diff options
Diffstat (limited to 'arch/x86/kernel/uv_time.c')
| -rw-r--r-- | arch/x86/kernel/uv_time.c | 393 |
1 files changed, 393 insertions, 0 deletions
diff --git a/arch/x86/kernel/uv_time.c b/arch/x86/kernel/uv_time.c new file mode 100644 index 000000000000..2ffb6c53326e --- /dev/null +++ b/arch/x86/kernel/uv_time.c | |||
| @@ -0,0 +1,393 @@ | |||
| 1 | /* | ||
| 2 | * SGI RTC clock/timer routines. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 17 | * | ||
| 18 | * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved. | ||
| 19 | * Copyright (c) Dimitri Sivanich | ||
| 20 | */ | ||
| 21 | #include <linux/clockchips.h> | ||
| 22 | |||
| 23 | #include <asm/uv/uv_mmrs.h> | ||
| 24 | #include <asm/uv/uv_hub.h> | ||
| 25 | #include <asm/uv/bios.h> | ||
| 26 | #include <asm/uv/uv.h> | ||
| 27 | #include <asm/apic.h> | ||
| 28 | #include <asm/cpu.h> | ||
| 29 | |||
| 30 | #define RTC_NAME "sgi_rtc" | ||
| 31 | |||
| 32 | static cycle_t uv_read_rtc(void); | ||
| 33 | static int uv_rtc_next_event(unsigned long, struct clock_event_device *); | ||
| 34 | static void uv_rtc_timer_setup(enum clock_event_mode, | ||
| 35 | struct clock_event_device *); | ||
| 36 | |||
| 37 | static struct clocksource clocksource_uv = { | ||
| 38 | .name = RTC_NAME, | ||
| 39 | .rating = 400, | ||
| 40 | .read = uv_read_rtc, | ||
| 41 | .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK, | ||
| 42 | .shift = 10, | ||
| 43 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
| 44 | }; | ||
| 45 | |||
| 46 | static struct clock_event_device clock_event_device_uv = { | ||
| 47 | .name = RTC_NAME, | ||
| 48 | .features = CLOCK_EVT_FEAT_ONESHOT, | ||
| 49 | .shift = 20, | ||
| 50 | .rating = 400, | ||
| 51 | .irq = -1, | ||
| 52 | .set_next_event = uv_rtc_next_event, | ||
| 53 | .set_mode = uv_rtc_timer_setup, | ||
| 54 | .event_handler = NULL, | ||
| 55 | }; | ||
| 56 | |||
| 57 | static DEFINE_PER_CPU(struct clock_event_device, cpu_ced); | ||
| 58 | |||
| 59 | /* There is one of these allocated per node */ | ||
| 60 | struct uv_rtc_timer_head { | ||
| 61 | spinlock_t lock; | ||
| 62 | /* next cpu waiting for timer, local node relative: */ | ||
| 63 | int next_cpu; | ||
| 64 | /* number of cpus on this node: */ | ||
| 65 | int ncpus; | ||
| 66 | struct { | ||
| 67 | int lcpu; /* systemwide logical cpu number */ | ||
| 68 | u64 expires; /* next timer expiration for this cpu */ | ||
| 69 | } cpu[1]; | ||
| 70 | }; | ||
| 71 | |||
| 72 | /* | ||
| 73 | * Access to uv_rtc_timer_head via blade id. | ||
| 74 | */ | ||
| 75 | static struct uv_rtc_timer_head **blade_info __read_mostly; | ||
| 76 | |||
| 77 | static int uv_rtc_enable; | ||
| 78 | |||
| 79 | /* | ||
| 80 | * Hardware interface routines | ||
| 81 | */ | ||
| 82 | |||
| 83 | /* Send IPIs to another node */ | ||
| 84 | static void uv_rtc_send_IPI(int cpu) | ||
| 85 | { | ||
| 86 | unsigned long apicid, val; | ||
| 87 | int pnode; | ||
| 88 | |||
| 89 | apicid = cpu_physical_id(cpu); | ||
| 90 | pnode = uv_apicid_to_pnode(apicid); | ||
| 91 | val = (1UL << UVH_IPI_INT_SEND_SHFT) | | ||
| 92 | (apicid << UVH_IPI_INT_APIC_ID_SHFT) | | ||
| 93 | (GENERIC_INTERRUPT_VECTOR << UVH_IPI_INT_VECTOR_SHFT); | ||
| 94 | |||
| 95 | uv_write_global_mmr64(pnode, UVH_IPI_INT, val); | ||
| 96 | } | ||
| 97 | |||
| 98 | /* Check for an RTC interrupt pending */ | ||
| 99 | static int uv_intr_pending(int pnode) | ||
