diff options
Diffstat (limited to 'arch/x86/kernel/tsc.c')
-rw-r--r-- | arch/x86/kernel/tsc.c | 535 |
1 files changed, 535 insertions, 0 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c new file mode 100644 index 000000000000..7603c0553909 --- /dev/null +++ b/arch/x86/kernel/tsc.c | |||
@@ -0,0 +1,535 @@ | |||
1 | #include <linux/kernel.h> | ||
2 | #include <linux/sched.h> | ||
3 | #include <linux/init.h> | ||
4 | #include <linux/module.h> | ||
5 | #include <linux/timer.h> | ||
6 | #include <linux/acpi_pmtmr.h> | ||
7 | #include <linux/cpufreq.h> | ||
8 | #include <linux/dmi.h> | ||
9 | #include <linux/delay.h> | ||
10 | #include <linux/clocksource.h> | ||
11 | #include <linux/percpu.h> | ||
12 | |||
13 | #include <asm/hpet.h> | ||
14 | #include <asm/timer.h> | ||
15 | #include <asm/vgtod.h> | ||
16 | #include <asm/time.h> | ||
17 | #include <asm/delay.h> | ||
18 | |||
19 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ | ||
20 | EXPORT_SYMBOL(cpu_khz); | ||
21 | unsigned int tsc_khz; | ||
22 | EXPORT_SYMBOL(tsc_khz); | ||
23 | |||
24 | /* | ||
25 | * TSC can be unstable due to cpufreq or due to unsynced TSCs | ||
26 | */ | ||
27 | static int tsc_unstable; | ||
28 | |||
29 | /* native_sched_clock() is called before tsc_init(), so | ||
30 | we must start with the TSC soft disabled to prevent | ||
31 | erroneous rdtsc usage on !cpu_has_tsc processors */ | ||
32 | static int tsc_disabled = -1; | ||
33 | |||
34 | /* | ||
35 | * Scheduler clock - returns current time in nanosec units. | ||
36 | */ | ||
37 | u64 native_sched_clock(void) | ||
38 | { | ||
39 | u64 this_offset; | ||
40 | |||
41 | /* | ||
42 | * Fall back to jiffies if there's no TSC available: | ||
43 | * ( But note that we still use it if the TSC is marked | ||
44 | * unstable. We do this because unlike Time Of Day, | ||
45 | * the scheduler clock tolerates small errors and it's | ||
46 | * very important for it to be as fast as the platform | ||
47 | * can achive it. ) | ||
48 | */ | ||
49 | if (unlikely(tsc_disabled)) { | ||
50 | /* No locking but a rare wrong value is not a big deal: */ | ||
51 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | ||
52 | } | ||
53 | |||
54 | /* read the Time Stamp Counter: */ | ||
55 | rdtscll(this_offset); | ||
56 | |||
57 | /* return the value in ns */ | ||
58 | return cycles_2_ns(this_offset); | ||
59 | } | ||
60 | |||
61 | /* We need to define a real function for sched_clock, to override the | ||
62 | weak default version */ | ||
63 | #ifdef CONFIG_PARAVIRT | ||
64 | unsigned long long sched_clock(void) | ||
65 | { | ||
66 | return paravirt_sched_clock(); | ||
67 | } | ||
68 | #else | ||
69 | unsigned long long | ||
70 | sched_clock(void) __attribute__((alias("native_sched_clock"))); | ||
71 | #endif | ||
72 | |||
73 | int check_tsc_unstable(void) | ||
74 | { | ||
75 | return tsc_unstable; | ||
76 | } | ||
77 | EXPORT_SYMBOL_GPL(check_tsc_unstable); | ||
78 | |||
79 | #ifdef CONFIG_X86_TSC | ||
80 | int __init notsc_setup(char *str) | ||
81 | { | ||
82 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " | ||
83 | "cannot disable TSC completely.\n"); | ||
84 | tsc_disabled = 1; | ||
85 | return 1; | ||
86 | } | ||
87 | #else | ||
88 | /* | ||
89 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag | ||
90 | * in cpu/common.c | ||
91 | */ | ||
92 | int __init notsc_setup(char *str) | ||
93 | { | ||
94 | setup_clear_cpu_cap(X86_FEATURE_TSC); | ||
95 | return 1; | ||
96 | } | ||
97 | #endif | ||
98 | |||
99 | __setup("notsc", notsc_setup); | ||
100 | |||
101 | #define MAX_RETRIES 5 | ||
102 | #define SMI_TRESHOLD 50000 | ||
103 | |||
