shadow_pte, spte); | ||
956 | page_header_update_slot(vcpu->kvm, shadow_pte, gfn); | ||
957 | if (!was_rmapped) { | ||
958 | rmap_add(vcpu, shadow_pte, gfn); | ||
959 | if (!is_rmap_pte(*shadow_pte)) | ||
960 | kvm_release_page_clean(page); | ||
961 | } | ||
962 | else | ||
963 | kvm_release_page_clean(page); | ||
964 | if (!ptwrite || !*ptwrite) | ||
965 | vcpu->arch.last_pte_updated = shadow_pte; | ||
966 | } | ||
967 | |||
968 | static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | ||
969 | { | ||
970 | } | ||
971 | |||
972 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) | ||
973 | { | ||
974 | int level = PT32E_ROOT_LEVEL; | ||
975 | hpa_t table_addr = vcpu->arch.mmu.root_hpa; | ||
976 | int pt_write = 0; | ||
977 | |||
978 | for (; ; level--) { | ||
979 | u32 index = PT64_INDEX(v, level); | ||
980 | u64 *table; | ||
981 | |||
982 | ASSERT(VALID_PAGE(table_addr)); | ||
983 | table = __va(table_addr); | ||
984 | |||
985 | if (level == 1) { | ||
986 | mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL, | ||
987 | 0, write, 1, &pt_write, gfn); | ||
988 | return pt_write || is_io_pte(table[index]); | ||
989 | } | ||
990 | |||
991 | if (table[index] == shadow_trap_nonpresent_pte) { | ||
992 | struct kvm_mmu_page *new_table; | ||
993 | gfn_t pseudo_gfn; | ||
994 | |||
995 | pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK) | ||
996 | >> PAGE_SHIFT; | ||
997 | new_table = kvm_mmu_get_page(vcpu, pseudo_gfn, | ||
998 | v, level - 1, | ||
999 | 1, ACC_ALL, &table[index], | ||
1000 | NULL); | ||
1001 | if (!new_table) { | ||
1002 | pgprintk("nonpaging_map: ENOMEM\n"); | ||
1003 | return -ENOMEM; | ||
1004 | } | ||
1005 | |||
1006 | table[index] = __pa(new_table->spt) | PT_PRESENT_MASK | ||
1007 | | PT_WRITABLE_MASK | PT_USER_MASK; | ||
1008 | } | ||
1009 | table_addr = table[index] & PT64_BASE_ADDR_MASK; | ||
1010 | } | ||
1011 | } | ||
1012 | |||
1013 | static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu, | ||
1014 | struct kvm_mmu_page *sp) | ||
1015 | { | ||
1016 | int i; | ||
1017 | |||
1018 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | ||
1019 | sp->spt[i] = shadow_trap_nonpresent_pte; | ||
1020 | } | ||
1021 | |||
1022 | static void mmu_free_roots(struct kvm_vcpu *vcpu) | ||
1023 | { | ||
1024 | int i; | ||
1025 | struct kvm_mmu_page *sp; | ||
1026 | |||
1027 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | ||
1028 | return; | ||
1029 | #ifdef CONFIG_X86_64 | ||
1030 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | ||
1031 | hpa_t root = vcpu->arch.mmu.root_hpa; | ||
1032 | |||
1033 | sp = page_header(root); | ||
1034 | --sp->root_count; | ||
1035 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | ||
1036 | return; | ||
1037 | } | ||
1038 | #endif | ||
1039 | for (i = 0; i < 4; ++i) { | ||
1040 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | ||
1041 | |||
1042 | if (root) { | ||
1043 | root &= PT64_BASE_ADDR_MASK; | ||
1044 | sp = page_header(root); | ||
1045 | --sp->root_count; | ||
1046 | } | ||
1047 | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | ||
1048 | } | ||
1049 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | ||
1050 | } | ||
1051 | |||
1052 | static void mmu_alloc_roots(struct kvm_vcpu *vcpu) | ||
1053 | { | ||
1054 | int i; | ||
1055 | gfn_t root_gfn; | ||
1056 | struct kvm_mmu_page *sp; | ||
1057 | |||
1058 | root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT; | ||
1059 | |||
1060 | #ifdef CONFIG_X86_64 | ||
1061 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | ||
1062 | hpa_t root = vcpu->arch.mmu.root_hpa; | ||