| 100 | { | ||
| 101 | return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) & | ||
| 102 | UVH_EVENT_OCCURRED0_RTC1_MASK; | ||
| 103 | } | ||
| 104 | |||
| 105 | /* Setup interrupt and return non-zero if early expiration occurred. */ | ||
| 106 | static int uv_setup_intr(int cpu, u64 expires) | ||
| 107 | { | ||
| 108 | u64 val; | ||
| 109 | int pnode = uv_cpu_to_pnode(cpu); | ||
| 110 | |||
| 111 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, | ||
| 112 | UVH_RTC1_INT_CONFIG_M_MASK); | ||
| 113 | uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); | ||
| 114 | |||
| 115 | uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS, | ||
| 116 | UVH_EVENT_OCCURRED0_RTC1_MASK); | ||
| 117 | |||
| 118 | val = (GENERIC_INTERRUPT_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | | ||
| 119 | ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); | ||
| 120 | |||
| 121 | /* Set configuration */ | ||
| 122 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val); | ||
| 123 | /* Initialize comparator value */ | ||
| 124 | uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires); | ||
| 125 | |||
| 126 | return (expires < uv_read_rtc() && !uv_intr_pending(pnode)); | ||
| 127 | } | ||
| 128 | |||
| 129 | /* | ||
| 130 | * Per-cpu timer tracking routines | ||
| 131 | */ | ||
| 132 | |||
| 133 | static __init void uv_rtc_deallocate_timers(void) | ||
| 134 | { | ||
| 135 | int bid; | ||
| 136 | |||
| 137 | for_each_possible_blade(bid) { | ||
| 138 | kfree(blade_info[bid]); | ||
| 139 | } | ||
| 140 | kfree(blade_info); | ||
| 141 | } | ||
| 142 | |||
| 143 | /* Allocate per-node list of cpu timer expiration times. */ | ||
| 144 | static __init int uv_rtc_allocate_timers(void) | ||
| 145 | { | ||
| 146 | int cpu; | ||
| 147 | |||
| 148 | blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL); | ||
| 149 | if (!blade_info) | ||
| 150 | return -ENOMEM; | ||
| 151 | memset(blade_info, 0, uv_possible_blades * sizeof(void *)); | ||
| 152 | |||
| 153 | for_each_present_cpu(cpu) { | ||
| 154 | int nid = cpu_to_node(cpu); | ||
| 155 | int bid = uv_cpu_to_blade_id(cpu); | ||
| 156 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
| 157 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
| 158 | |||
| 159 | if (!head) { | ||
| 160 | head = kmalloc_node(sizeof(struct uv_rtc_timer_head) + | ||
| 161 | (uv_blade_nr_possible_cpus(bid) * | ||
| 162 | 2 * sizeof(u64)), | ||
| 163 | GFP_KERNEL, nid); | ||
| 164 | if (!head) { | ||
| 165 | uv_rtc_deallocate_timers(); | ||
| 166 | return -ENOMEM; | ||
| 167 | } | ||
| 168 | spin_lock_init(&head->lock); | ||
| 169 | head->ncpus = uv_blade_nr_possible_cpus(bid); | ||
| 170 | head->next_cpu = -1; | ||
| 171 | blade_info[bid] = head; | ||
| 172 | } | ||
| 173 | |||
| 174 | head->cpu[bcpu].lcpu = cpu; | ||
| 175 | head->cpu[bcpu].expires = ULLONG_MAX; | ||
| 176 | } | ||
| 177 | |||
| 178 | return 0; | ||
| 179 | } | ||
| 180 | |||
| 181 | /* Find and set the next expiring timer. */ | ||
| 182 | static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode) | ||
| 183 | { | ||
| 184 | u64 lowest = ULLONG_MAX; | ||
| 185 | int c, bcpu = -1; | ||
| 186 | |||
| 187 | head->next_cpu = -1; | ||
| 188 | for (c = 0; c < head->ncpus; c++) { | ||
| 189 | u64 exp = head->cpu[c].expires; | ||
| 190 | if (exp < lowest) { | ||
| 191 | bcpu = c; | ||