104 | /* | ||
105 | * Read TSC and the reference counters. Take care of SMI disturbance | ||
106 | */ | ||
107 | static u64 __init tsc_read_refs(u64 *pm, u64 *hpet) | ||
108 | { | ||
109 | u64 t1, t2; | ||
110 | int i; | ||
111 | |||
112 | for (i = 0; i < MAX_RETRIES; i++) { | ||
113 | t1 = get_cycles(); | ||
114 | if (hpet) | ||
115 | *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; | ||
116 | else | ||
117 | *pm = acpi_pm_read_early(); | ||
118 | t2 = get_cycles(); | ||
119 | if ((t2 - t1) < SMI_TRESHOLD) | ||
120 | return t2; | ||
121 | } | ||
122 | return ULLONG_MAX; | ||
123 | } | ||
124 | |||
125 | /** | ||
126 | * native_calibrate_tsc - calibrate the tsc on boot | ||
127 | */ | ||
128 | unsigned long native_calibrate_tsc(void) | ||
129 | { | ||
130 | unsigned long flags; | ||
131 | u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2; | ||
132 | int hpet = is_hpet_enabled(); | ||
133 | unsigned int tsc_khz_val = 0; | ||
134 | |||
135 | local_irq_save(flags); | ||
136 | |||
137 | tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); | ||
138 | |||
139 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | ||
140 | |||
141 | outb(0xb0, 0x43); | ||
142 | outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); | ||
143 | outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); | ||
144 | tr1 = get_cycles(); | ||
145 | while ((inb(0x61) & 0x20) == 0); | ||
146 | tr2 = get_cycles(); | ||
147 | |||
148 | tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); | ||
149 | |||
150 | local_irq_restore(flags); | ||
151 | |||
152 | /* | ||
153 | * Preset the result with the raw and inaccurate PIT | ||
154 | * calibration value | ||
155 | */ | ||
156 | delta = (tr2 - tr1); | ||
157 | do_div(delta, 50); | ||
158 | tsc_khz_val = delta; | ||
159 | |||
160 | /* hpet or pmtimer available ? */ | ||
161 | if (!hpet && !pm1 && !pm2) { | ||
162 | printk(KERN_INFO "TSC calibrated against PIT\n"); | ||
163 | goto out; | ||
164 | } | ||
165 | |||
166 | /* Check, whether the sampling was disturbed by an SMI */ | ||
167 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) { | ||
168 | printk(KERN_WARNING "TSC calibration disturbed by SMI, " | ||
169 | "using PIT calibration result\n"); | ||
170 | goto out; | ||
171 | } | ||
172 | |||
173 | tsc2 = (tsc2 - tsc1) * 1000000LL; | ||
174 | |||
175 | if (hpet) { | ||
176 | printk(KERN_INFO "TSC calibrated against HPET\n"); | ||
177 | if (hpet2 < hpet1) | ||
178 | hpet2 += 0x100000000ULL; | ||
179 | hpet2 -= hpet1; | ||
180 | tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); | ||
181 | do_div(tsc1, 1000000); | ||
182 | } else { | ||
183 | printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); | ||
184 | if (pm2 < pm1) | ||
185 | pm2 += (u64)ACPI_PM_OVRRUN; | ||
186 | pm2 -= pm1; | ||
187 | tsc1 = pm2 * 1000000000LL; | ||
188 | do_div(tsc1, PMTMR_TICKS_PER_SEC); | ||
189 | } | ||
190 | |||
191 | do_div(tsc2, tsc1); | ||
192 | tsc_khz_val = tsc2; | ||
193 | |||
194 | out: | ||
195 | return tsc_khz_val; | ||
196 | } | ||
197 | |||
198 | |||
199 | #ifdef CONFIG_X86_32 | ||
200 | /* Only called from the Powernow K7 cpu freq driver */ | ||
201 | int recalibrate_cpu_khz(void) | ||
202 | { | ||
203 | #ifndef CONFIG_SMP | ||
204 | unsigned long cpu_khz_old = cpu_khz; | ||
205 | |||
206 | if (cpu_has_tsc) { | ||
207 | tsc_khz = calibrate_tsc(); | ||
208 | cpu_khz = tsc_khz; | ||
209 | cpu_data(0).loops_per_jiffy = | ||
210 | cpufreq_scale(cpu_data(0).loops_per_jiffy, | ||
211 | cpu_khz_old, cpu_khz); | ||
212 | return 0; | ||
213 | } else | ||
214 | return -ENODEV; | ||
215 | #else | ||
216 | return -ENODEV; | ||
