diff options
Diffstat (limited to 'arch/x86/kernel/tlb_uv.c')
-rw-r--r-- | arch/x86/kernel/tlb_uv.c | 792 |
1 files changed, 792 insertions, 0 deletions
diff --git a/arch/x86/kernel/tlb_uv.c b/arch/x86/kernel/tlb_uv.c new file mode 100644 index 000000000000..d0fbb7712ab0 --- /dev/null +++ b/arch/x86/kernel/tlb_uv.c | |||
@@ -0,0 +1,792 @@ | |||
1 | /* | ||
2 | * SGI UltraViolet TLB flush routines. | ||
3 | * | ||
4 | * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI. | ||
5 | * | ||
6 | * This code is released under the GNU General Public License version 2 or | ||
7 | * later. | ||
8 | */ | ||
9 | #include <linux/mc146818rtc.h> | ||
10 | #include <linux/proc_fs.h> | ||
11 | #include <linux/kernel.h> | ||
12 | |||
13 | #include <asm/mmu_context.h> | ||
14 | #include <asm/uv/uv_mmrs.h> | ||
15 | #include <asm/uv/uv_hub.h> | ||
16 | #include <asm/uv/uv_bau.h> | ||
17 | #include <asm/genapic.h> | ||
18 | #include <asm/idle.h> | ||
19 | #include <asm/tsc.h> | ||
20 | |||
21 | #include <mach_apic.h> | ||
22 | |||
23 | static struct bau_control **uv_bau_table_bases __read_mostly; | ||
24 | static int uv_bau_retry_limit __read_mostly; | ||
25 | |||
26 | /* position of pnode (which is nasid>>1): */ | ||
27 | static int uv_nshift __read_mostly; | ||
28 | |||
29 | static unsigned long uv_mmask __read_mostly; | ||
30 | |||
31 | static DEFINE_PER_CPU(struct ptc_stats, ptcstats); | ||
32 | static DEFINE_PER_CPU(struct bau_control, bau_control); | ||
33 | |||
34 | /* | ||
35 | * Free a software acknowledge hardware resource by clearing its Pending | ||
36 | * bit. This will return a reply to the sender. | ||
37 | * If the message has timed out, a reply has already been sent by the | ||
38 | * hardware but the resource has not been released. In that case our | ||
39 | * clear of the Timeout bit (as well) will free the resource. No reply will | ||
40 | * be sent (the hardware will only do one reply per message). | ||
41 | */ | ||
42 | static void uv_reply_to_message(int resource, | ||
43 | struct bau_payload_queue_entry *msg, | ||
44 | struct bau_msg_status *msp) | ||
45 | { | ||
46 | unsigned long dw; | ||
47 | |||
48 | dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); | ||
49 | msg->replied_to = 1; | ||
50 | msg->sw_ack_vector = 0; | ||
51 | if (msp) | ||
52 | msp->seen_by.bits = 0; | ||
53 | uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * Do all the things a cpu should do for a TLB shootdown message. | ||
58 | * Other cpu's may come here at the same time for this message. | ||
59 | */ | ||
60 | static void uv_bau_process_message(struct bau_payload_queue_entry *msg, | ||
61 | int msg_slot, int sw_ack_slot) | ||
62 | { | ||
63 | unsigned long this_cpu_mask; | ||
64 | struct bau_msg_status *msp; | ||
65 | int cpu; | ||
66 | |||
67 | msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; | ||
68 | cpu = uv_blade_processor_id(); | ||
69 | msg->number_of_cpus = | ||
70 | uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); | ||
71 | this_cpu_mask = 1UL << cpu; | ||
72 | if (msp->seen_by.bits & this_cpu_mask) | ||
73 | return; | ||
74 | atomic_or_long(&msp->seen_by.bits, this_cpu_mask); | ||
75 | |||
76 | if (msg->replied_to == 1) | ||
77 | return; | ||
78 | |||
79 | if (msg->address == TLB_FLUSH_ALL) { | ||
80 | local_flush_tlb(); | ||
81 | __get_cpu_var(ptcstats).alltlb++; | ||