| 192 | lowest = exp; | ||
| 193 | } | ||
| 194 | } | ||
| 195 | if (bcpu >= 0) { | ||
| 196 | head->next_cpu = bcpu; | ||
| 197 | c = head->cpu[bcpu].lcpu; | ||
| 198 | if (uv_setup_intr(c, lowest)) | ||
| 199 | /* If we didn't set it up in time, trigger */ | ||
| 200 | uv_rtc_send_IPI(c); | ||
| 201 | } else { | ||
| 202 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, | ||
| 203 | UVH_RTC1_INT_CONFIG_M_MASK); | ||
| 204 | } | ||
| 205 | } | ||
| 206 | |||
| 207 | /* | ||
| 208 | * Set expiration time for current cpu. | ||
| 209 | * | ||
| 210 | * Returns 1 if we missed the expiration time. | ||
| 211 | */ | ||
| 212 | static int uv_rtc_set_timer(int cpu, u64 expires) | ||
| 213 | { | ||
| 214 | int pnode = uv_cpu_to_pnode(cpu); | ||
| 215 | int bid = uv_cpu_to_blade_id(cpu); | ||
| 216 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
| 217 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
| 218 | u64 *t = &head->cpu[bcpu].expires; | ||
| 219 | unsigned long flags; | ||
| 220 | int next_cpu; | ||
| 221 | |||
| 222 | spin_lock_irqsave(&head->lock, flags); | ||
| 223 | |||
| 224 | next_cpu = head->next_cpu; | ||
| 225 | *t = expires; | ||
| 226 | /* Will this one be next to go off? */ | ||
| 227 | if (next_cpu < 0 || bcpu == next_cpu || | ||
| 228 | expires < head->cpu[next_cpu].expires) { | ||
| 229 | head->next_cpu = bcpu; | ||
| 230 | if (uv_setup_intr(cpu, expires)) { | ||
| 231 | *t = ULLONG_MAX; | ||
| 232 | uv_rtc_find_next_timer(head, pnode); | ||
| 233 | spin_unlock_irqrestore(&head->lock, flags); | ||
| 234 | return 1; | ||
| 235 | } | ||
| 236 | } | ||
| 237 | |||
| 238 | spin_unlock_irqrestore(&head->lock, flags); | ||
| 239 | return 0; | ||
| 240 | } | ||
| 241 | |||
| 242 | /* | ||
| 243 | * Unset expiration time for current cpu. | ||
| 244 | * | ||
| 245 | * Returns 1 if this timer was pending. | ||
| 246 | */ | ||
| 247 | static int uv_rtc_unset_timer(int cpu) | ||
| 248 | { | ||
| 249 | int pnode = uv_cpu_to_pnode(cpu); | ||
| 250 | int bid = uv_cpu_to_blade_id(cpu); | ||
| 251 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
| 252 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
| 253 | u64 *t = &head->cpu[bcpu].expires; | ||
| 254 | unsigned long flags; | ||
| 255 | int rc = 0; | ||
| 256 | |||
| 257 | spin_lock_irqsave(&head->lock, flags); | ||
| 258 | |||
| 259 | if (head->next_cpu == bcpu && uv_read_rtc() >= *t) | ||
| 260 | rc = 1; | ||
| 261 | |||
| 262 | *t = ULLONG_MAX; | ||
| 263 | |||
| 264 | /* Was the hardware setup for this timer? */ | ||
| 265 | if (head->next_cpu == bcpu) | ||
| 266 | uv_rtc_find_next_timer(head, pnode); | ||
| 267 | |||
| 268 | spin_unlock_irqrestore(&head->lock, flags); | ||
| 269 | |||
| 270 | return rc; | ||
| 271 | } | ||
| 272 | |||
| 273 | |||
| 274 | /* | ||
| 275 | * Kernel interface routines. | ||
| 276 | */ | ||
| 277 | |||
| 278 | /* | ||
| 279 | * Read the RTC. | ||
| 280 | */ | ||
| 281 | static cycle_t uv_read_rtc(void) | ||
| 282 | { | ||
| 283 | return (cycle_t)uv_read_local_mmr(UVH_RTC); | ||
| 284 | } | ||
| 285 | |||
| 286 | /* | ||
| 287 | * Program the next event, relative to now | ||
| 288 | */ | ||
| 289 | static int uv_rtc_next_event(unsigned long delta, | ||
| 290 | struct clock_event_device *ced) | ||
| 291 | { | ||
| 292 | int ced_cpu = cpumask_first(ced->cpumask); | ||
| 293 | |||
| 294 | return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc()); | ||