217 | #endif | ||
218 | } | ||
219 | |||
220 | EXPORT_SYMBOL(recalibrate_cpu_khz); | ||
221 | |||
222 | #endif /* CONFIG_X86_32 */ | ||
223 | |||
224 | /* Accelerators for sched_clock() | ||
225 | * convert from cycles(64bits) => nanoseconds (64bits) | ||
226 | * basic equation: | ||
227 | * ns = cycles / (freq / ns_per_sec) | ||
228 | * ns = cycles * (ns_per_sec / freq) | ||
229 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | ||
230 | * ns = cycles * (10^6 / cpu_khz) | ||
231 | * | ||
232 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
233 | * ns = cycles * (10^6 * SC / cpu_khz) / SC | ||
234 | * ns = cycles * cyc2ns_scale / SC | ||
235 | * | ||
236 | * And since SC is a constant power of two, we can convert the div | ||
237 | * into a shift. | ||
238 | * | ||
239 | * We can use khz divisor instead of mhz to keep a better precision, since | ||
240 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | ||
241 | * (mathieu.desnoyers@polymtl.ca) | ||
242 | * | ||
243 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
244 | */ | ||
245 | |||
246 | DEFINE_PER_CPU(unsigned long, cyc2ns); | ||
247 | |||
248 | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | ||
249 | { | ||
250 | unsigned long long tsc_now, ns_now; | ||
251 | unsigned long flags, *scale; | ||
252 | |||
253 | local_irq_save(flags); | ||
254 | sched_clock_idle_sleep_event(); | ||
255 | |||
256 | scale = &per_cpu(cyc2ns, cpu); | ||
257 | |||
258 | rdtscll(tsc_now); | ||
259 | ns_now = __cycles_2_ns(tsc_now); | ||
260 | |||
261 | if (cpu_khz) | ||
262 | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; | ||
263 | |||
264 | sched_clock_idle_wakeup_event(0); | ||
265 | local_irq_restore(flags); | ||
266 | } | ||
267 | |||
268 | #ifdef CONFIG_CPU_FREQ | ||
269 | |||
270 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency | ||
271 | * changes. | ||
272 | * | ||
273 | * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's | ||
274 | * not that important because current Opteron setups do not support | ||
275 | * scaling on SMP anyroads. | ||
276 | * | ||
277 | * Should fix up last_tsc too. Currently gettimeofday in the | ||
278 | * first tick after the change will be slightly wrong. | ||
279 | */ | ||
280 | |||
281 | static unsigned int ref_freq; | ||
282 | static unsigned long loops_per_jiffy_ref; | ||
283 | static unsigned long tsc_khz_ref; | ||
284 | |||
285 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | ||
286 | void *data) | ||
287 | { | ||
288 | struct cpufreq_freqs *freq = data; | ||
289 | unsigned long *lpj, dummy; | ||
290 | |||
291 | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) | ||
292 | return 0; | ||
293 | |||
294 | lpj = &dummy; | ||
295 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | ||
296 | #ifdef CONFIG_SMP | ||
297 | lpj = &cpu_data(freq->cpu).loops_per_jiffy; | ||
298 | #else | ||
299 | lpj = &boot_cpu_data.loops_per_jiffy; | ||
300 | #endif | ||
301 | |||
302 | if (!ref_freq) { | ||
303 | ref_freq = freq->old; | ||
304 | loops_per_jiffy_ref = *lpj; | ||
305 | tsc_khz_ref = tsc_khz; | ||
306 | } | ||
307 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || | ||
308 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | ||
309 | (val == CPUFREQ_RESUMECHANGE)) { | ||
310 | *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | ||
311 | |||
312 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | ||
313 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | ||
314 | mark_tsc_unstable("cpufreq changes"); | ||
315 | } | ||
316 | |||
317 | set_cyc2ns_scale(tsc_khz_ref, freq->cpu); | ||
318 | |||
319 | return 0; | ||