82 | } else { | ||
83 | __flush_tlb_one(msg->address); | ||
84 | __get_cpu_var(ptcstats).onetlb++; | ||
85 | } | ||
86 | |||
87 | __get_cpu_var(ptcstats).requestee++; | ||
88 | |||
89 | atomic_inc_short(&msg->acknowledge_count); | ||
90 | if (msg->number_of_cpus == msg->acknowledge_count) | ||
91 | uv_reply_to_message(sw_ack_slot, msg, msp); | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * Examine the payload queue on one distribution node to see | ||
96 | * which messages have not been seen, and which cpu(s) have not seen them. | ||
97 | * | ||
98 | * Returns the number of cpu's that have not responded. | ||
99 | */ | ||
100 | static int uv_examine_destination(struct bau_control *bau_tablesp, int sender) | ||
101 | { | ||
102 | struct bau_payload_queue_entry *msg; | ||
103 | struct bau_msg_status *msp; | ||
104 | int count = 0; | ||
105 | int i; | ||
106 | int j; | ||
107 | |||
108 | for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE; | ||
109 | msg++, i++) { | ||
110 | if ((msg->sending_cpu == sender) && (!msg->replied_to)) { | ||
111 | msp = bau_tablesp->msg_statuses + i; | ||
112 | printk(KERN_DEBUG | ||
113 | "blade %d: address:%#lx %d of %d, not cpu(s): ", | ||
114 | i, msg->address, msg->acknowledge_count, | ||
115 | msg->number_of_cpus); | ||
116 | for (j = 0; j < msg->number_of_cpus; j++) { | ||
117 | if (!((1L << j) & msp->seen_by.bits)) { | ||
118 | count++; | ||
119 | printk("%d ", j); | ||
120 | } | ||
121 | } | ||
122 | printk("\n"); | ||
123 | } | ||
124 | } | ||
125 | return count; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Examine the payload queue on all the distribution nodes to see | ||
130 | * which messages have not been seen, and which cpu(s) have not seen them. | ||
131 | * | ||
132 | * Returns the number of cpu's that have not responded. | ||
133 | */ | ||
134 | static int uv_examine_destinations(struct bau_target_nodemask *distribution) | ||
135 | { | ||
136 | int sender; | ||
137 | int i; | ||
138 | int count = 0; | ||
139 | |||
140 | sender = smp_processor_id(); | ||
141 | for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) { | ||
142 | if (!bau_node_isset(i, distribution)) | ||
143 | continue; | ||
144 | count += uv_examine_destination(uv_bau_table_bases[i], sender); | ||
145 | } | ||
146 | return count; | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * wait for completion of a broadcast message | ||
151 | * | ||
152 | * return COMPLETE, RETRY or GIVEUP | ||
153 | */ | ||
154 | static int uv_wait_completion(struct bau_desc *bau_desc, | ||
155 | unsigned long mmr_offset, int right_shift) | ||
156 | { | ||
157 | int exams = 0; | ||
158 | long destination_timeouts = 0; | ||
159 | long source_timeouts = 0; | ||
160 | unsigned long descriptor_status; | ||
161 | |||
162 | while ((descriptor_status = (((unsigned long) | ||
163 | uv_read_local_mmr(mmr_offset) >> | ||
164 | right_shift) & UV_ACT_STATUS_MASK)) != | ||
165 | DESC_STATUS_IDLE) { | ||
166 | if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { | ||
167 | source_timeouts++; | ||
168 | if (source_timeouts > SOURCE_TIMEOUT_LIMIT) | ||
169 | source_timeouts = 0; | ||
170 | __get_cpu_var(ptcstats).s_retry++; | ||
171 | return FLUSH_RETRY; | ||
172 | } | ||
173 | /* | ||
174 | * spin here looking for progress at the destinations | ||