| 295 | } | ||
| 296 | |||
| 297 | /* | ||
| 298 | * Setup the RTC timer in oneshot mode | ||
| 299 | */ | ||
| 300 | static void uv_rtc_timer_setup(enum clock_event_mode mode, | ||
| 301 | struct clock_event_device *evt) | ||
| 302 | { | ||
| 303 | int ced_cpu = cpumask_first(evt->cpumask); | ||
| 304 | |||
| 305 | switch (mode) { | ||
| 306 | case CLOCK_EVT_MODE_PERIODIC: | ||
| 307 | case CLOCK_EVT_MODE_ONESHOT: | ||
| 308 | case CLOCK_EVT_MODE_RESUME: | ||
| 309 | /* Nothing to do here yet */ | ||
| 310 | break; | ||
| 311 | case CLOCK_EVT_MODE_UNUSED: | ||
| 312 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
| 313 | uv_rtc_unset_timer(ced_cpu); | ||
| 314 | break; | ||
| 315 | } | ||
| 316 | } | ||
| 317 | |||
| 318 | static void uv_rtc_interrupt(void) | ||
| 319 | { | ||
| 320 | struct clock_event_device *ced = &__get_cpu_var(cpu_ced); | ||
| 321 | int cpu = smp_processor_id(); | ||
| 322 | |||
| 323 | if (!ced || !ced->event_handler) | ||
| 324 | return; | ||
| 325 | |||
| 326 | if (uv_rtc_unset_timer(cpu) != 1) | ||
| 327 | return; | ||
| 328 | |||
| 329 | ced->event_handler(ced); | ||
| 330 | } | ||
| 331 | |||
| 332 | static int __init uv_enable_rtc(char *str) | ||
| 333 | { | ||
| 334 | uv_rtc_enable = 1; | ||
| 335 | |||
| 336 | return 1; | ||
| 337 | } | ||
| 338 | __setup("uvrtc", uv_enable_rtc); | ||
| 339 | |||
| 340 | static __init void uv_rtc_register_clockevents(struct work_struct *dummy) | ||
| 341 | { | ||
| 342 | struct clock_event_device *ced = &__get_cpu_var(cpu_ced); | ||
| 343 | |||
| 344 | *ced = clock_event_device_uv; | ||
| 345 | ced->cpumask = cpumask_of(smp_processor_id()); | ||
| 346 | clockevents_register_device(ced); | ||
| 347 | } | ||
| 348 | |||
| 349 | static __init int uv_rtc_setup_clock(void) | ||
| 350 | { | ||
| 351 | int rc; | ||
| 352 | |||
| 353 | if (!uv_rtc_enable || !is_uv_system() || generic_interrupt_extension) | ||
| 354 | return -ENODEV; | ||
| 355 | |||
| 356 | generic_interrupt_extension = uv_rtc_interrupt; | ||
| 357 | |||
| 358 | clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second, | ||
| 359 | clocksource_uv.shift); | ||
| 360 | |||
| 361 | rc = clocksource_register(&clocksource_uv); | ||
| 362 | if (rc) { | ||
| 363 | generic_interrupt_extension = NULL; | ||
| 364 | return rc; | ||
| 365 | } | ||
| 366 | |||
| 367 | /* Setup and register clockevents */ | ||
| 368 | rc = uv_rtc_allocate_timers(); | ||
| 369 | if (rc) { | ||
| 370 | clocksource_unregister(&clocksource_uv); | ||
| 371 | generic_interrupt_extension = NULL; | ||
| 372 | return rc; | ||
| 373 | } | ||
| 374 | |||
| 375 | clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second, | ||
| 376 | NSEC_PER_SEC, clock_event_device_uv.shift); | ||
| 377 | |||
| 378 | clock_event_device_uv.min_delta_ns = NSEC_PER_SEC / | ||
| 379 | sn_rtc_cycles_per_second; | ||
| 380 | |||
| 381 | clock_event_device_uv.max_delta_ns = clocksource_uv.mask * | ||
| 382 | (NSEC_PER_SEC / sn_rtc_cycles_per_second); | ||
| 383 | |||
| 384 | rc = schedule_on_each_cpu(uv_rtc_register_clockevents); | ||
| 385 | if (rc) { | ||
| 386 | clocksource_unregister(&clocksource_uv); | ||
| 387 | generic_interrupt_extension = NULL; | ||
| 388 | uv_rtc_deallocate_timers(); | ||
| 389 | } | ||
| 390 | |||
| 391 | return rc; | ||
| 392 | } | ||
| 393 | arch_initcall(uv_rtc_setup_clock); | ||