1063 | |||
1064 | ASSERT(!VALID_PAGE(root)); | ||
1065 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, | ||
1066 | PT64_ROOT_LEVEL, 0, ACC_ALL, NULL, NULL); | ||
1067 | root = __pa(sp->spt); | ||
1068 | ++sp->root_count; | ||
1069 | vcpu->arch.mmu.root_hpa = root; | ||
1070 | return; | ||
1071 | } | ||
1072 | #endif | ||
1073 | for (i = 0; i < 4; ++i) { | ||
1074 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | ||
1075 | |||
1076 | ASSERT(!VALID_PAGE(root)); | ||
1077 | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | ||
1078 | if (!is_present_pte(vcpu->arch.pdptrs[i])) { | ||
1079 | vcpu->arch.mmu.pae_root[i] = 0; | ||
1080 | continue; | ||
1081 | } | ||
1082 | root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT; | ||
1083 | } else if (vcpu->arch.mmu.root_level == 0) | ||
1084 | root_gfn = 0; | ||
1085 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | ||
1086 | PT32_ROOT_LEVEL, !is_paging(vcpu), | ||
1087 | ACC_ALL, NULL, NULL); | ||
1088 | root = __pa(sp->spt); | ||
1089 | ++sp->root_count; | ||
1090 | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | ||
1091 | } | ||
1092 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | ||
1093 | } | ||
1094 | |||
1095 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr) | ||
1096 | { | ||
1097 | return vaddr; | ||
1098 | } | ||
1099 | |||
1100 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | ||
1101 | u32 error_code) | ||
1102 | { | ||
1103 | gfn_t gfn; | ||
1104 | int r; | ||
1105 | |||
1106 | pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code); | ||
1107 | r = mmu_topup_memory_caches(vcpu); | ||
1108 | if (r) | ||
1109 | return r; | ||
1110 | |||
1111 | ASSERT(vcpu); | ||
1112 | ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | ||
1113 | |||
1114 | gfn = gva >> PAGE_SHIFT; | ||
1115 | |||
1116 | return nonpaging_map(vcpu, gva & PAGE_MASK, | ||
1117 | error_code & PFERR_WRITE_MASK, gfn); | ||
1118 | } | ||
1119 | |||
1120 | static void nonpaging_free(struct kvm_vcpu *vcpu) | ||
1121 | { | ||
1122 | mmu_free_roots(vcpu); | ||
1123 | } | ||
1124 | |||
1125 | static int nonpaging_init_context(struct kvm_vcpu *vcpu) | ||
1126 | { | ||
1127 | struct kvm_mmu *context = &vcpu->arch.mmu; | ||
1128 | |||
1129 | context->new_cr3 = nonpaging_new_cr3; | ||
1130 | context->page_fault = nonpaging_page_fault; | ||
1131 | context->gva_to_gpa = nonpaging_gva_to_gpa; | ||
1132 | context->free = nonpaging_free; | ||
1133 | context->prefetch_page = nonpaging_prefetch_page; | ||
1134 | context->root_level = 0; | ||
1135 | context->shadow_root_level = PT32E_ROOT_LEVEL; | ||
1136 | context->root_hpa = INVALID_PAGE; | ||
1137 | return 0; | ||
1138 | } | ||
1139 | |||
1140 | void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) | ||
1141 | { | ||
1142 | ++vcpu->stat.tlb_flush; | ||
1143 | kvm_x86_ops->tlb_flush(vcpu); | ||
1144 | } | ||
1145 | |||
1146 | static void paging_new_cr3(struct kvm_vcpu *vcpu) | ||
1147 | { | ||
1148 | pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3); | ||
1149 | mmu_free_roots(vcpu); | ||
1150 | } | ||
1151 | |||
1152 | static void inject_page_fault(struct kvm_vcpu *vcpu, | ||
1153 | u64 addr, | ||
1154 | u32 err_code) | ||
1155 | { | ||
1156 | kvm_inject_page_fault(vcpu, addr, err_code); | ||
1157 | } | ||
1158 | |||
1159 | static void paging_free(struct kvm_vcpu *vcpu) | ||
1160 | { | ||
1161 | nonpaging_free(vcpu); | ||
1162 | } | ||
1163 | |||
1164 | #define PTTYPE 64 | ||
1165 | #include "paging_tmpl.h" | ||
1166 | #undef PTTYPE | ||
1167 | |||
1168 | #define PTTYPE 32 | ||