175 | */ | ||
176 | if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { | ||
177 | destination_timeouts++; | ||
178 | if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { | ||
179 | /* | ||
180 | * returns number of cpus not responding | ||
181 | */ | ||
182 | if (uv_examine_destinations | ||
183 | (&bau_desc->distribution) == 0) { | ||
184 | __get_cpu_var(ptcstats).d_retry++; | ||
185 | return FLUSH_RETRY; | ||
186 | } | ||
187 | exams++; | ||
188 | if (exams >= uv_bau_retry_limit) { | ||
189 | printk(KERN_DEBUG | ||
190 | "uv_flush_tlb_others"); | ||
191 | printk("giving up on cpu %d\n", | ||
192 | smp_processor_id()); | ||
193 | return FLUSH_GIVEUP; | ||
194 | } | ||
195 | /* | ||
196 | * delays can hang the simulator | ||
197 | udelay(1000); | ||
198 | */ | ||
199 | destination_timeouts = 0; | ||
200 | } | ||
201 | } | ||
202 | } | ||
203 | return FLUSH_COMPLETE; | ||
204 | } | ||
205 | |||
206 | /** | ||
207 | * uv_flush_send_and_wait | ||
208 | * | ||
209 | * Send a broadcast and wait for a broadcast message to complete. | ||
210 | * | ||
211 | * The cpumaskp mask contains the cpus the broadcast was sent to. | ||
212 | * | ||
213 | * Returns 1 if all remote flushing was done. The mask is zeroed. | ||
214 | * Returns 0 if some remote flushing remains to be done. The mask is left | ||
215 | * unchanged. | ||
216 | */ | ||
217 | int uv_flush_send_and_wait(int cpu, int this_blade, struct bau_desc *bau_desc, | ||
218 | cpumask_t *cpumaskp) | ||
219 | { | ||
220 | int completion_status = 0; | ||
221 | int right_shift; | ||
222 | int tries = 0; | ||
223 | int blade; | ||
224 | int bit; | ||
225 | unsigned long mmr_offset; | ||
226 | unsigned long index; | ||
227 | cycles_t time1; | ||
228 | cycles_t time2; | ||
229 | |||
230 | if (cpu < UV_CPUS_PER_ACT_STATUS) { | ||
231 | mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; | ||
232 | right_shift = cpu * UV_ACT_STATUS_SIZE; | ||
233 | } else { | ||
234 | mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; | ||
235 | right_shift = | ||
236 | ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); | ||
237 | } | ||
238 | time1 = get_cycles(); | ||
239 | do { | ||
240 | tries++; | ||
241 | index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | | ||
242 | cpu; | ||
243 | uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); | ||
244 | completion_status = uv_wait_completion(bau_desc, mmr_offset, | ||
245 | right_shift); | ||
246 | } while (completion_status == FLUSH_RETRY); | ||
247 | time2 = get_cycles(); | ||
248 | __get_cpu_var(ptcstats).sflush += (time2 - time1); | ||
249 | if (tries > 1) | ||
250 | __get_cpu_var(ptcstats).retriesok++; | ||
251 | |||
252 | if (completion_status == FLUSH_GIVEUP) { | ||
253 | /* | ||
254 | * Cause the caller to do an IPI-style TLB shootdown on | ||
255 | * the cpu's, all of which are still in the mask. | ||
256 | */ | ||
257 | __get_cpu_var(ptcstats).ptc_i++; | ||
258 | return 0; | ||
259 | } | ||
260 | |||
261 | /* | ||
262 | * Success, so clear the remote cpu's from the mask so we don't | ||
263 | * use the IPI method of shootdown on them. | ||
264 | */ | ||
265 | for_each_cpu_mask(bit, *cpumaskp) { | ||
266 | blade = uv_cpu_to_blade_id(bit); | ||
267 | if (blade == this_blade) | ||
268 | continue; | ||
269 | cpu_clear(bit, *cpumaskp); | ||
270 | } | ||