320 | } | ||
321 | |||
322 | static struct notifier_block time_cpufreq_notifier_block = { | ||
323 | .notifier_call = time_cpufreq_notifier | ||
324 | }; | ||
325 | |||
326 | static int __init cpufreq_tsc(void) | ||
327 | { | ||
328 | cpufreq_register_notifier(&time_cpufreq_notifier_block, | ||
329 | CPUFREQ_TRANSITION_NOTIFIER); | ||
330 | return 0; | ||
331 | } | ||
332 | |||
333 | core_initcall(cpufreq_tsc); | ||
334 | |||
335 | #endif /* CONFIG_CPU_FREQ */ | ||
336 | |||
337 | /* clocksource code */ | ||
338 | |||
339 | static struct clocksource clocksource_tsc; | ||
340 | |||
341 | /* | ||
342 | * We compare the TSC to the cycle_last value in the clocksource | ||
343 | * structure to avoid a nasty time-warp. This can be observed in a | ||
344 | * very small window right after one CPU updated cycle_last under | ||
345 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which | ||
346 | * is smaller than the cycle_last reference value due to a TSC which | ||
347 | * is slighty behind. This delta is nowhere else observable, but in | ||
348 | * that case it results in a forward time jump in the range of hours | ||
349 | * due to the unsigned delta calculation of the time keeping core | ||
350 | * code, which is necessary to support wrapping clocksources like pm | ||
351 | * timer. | ||
352 | */ | ||
353 | static cycle_t read_tsc(void) | ||
354 | { | ||
355 | cycle_t ret = (cycle_t)get_cycles(); | ||
356 | |||
357 | return ret >= clocksource_tsc.cycle_last ? | ||
358 | ret : clocksource_tsc.cycle_last; | ||
359 | } | ||
360 | |||
361 | #ifdef CONFIG_X86_64 | ||
362 | static cycle_t __vsyscall_fn vread_tsc(void) | ||
363 | { | ||
364 | cycle_t ret = (cycle_t)vget_cycles(); | ||
365 | |||
366 | return ret >= __vsyscall_gtod_data.clock.cycle_last ? | ||
367 | ret : __vsyscall_gtod_data.clock.cycle_last; | ||
368 | } | ||
369 | #endif | ||
370 | |||
371 | static struct clocksource clocksource_tsc = { | ||
372 | .name = "tsc", | ||
373 | .rating = 300, | ||
374 | .read = read_tsc, | ||
375 | .mask = CLOCKSOURCE_MASK(64), | ||
376 | .shift = 22, | ||
377 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | | ||
378 | CLOCK_SOURCE_MUST_VERIFY, | ||
379 | #ifdef CONFIG_X86_64 | ||
380 | .vread = vread_tsc, | ||
381 | #endif | ||
382 | }; | ||
383 | |||
384 | void mark_tsc_unstable(char *reason) | ||
385 | { | ||
386 | if (!tsc_unstable) { | ||
387 | tsc_unstable = 1; | ||
388 | printk("Marking TSC unstable due to %s\n", reason); | ||
389 | /* Change only the rating, when not registered */ | ||
390 | if (clocksource_tsc.mult) | ||
391 | clocksource_change_rating(&clocksource_tsc, 0); | ||
392 | else | ||
393 | clocksource_tsc.rating = 0; | ||
394 | } | ||
395 | } | ||
396 | |||
397 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | ||
398 | |||
399 | static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) | ||
400 | { | ||
401 | printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", | ||
402 | d->ident); | ||
403 | tsc_unstable = 1; | ||
404 | return 0; | ||
405 | } | ||
406 | |||
407 | /* List of systems that have known TSC problems */ | ||
408 | static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { | ||
409 | { | ||
410 | .callback = dmi_mark_tsc_unstable, | ||
411 | .ident = "IBM Thinkpad 380XD", | ||
412 | .matches = { | ||
413 | DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), | ||
414 | DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), | ||
415 | }, | ||
416 | }, | ||
417 | {} | ||
418 | }; | ||
419 | |||
420 | /* | ||
421 | * Geode_LX - the OLPC CPU has a possibly a very reliable TSC | ||
422 | */ | ||