1169 | #include "paging_tmpl.h" | ||
1170 | #undef PTTYPE | ||
1171 | |||
1172 | static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) | ||
1173 | { | ||
1174 | struct kvm_mmu *context = &vcpu->arch.mmu; | ||
1175 | |||
1176 | ASSERT(is_pae(vcpu)); | ||
1177 | context->new_cr3 = paging_new_cr3; | ||
1178 | context->page_fault = paging64_page_fault; | ||
1179 | context->gva_to_gpa = paging64_gva_to_gpa; | ||
1180 | context->prefetch_page = paging64_prefetch_page; | ||
1181 | context->free = paging_free; | ||
1182 | context->root_level = level; | ||
1183 | context->shadow_root_level = level; | ||
1184 | context->root_hpa = INVALID_PAGE; | ||
1185 | return 0; | ||
1186 | } | ||
1187 | |||
1188 | static int paging64_init_context(struct kvm_vcpu *vcpu) | ||
1189 | { | ||
1190 | return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); | ||
1191 | } | ||
1192 | |||
1193 | static int paging32_init_context(struct kvm_vcpu *vcpu) | ||
1194 | { | ||
1195 | struct kvm_mmu *context = &vcpu->arch.mmu; | ||
1196 | |||
1197 | context->new_cr3 = paging_new_cr3; | ||
1198 | context->page_fault = paging32_page_fault; | ||
1199 | context->gva_to_gpa = paging32_gva_to_gpa; | ||
1200 | context->free = paging_free; | ||
1201 | context->prefetch_page = paging32_prefetch_page; | ||
1202 | context->root_level = PT32_ROOT_LEVEL; | ||
1203 | context->shadow_root_level = PT32E_ROOT_LEVEL; | ||
1204 | context->root_hpa = INVALID_PAGE; | ||
1205 | return 0; | ||
1206 | } | ||
1207 | |||
1208 | static int paging32E_init_context(struct kvm_vcpu *vcpu) | ||
1209 | { | ||
1210 | return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); | ||
1211 | } | ||
1212 | |||
1213 | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | ||
1214 | { | ||
1215 | ASSERT(vcpu); | ||
1216 | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | ||
1217 | |||
1218 | if (!is_paging(vcpu)) | ||
1219 | return nonpaging_init_context(vcpu); | ||
1220 | else if (is_long_mode(vcpu)) | ||
1221 | return paging64_init_context(vcpu); | ||
1222 | else if (is_pae(vcpu)) | ||
1223 | return paging32E_init_context(vcpu); | ||
1224 | else | ||
1225 | return paging32_init_context(vcpu); | ||
1226 | } | ||
1227 | |||
1228 | static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) | ||
1229 | { | ||
1230 | ASSERT(vcpu); | ||
1231 | if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) { | ||
1232 | vcpu->arch.mmu.free(vcpu); | ||
1233 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | ||
1234 | } | ||
1235 | } | ||
1236 | |||
1237 | int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | ||
1238 | { | ||
1239 | destroy_kvm_mmu(vcpu); | ||
1240 | return init_kvm_mmu(vcpu); | ||
1241 | } | ||
1242 | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | ||
1243 | |||
1244 | int kvm_mmu_load(struct kvm_vcpu *vcpu) | ||
1245 | { | ||
1246 | int r; | ||
1247 | |||
1248 | mutex_lock(&vcpu->kvm->lock); | ||
1249 | r = mmu_topup_memory_caches(vcpu); | ||
1250 | if (r) | ||
1251 | goto out; | ||
1252 | mmu_alloc_roots(vcpu); | ||
1253 | kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | ||
1254 | kvm_mmu_flush_tlb(vcpu); | ||
1255 | out: | ||
1256 | mutex_unlock(&vcpu->kvm->lock); | ||
1257 | return r; | ||
1258 | } | ||
1259 | EXPORT_SYMBOL_GPL(kvm_mmu_load); | ||
1260 | |||
1261 | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | ||
1262 | { | ||
1263 | mmu_free_roots(vcpu); | ||
1264 | } | ||
1265 | |||
1266 | static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, | ||
1267 | struct kvm_mmu_page *sp, | ||
1268 | u64 *spte) | ||
1269 | { | ||
1270 | u64 pte; | ||