271 | if (!cpus_empty(*cpumaskp)) | ||
272 | return 0; | ||
273 | return 1; | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * uv_flush_tlb_others - globally purge translation cache of a virtual | ||
278 | * address or all TLB's | ||
279 | * @cpumaskp: mask of all cpu's in which the address is to be removed | ||
280 | * @mm: mm_struct containing virtual address range | ||
281 | * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) | ||
282 | * | ||
283 | * This is the entry point for initiating any UV global TLB shootdown. | ||
284 | * | ||
285 | * Purges the translation caches of all specified processors of the given | ||
286 | * virtual address, or purges all TLB's on specified processors. | ||
287 | * | ||
288 | * The caller has derived the cpumaskp from the mm_struct and has subtracted | ||
289 | * the local cpu from the mask. This function is called only if there | ||
290 | * are bits set in the mask. (e.g. flush_tlb_page()) | ||
291 | * | ||
292 | * The cpumaskp is converted into a nodemask of the nodes containing | ||
293 | * the cpus. | ||
294 | * | ||
295 | * Returns 1 if all remote flushing was done. | ||
296 | * Returns 0 if some remote flushing remains to be done. | ||
297 | */ | ||
298 | int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, | ||
299 | unsigned long va) | ||
300 | { | ||
301 | int i; | ||
302 | int bit; | ||
303 | int blade; | ||
304 | int cpu; | ||
305 | int this_blade; | ||
306 | int locals = 0; | ||
307 | struct bau_desc *bau_desc; | ||
308 | |||
309 | cpu = uv_blade_processor_id(); | ||
310 | this_blade = uv_numa_blade_id(); | ||
311 | bau_desc = __get_cpu_var(bau_control).descriptor_base; | ||
312 | bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu; | ||
313 | |||
314 | bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); | ||
315 | |||
316 | i = 0; | ||
317 | for_each_cpu_mask(bit, *cpumaskp) { | ||
318 | blade = uv_cpu_to_blade_id(bit); | ||
319 | BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1)); | ||
320 | if (blade == this_blade) { | ||
321 | locals++; | ||
322 | continue; | ||
323 | } | ||
324 | bau_node_set(blade, &bau_desc->distribution); | ||
325 | i++; | ||
326 | } | ||
327 | if (i == 0) { | ||
328 | /* | ||
329 | * no off_node flushing; return status for local node | ||
330 | */ | ||
331 | if (locals) | ||
332 | return 0; | ||
333 | else | ||
334 | return 1; | ||
335 | } | ||
336 | __get_cpu_var(ptcstats).requestor++; | ||
337 | __get_cpu_var(ptcstats).ntargeted += i; | ||
338 | |||
339 | bau_desc->payload.address = va; | ||
340 | bau_desc->payload.sending_cpu = smp_processor_id(); | ||
341 | |||
342 | return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp); | ||
343 | } | ||
344 | |||
345 | /* | ||
346 | * The BAU message interrupt comes here. (registered by set_intr_gate) | ||
347 | * See entry_64.S | ||
348 | * | ||
349 | * We received a broadcast assist message. | ||
350 | * | ||
351 | * Interrupts may have been disabled; this interrupt could represent | ||
352 | * the receipt of several messages. | ||
353 | * | ||
354 | * All cores/threads on this node get this interrupt. | ||
355 | * The last one to see it does the s/w ack. | ||
356 | * (the resource will not be freed until noninterruptable cpus see this | ||
357 | * interrupt; hardware will timeout the s/w ack and reply ERROR) | ||