423 | #ifdef CONFIG_MGEODE_LX | ||
424 | /* RTSC counts during suspend */ | ||
425 | #define RTSC_SUSP 0x100 | ||
426 | |||
427 | static void __init check_geode_tsc_reliable(void) | ||
428 | { | ||
429 | unsigned long res_low, res_high; | ||
430 | |||
431 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); | ||
432 | if (res_low & RTSC_SUSP) | ||
433 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | ||
434 | } | ||
435 | #else | ||
436 | static inline void check_geode_tsc_reliable(void) { } | ||
437 | #endif | ||
438 | |||
439 | /* | ||
440 | * Make an educated guess if the TSC is trustworthy and synchronized | ||
441 | * over all CPUs. | ||
442 | */ | ||
443 | __cpuinit int unsynchronized_tsc(void) | ||
444 | { | ||
445 | if (!cpu_has_tsc || tsc_unstable) | ||
446 | return 1; | ||
447 | |||
448 | #ifdef CONFIG_SMP | ||
449 | if (apic_is_clustered_box()) | ||
450 | return 1; | ||
451 | #endif | ||
452 | |||
453 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | ||
454 | return 0; | ||
455 | /* | ||
456 | * Intel systems are normally all synchronized. | ||
457 | * Exceptions must mark TSC as unstable: | ||
458 | */ | ||
459 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { | ||
460 | /* assume multi socket systems are not synchronized: */ | ||
461 | if (num_possible_cpus() > 1) | ||
462 | tsc_unstable = 1; | ||
463 | } | ||
464 | |||
465 | return tsc_unstable; | ||
466 | } | ||
467 | |||
468 | static void __init init_tsc_clocksource(void) | ||
469 | { | ||
470 | clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, | ||
471 | clocksource_tsc.shift); | ||
472 | /* lower the rating if we already know its unstable: */ | ||
473 | if (check_tsc_unstable()) { | ||
474 | clocksource_tsc.rating = 0; | ||
475 | clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; | ||
476 | } | ||
477 | clocksource_register(&clocksource_tsc); | ||
478 | } | ||
479 | |||
480 | void __init tsc_init(void) | ||
481 | { | ||
482 | u64 lpj; | ||
483 | int cpu; | ||
484 | |||
485 | if (!cpu_has_tsc) | ||
486 | return; | ||
487 | |||
488 | tsc_khz = calibrate_tsc(); | ||
489 | cpu_khz = tsc_khz; | ||
490 | |||
491 | if (!tsc_khz) { | ||
492 | mark_tsc_unstable("could not calculate TSC khz"); | ||
493 | return; | ||
494 | } | ||
495 | |||
496 | #ifdef CONFIG_X86_64 | ||
497 | if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && | ||
498 | (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) | ||
499 | cpu_khz = calibrate_cpu(); | ||
500 | #endif | ||
501 | |||
502 | lpj = ((u64)tsc_khz * 1000); | ||
503 | do_div(lpj, HZ); | ||
504 | lpj_fine = lpj; | ||
505 | |||
506 | printk("Detected %lu.%03lu MHz processor.\n", | ||
507 | (unsigned long)cpu_khz / 1000, | ||
508 | (unsigned long)cpu_khz % 1000); | ||
509 | |||
510 | /* | ||
511 | * Secondary CPUs do not run through tsc_init(), so set up | ||
512 | * all the scale factors for all CPUs, assuming the same | ||
513 | * speed as the bootup CPU. (cpufreq notifiers will fix this | ||
514 | * up if their speed diverges) | ||
515 | */ | ||
516 | for_each_possible_cpu(cpu) | ||
517 | set_cyc2ns_scale(cpu_khz, cpu); | ||
518 | |||
519 | if (tsc_disabled > 0) | ||
520 | return; | ||
521 | |||
522 | /* now allow native_sched_clock() to use rdtsc */ | ||
523 | tsc_disabled = 0; | ||
524 | |||
525 | use_tsc_delay(); | ||
526 | /* Check and install the TSC clocksource */ | ||
527 | dmi_check_system(bad_tsc_dmi_table); | ||
528 | |||
529 | if (unsynchronized_tsc()) | ||
530 | mark_tsc_unstable("TSCs unsynchronized"); | ||
531 | |||
532 | check_geode_tsc_reliable(); | ||
533 | init_tsc_clocksource(); | ||
534 | } | ||
535 | |||