1271 | struct kvm_mmu_page *child; | ||
1272 | |||
1273 | pte = *spte; | ||
1274 | if (is_shadow_present_pte(pte)) { | ||
1275 | if (sp->role.level == PT_PAGE_TABLE_LEVEL) | ||
1276 | rmap_remove(vcpu->kvm, spte); | ||
1277 | else { | ||
1278 | child = page_header(pte & PT64_BASE_ADDR_MASK); | ||
1279 | mmu_page_remove_parent_pte(child, spte); | ||
1280 | } | ||
1281 | } | ||
1282 | set_shadow_pte(spte, shadow_trap_nonpresent_pte); | ||
1283 | } | ||
1284 | |||
1285 | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | ||
1286 | struct kvm_mmu_page *sp, | ||
1287 | u64 *spte, | ||
1288 | const void *new, int bytes, | ||
1289 | int offset_in_pte) | ||
1290 | { | ||
1291 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | ||
1292 | ++vcpu->kvm->stat.mmu_pde_zapped; | ||
1293 | return; | ||
1294 | } | ||
1295 | |||
1296 | ++vcpu->kvm->stat.mmu_pte_updated; | ||
1297 | if (sp->role.glevels == PT32_ROOT_LEVEL) | ||
1298 | paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte); | ||
1299 | else | ||
1300 | paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte); | ||
1301 | } | ||
1302 | |||
1303 | static bool need_remote_flush(u64 old, u64 new) | ||
1304 | { | ||
1305 | if (!is_shadow_present_pte(old)) | ||
1306 | return false; | ||
1307 | if (!is_shadow_present_pte(new)) | ||
1308 | return true; | ||
1309 | if ((old ^ new) & PT64_BASE_ADDR_MASK) | ||
1310 | return true; | ||
1311 | old ^= PT64_NX_MASK; | ||
1312 | new ^= PT64_NX_MASK; | ||
1313 | return (old & ~new & PT64_PERM_MASK) != 0; | ||
1314 | } | ||
1315 | |||
1316 | static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new) | ||
1317 | { | ||
1318 | if (need_remote_flush(old, new)) | ||
1319 | kvm_flush_remote_tlbs(vcpu->kvm); | ||
1320 | else | ||
1321 | kvm_mmu_flush_tlb(vcpu); | ||
1322 | } | ||
1323 | |||
1324 | static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) | ||
1325 | { | ||
1326 | u64 *spte = vcpu->arch.last_pte_updated; | ||
1327 | |||
1328 | return !!(spte && (*spte & PT_ACCESSED_MASK)); | ||
1329 | } | ||
1330 | |||
1331 | void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | ||
1332 | const u8 *new, int bytes) | ||
1333 | { | ||
1334 | gfn_t gfn = gpa >> PAGE_SHIFT; | ||
1335 | struct kvm_mmu_page *sp; | ||
1336 | struct hlist_node *node, *n; | ||
1337 | struct hlist_head *bucket; | ||
1338 | unsigned index; | ||
1339 | u64 entry; | ||
1340 | u64 *spte; | ||
1341 | unsigned offset = offset_in_page(gpa); | ||
1342 | unsigned pte_size; | ||
1343 | unsigned page_offset; | ||
1344 | unsigned misaligned; | ||
1345 | unsigned quadrant; | ||
1346 | int level; | ||
1347 | int flooded = 0; | ||
1348 | int npte; | ||
1349 | |||
1350 | pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes); | ||
1351 | ++vcpu->kvm->stat.mmu_pte_write; | ||
1352 | kvm_mmu_audit(vcpu, "pre pte write"); | ||
1353 | if (gfn == vcpu->arch.last_pt_write_gfn | ||
1354 | && !last_updated_pte_accessed(vcpu)) { | ||
1355 | ++vcpu->arch.last_pt_write_count; | ||
1356 | if (vcpu->arch.last_pt_write_count >= 3) | ||
1357 | flooded = 1; | ||
1358 | } else { | ||
1359 | vcpu->arch.last_pt_write_gfn = gfn; | ||
1360 | vcpu->arch.last_pt_write_count = 1; | ||
1361 | vcpu->arch.last_pte_updated = NULL; | ||
1362 | } | ||
1363 | index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | ||
1364 | bucket = &vcpu->kvm->arch.mmu_page_hash[index]; | ||
1365 | hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) { | ||
1366 | if (sp->gfn != gfn || sp->role.metaphysical) | ||
1367 | continue; | ||
1368 | pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8; | ||
1369 | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | ||
1370 | misaligned |= bytes < 4; | ||
1371 | if (misaligned || flooded) { | ||
1372 | /* | ||
1373 | * Misaligned accesses are too much trouble to fix | ||
1374 | * up; also, they usually indicate a page is not used | ||
1375 | * as a page table. | ||
1376 | * | ||
1377 | * If we're seeing too many writes to a page, | ||
1378 | * it may no longer be a page table, or we may be | ||
1379 | * forking, in which case it is better to unmap the | ||
1380 | * page. | ||
1381 | */ | ||
1382 | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | ||
1383 | gpa, bytes, sp->role.word); | ||
1384 | kvm_mmu_zap_page(vcpu->kvm, sp); | ||
1385 | ++vcpu->kvm->stat.mmu_flooded; | ||
1386 | continue; | ||
1387 | } | ||
1388 | page_offset = offset; | ||
1389 | level = sp->role.level; | ||
1390 | npte = 1; | ||
1391 | if (sp->role.glevels == PT32_ROOT_LEVEL) { | ||
1392 | page_offset <<= 1; /* 32->64 */ | ||
1393 | /* | ||
1394 | * A 32-bit pde maps 4MB while the shadow pdes map | ||
1395 | * only 2MB. So we need to double the offset again | ||
1396 | * and zap two pdes instead of one. | ||
1397 | */ | ||
1398 | if (level == PT32_ROOT_LEVEL) { | ||
1399 | page_offset &= ~7; /* kill rounding error */ | ||
1400 | page_offset <<= 1; | ||
1401 | npte = 2; | ||
1402 | } | ||
1403 | quadrant = page_offset >> PAGE_SHIFT; | ||
1404 | page_offset &= ~PAGE_MASK; | ||
1405 | if (quadrant != sp->role.quadrant) | ||
1406 | continue; | ||
1407 | } | ||
1408 | spte = &sp->spt[page_offset / sizeof(*spte)]; | ||
1409 | while (npte--) { | ||
1410 | entry = *spte; | ||
1411 | mmu_pte_write_zap_pte(vcpu, sp, spte); | ||
1412 | mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes, | ||
1413 | page_offset & (pte_size - 1)); | ||
1414 | mmu_pte_write_flush_tlb(vcpu, entry, *spte); | ||
1415 | ++spte; | ||
1416 | } | ||
1417 | } | ||
1418 | kvm_mmu_audit(vcpu, "post pte write"); | ||
1419 | } | ||
1420 | |||
1421 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | ||
1422 | { | ||
1423 | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva); | ||
1424 | |||
1425 | return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | ||
1426 | } | ||
1427 | |||
1428 | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | ||
1429 | { | ||
1430 | while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) { | ||
1431 | struct kvm_mmu_page *sp; | ||
1432 | |||
1433 | sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, | ||
1434 | struct kvm_mmu_page, link); | ||
1435 | kvm_mmu_zap_page(vcpu->kvm, sp); | ||
1436 | ++vcpu->kvm->stat.mmu_recycled; | ||
1437 | } | ||
1438 | } | ||
1439 | |||
1440 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) | ||
1441 | { | ||
1442 | int r; | ||
1443 | enum emulation_result er; | ||
1444 | |||
1445 | mutex_lock(&vcpu->kvm->lock); | ||
1446 | r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code); | ||
1447 | if (r < 0) | ||
1448 | goto out; | ||
1449 | |||
1450 | if (!r) { | ||
1451 | r = 1; | ||
1452 | goto out; | ||
1453 | } | ||
1454 | |||
1455 | r = mmu_topup_memory_caches(vcpu); | ||
1456 | if (r) | ||
1457 | goto out; | ||
1458 | |||
1459 | er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0); | ||
1460 | mutex_unlock(&vcpu->kvm->lock); | ||
1461 | |||
1462 | switch (er) { | ||
1463 | case EMULATE_DONE: | ||
1464 | return 1; | ||
1465 | case EMULATE_DO_MMIO: | ||
1466 | ++vcpu->stat.mmio_exits; | ||
1467 | return 0; | ||
1468 | case EMULATE_FAIL: | ||
1469 | kvm_report_emulation_failure(vcpu, "pagetable"); | ||
1470 | return 1; | ||
1471 | default: | ||
1472 | BUG(); | ||
1473 | } | ||
1474 | out: | ||
1475 | mutex_unlock(&vcpu->kvm->lock); | ||
1476 | return r; | ||
1477 | } | ||
1478 | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | ||
1479 | |||
1480 | static void free_mmu_pages(struct kvm_vcpu *vcpu) | ||
1481 | { | ||
1482 | struct kvm_mmu_page *sp; | ||
1483 | |||
1484 | while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) { | ||
1485 | sp = container_of(vcpu->kvm->arch.active_mmu_pages.next, | ||
1486 | struct kvm_mmu_page, link); | ||
1487 | kvm_mmu_zap_page(vcpu->kvm, sp); | ||
1488 | } | ||
1489 | free_page((unsigned long)vcpu->arch.mmu.pae_root); | ||
1490 | } | ||
1491 | |||
1492 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | ||
1493 | { | ||
1494 | struct page *page; | ||
1495 | int i; | ||
1496 | |||
1497 | ASSERT(vcpu); | ||
1498 | |||
1499 | if (vcpu->kvm->arch.n_requested_mmu_pages) | ||
1500 | vcpu->kvm->arch.n_free_mmu_pages = | ||
1501 | vcpu->kvm->arch.n_requested_mmu_pages; | ||
1502 | else | ||
1503 | vcpu->kvm->arch.n_free_mmu_pages = | ||
1504 | vcpu->kvm->arch.n_alloc_mmu_pages; | ||
1505 | /* | ||
1506 | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | ||
1507 | * Therefore we need to allocate shadow page tables in the first | ||
1508 | * 4GB of memory, which happens to fit the DMA32 zone. | ||
1509 | */ | ||
1510 | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | ||
1511 | if (!page) | ||
1512 | goto error_1; | ||
1513 | vcpu->arch.mmu.pae_root = page_address(page); | ||
1514 | for (i = 0; i < 4; ++i) | ||
1515 | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | ||
1516 | |||
1517 | return 0; | ||
1518 | |||
1519 | error_1: | ||
1520 | free_mmu_pages(vcpu); | ||
1521 | return -ENOMEM; | ||
1522 | } | ||
1523 | |||
1524 | int kvm_mmu_create(struct kvm_vcpu *vcpu) | ||
1525 | { | ||
1526 | ASSERT(vcpu); | ||
1527 | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | ||
1528 | |||
1529 | return alloc_mmu_pages(vcpu); | ||
1530 | } | ||
1531 | |||
1532 | int kvm_mmu_setup(struct kvm_vcpu *vcpu) | ||
1533 | { | ||
1534 | ASSERT(vcpu); | ||
1535 | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | ||
1536 | |||
1537 | return init_kvm_mmu(vcpu); | ||
1538 | } | ||
1539 | |||
1540 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | ||
1541 | { | ||
1542 | ASSERT(vcpu); | ||
1543 | |||
1544 | destroy_kvm_mmu(vcpu); | ||
1545 | free_mmu_pages(vcpu); | ||
1546 | mmu_free_memory_caches(vcpu); | ||
1547 | } | ||
1548 | |||
1549 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) | ||
1550 | { | ||
1551 | struct kvm_mmu_page *sp; | ||
1552 | |||
1553 | list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { | ||
1554 | int i; | ||
1555 | u64 *pt; | ||
1556 | |||
1557 | if (!test_bit(slot, &sp->slot_bitmap)) | ||
1558 | continue; | ||
1559 | |||
1560 | pt = sp->spt; | ||
1561 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | ||
1562 | /* avoid RMW */ | ||
1563 | if (pt[i] & PT_WRITABLE_MASK) | ||
1564 | pt[i] &= ~PT_WRITABLE_MASK; | ||
1565 | } | ||
1566 | } | ||
1567 | |||
1568 | void kvm_mmu_zap_all(struct kvm *kvm) | ||
1569 | { | ||
1570 | struct kvm_mmu_page *sp, *node; | ||
1571 | |||
1572 | list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) | ||
1573 | kvm_mmu_zap_page(kvm, sp); | ||
1574 | |||
1575 | kvm_flush_remote_tlbs(kvm); | ||
1576 | } | ||
1577 | |||
1578 | void kvm_mmu_module_exit(void) | ||
1579 | { | ||
1580 | if (pte_chain_cache) | ||
1581 | kmem_cache_destroy(pte_chain_cache); | ||
1582 | if (rmap_desc_cache) | ||
1583 | kmem_cache_destroy(rmap_desc_cache); | ||
1584 | if (mmu_page_header_cache) | ||
1585 | kmem_cache_destroy(mmu_page_header_cache); | ||
1586 | } | ||
1587 | |||
1588 | int kvm_mmu_module_init(void) | ||
1589 | { | ||
1590 | pte_chain_cache = kmem_cache_create("kvm_pte_chain", | ||
1591 | sizeof(struct kvm_pte_chain), | ||
1592 | 0, 0, NULL); | ||
1593 | if (!pte_chain_cache) | ||
1594 | goto nomem; | ||
1595 | rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", | ||
1596 | sizeof(struct kvm_rmap_desc), | ||
1597 | 0, 0, NULL); | ||
1598 | if (!rmap_desc_cache) | ||
1599 | goto nomem; | ||
1600 | |||
1601 | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | ||
1602 | sizeof(struct kvm_mmu_page), | ||
1603 | 0, 0, NULL); | ||
1604 | if (!mmu_page_header_cache) | ||
1605 | goto nomem; | ||
1606 | |||
1607 | return 0; | ||
1608 | |||
1609 | nomem: | ||
1610 | kvm_mmu_module_exit(); | ||
1611 | return -ENOMEM; | ||
1612 | } | ||
1613 | |||
1614 | /* | ||
1615 | * Caculate mmu pages needed for kvm. | ||
1616 | */ | ||
1617 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | ||
1618 | { | ||
1619 | int i; | ||
1620 | unsigned int nr_mmu_pages; | ||
1621 | unsigned int nr_pages = 0; | ||
1622 | |||
1623 | for (i = 0; i < kvm->nmemslots; i++) | ||
1624 | nr_pages += kvm->memslots[i].npages; | ||
1625 | |||
1626 | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | ||
1627 | nr_mmu_pages = max(nr_mmu_pages, | ||
1628 | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | ||
1629 | |||
1630 | return nr_mmu_pages; | ||
1631 | } | ||
1632 | |||
1633 | #ifdef AUDIT | ||
1634 | |||
1635 | static const char *audit_msg; | ||
1636 | |||
1637 | static gva_t canonicalize(gva_t gva) | ||
1638 | { | ||
1639 | #ifdef CONFIG_X86_64 | ||
1640 | gva = (long long)(gva << 16) >> 16; | ||
1641 | #endif | ||
1642 | return gva; | ||
1643 | } | ||
1644 | |||
1645 | static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, | ||
1646 | gva_t va, int level) | ||
1647 | { | ||
1648 | u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); | ||
1649 | int i; | ||
1650 | gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); | ||
1651 | |||
1652 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { | ||
1653 | u64 ent = pt[i]; | ||
1654 | |||
1655 | if (ent == shadow_trap_nonpresent_pte) | ||
1656 | continue; | ||
1657 | |||
1658 | va = canonicalize(va); | ||
1659 | if (level > 1) { | ||
1660 | if (ent == shadow_notrap_nonpresent_pte) | ||
1661 | printk(KERN_ERR "audit: (%s) nontrapping pte" | ||
1662 | " in nonleaf level: levels %d gva %lx" | ||
1663 | " level %d pte %llx\n", audit_msg, | ||
1664 | vcpu->arch.mmu.root_level, va, level, ent); | ||
1665 | |||
1666 | audit_mappings_page(vcpu, ent, va, level - 1); | ||
1667 | } else { | ||
1668 | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va); | ||
1669 | struct page *page = gpa_to_page(vcpu, gpa); | ||
1670 | hpa_t hpa = page_to_phys(page); | ||
1671 | |||
1672 | if (is_shadow_present_pte(ent) | ||
1673 | && (ent & PT64_BASE_ADDR_MASK) != hpa) | ||
1674 | printk(KERN_ERR "xx audit error: (%s) levels %d" | ||
1675 | " gva %lx gpa %llx hpa %llx ent %llx %d\n", | ||
1676 | audit_msg, vcpu->arch.mmu.root_level, | ||
1677 | va, gpa, hpa, ent, | ||
1678 | is_shadow_present_pte(ent)); | ||
1679 | else if (ent == shadow_notrap_nonpresent_pte | ||
1680 | && !is_error_hpa(hpa)) | ||
1681 | printk(KERN_ERR "audit: (%s) notrap shadow," | ||
1682 | " valid guest gva %lx\n", audit_msg, va); | ||
1683 | kvm_release_page_clean(page); | ||
1684 | |||
1685 | } | ||
1686 | } | ||
1687 | } | ||
1688 | |||
1689 | static void audit_mappings(struct kvm_vcpu *vcpu) | ||
1690 | { | ||
1691 | unsigned i; | ||
1692 | |||
1693 | if (vcpu->arch.mmu.root_level == 4) | ||
1694 | audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4); | ||
1695 | else | ||
1696 | for (i = 0; i < 4; ++i) | ||
1697 | if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK) | ||
1698 | audit_mappings_page(vcpu, | ||
1699 | vcpu->arch.mmu.pae_root[i], | ||
1700 | i << 30, | ||
1701 | 2); | ||
1702 | } | ||
1703 | |||
1704 | static int count_rmaps(struct kvm_vcpu *vcpu) | ||
1705 | { | ||
1706 | int nmaps = 0; | ||
1707 | int i, j, k; | ||
1708 | |||
1709 | for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { | ||
1710 | struct kvm_memory_slot *m = &vcpu->kvm->memslots[i]; | ||
1711 | struct kvm_rmap_desc *d; | ||
1712 | |||
1713 | for (j = 0; j < m->npages; ++j) { | ||
1714 | unsigned long *rmapp = &m->rmap[j]; | ||
1715 | |||
1716 | if (!*rmapp) | ||
1717 | continue; | ||
1718 | if (!(*rmapp & 1)) { | ||
1719 | ++nmaps; | ||
1720 | continue; | ||
1721 | } | ||
1722 | d = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | ||
1723 | while (d) { | ||
1724 | for (k = 0; k < RMAP_EXT; ++k) | ||
1725 | if (d->shadow_ptes[k]) | ||
1726 | ++nmaps; | ||
1727 | else | ||
1728 | break; | ||
1729 | d = d->more; | ||
1730 | } | ||
1731 | } | ||
1732 | } | ||
1733 | return nmaps; | ||
1734 | } | ||
1735 | |||
1736 | static int count_writable_mappings(struct kvm_vcpu *vcpu) | ||
1737 | { | ||
1738 | int nmaps = 0; | ||
1739 | struct kvm_mmu_page *sp; | ||
1740 | int i; | ||
1741 | |||
1742 | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | ||
1743 | u64 *pt = sp->spt; | ||
1744 | |||
1745 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) | ||
1746 | continue; | ||
1747 | |||
1748 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
1749 | u64 ent = pt[i]; | ||
1750 | |||
1751 | if (!(ent & PT_PRESENT_MASK)) | ||
1752 | continue; | ||
1753 | if (!(ent & PT_WRITABLE_MASK)) | ||
1754 | continue; | ||
1755 | ++nmaps; | ||
1756 | } | ||
1757 | } | ||
1758 | return nmaps; | ||
1759 | } | ||
1760 | |||
1761 | static void audit_rmap(struct kvm_vcpu *vcpu) | ||
1762 | { | ||
1763 | int n_rmap = count_rmaps(vcpu); | ||
1764 | int n_actual = count_writable_mappings(vcpu); | ||
1765 | |||
1766 | if (n_rmap != n_actual) | ||
1767 | printk(KERN_ERR "%s: (%s) rmap %d actual %d\n", | ||
1768 | __FUNCTION__, audit_msg, n_rmap, n_actual); | ||
1769 | } | ||
1770 | |||
1771 | static void audit_write_protection(struct kvm_vcpu *vcpu) | ||
1772 | { | ||
1773 | struct kvm_mmu_page *sp; | ||
1774 | struct kvm_memory_slot *slot; | ||
1775 | unsigned long *rmapp; | ||
1776 | gfn_t gfn; | ||
1777 | |||
1778 | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | ||
1779 | if (sp->role.metaphysical) | ||
1780 | continue; | ||
1781 | |||
1782 | slot = gfn_to_memslot(vcpu->kvm, sp->gfn); | ||
1783 | gfn = unalias_gfn(vcpu->kvm, sp->gfn); | ||
1784 | rmapp = &slot->rmap[gfn - slot->base_gfn]; | ||
1785 | if (*rmapp) | ||
1786 | printk(KERN_ERR "%s: (%s) shadow page has writable" | ||
1787 | " mappings: gfn %lx role %x\n", | ||
1788 | __FUNCTION__, audit_msg, sp->gfn, | ||
1789 | sp->role.word); | ||
1790 | } | ||
1791 | } | ||
1792 | |||
1793 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) | ||
1794 | { | ||
1795 | int olddbg = dbg; | ||
1796 | |||
1797 | dbg = 0; | ||
1798 | audit_msg = msg; | ||
1799 | audit_rmap(vcpu); | ||
1800 | audit_write_protection(vcpu); | ||
1801 | audit_mappings(vcpu); | ||
1802 | dbg = olddbg; | ||
1803 | } | ||
1804 | |||
1805 | #endif | ||