358 | */ | ||
359 | void uv_bau_message_interrupt(struct pt_regs *regs) | ||
360 | { | ||
361 | struct bau_payload_queue_entry *va_queue_first; | ||
362 | struct bau_payload_queue_entry *va_queue_last; | ||
363 | struct bau_payload_queue_entry *msg; | ||
364 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
365 | cycles_t time1; | ||
366 | cycles_t time2; | ||
367 | int msg_slot; | ||
368 | int sw_ack_slot; | ||
369 | int fw; | ||
370 | int count = 0; | ||
371 | unsigned long local_pnode; | ||
372 | |||
373 | ack_APIC_irq(); | ||
374 | exit_idle(); | ||
375 | irq_enter(); | ||
376 | |||
377 | time1 = get_cycles(); | ||
378 | |||
379 | local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); | ||
380 | |||
381 | va_queue_first = __get_cpu_var(bau_control).va_queue_first; | ||
382 | va_queue_last = __get_cpu_var(bau_control).va_queue_last; | ||
383 | |||
384 | msg = __get_cpu_var(bau_control).bau_msg_head; | ||
385 | while (msg->sw_ack_vector) { | ||
386 | count++; | ||
387 | fw = msg->sw_ack_vector; | ||
388 | msg_slot = msg - va_queue_first; | ||
389 | sw_ack_slot = ffs(fw) - 1; | ||
390 | |||
391 | uv_bau_process_message(msg, msg_slot, sw_ack_slot); | ||
392 | |||
393 | msg++; | ||
394 | if (msg > va_queue_last) | ||
395 | msg = va_queue_first; | ||
396 | __get_cpu_var(bau_control).bau_msg_head = msg; | ||
397 | } | ||
398 | if (!count) | ||
399 | __get_cpu_var(ptcstats).nomsg++; | ||
400 | else if (count > 1) | ||
401 | __get_cpu_var(ptcstats).multmsg++; | ||
402 | |||
403 | time2 = get_cycles(); | ||
404 | __get_cpu_var(ptcstats).dflush += (time2 - time1); | ||
405 | |||
406 | irq_exit(); | ||
407 | set_irq_regs(old_regs); | ||
408 | } | ||
409 | |||
410 | static void uv_enable_timeouts(void) | ||
411 | { | ||
412 | int i; | ||
413 | int blade; | ||
414 | int last_blade; | ||
415 | int pnode; | ||
416 | int cur_cpu = 0; | ||
417 | unsigned long apicid; | ||
418 | |||
419 | last_blade = -1; | ||
420 | for_each_online_node(i) { | ||
421 | blade = uv_node_to_blade_id(i); | ||
422 | if (blade == last_blade) | ||
423 | continue; | ||
424 | last_blade = blade; | ||
425 | apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); | ||
426 | pnode = uv_blade_to_pnode(blade); | ||
427 | cur_cpu += uv_blade_nr_possible_cpus(i); | ||
428 | } | ||
429 | } | ||
430 | |||
431 | static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) | ||
432 | { | ||
433 | if (*offset < num_possible_cpus()) | ||
434 | return offset; | ||
435 | return NULL; | ||
436 | } | ||
437 | |||
438 | static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) | ||
439 | { | ||
440 | (*offset)++; | ||
441 | if (*offset < num_possible_cpus()) | ||
442 | return offset; | ||
443 | return NULL; | ||
444 | } | ||
445 | |||
446 | static void uv_ptc_seq_stop(struct seq_file *file, void *data) | ||
447 | { | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * Display the statistics thru /proc | ||
452 | * data points to the cpu number | ||
453 | */ | ||
454 | static int uv_ptc_seq_show(struct seq_file *file, void *data) | ||
455 | { | ||
456 | struct ptc_stats *stat; | ||
457 | int cpu; | ||
458 | |||
459 | cpu = *(loff_t *)data; | ||
460 | |||
461 | if (!cpu) { | ||
462 | seq_printf(file, | ||
463 | "# cpu requestor requestee one all sretry dretry ptc_i "); | ||
464 | seq_printf(file, | ||
465 | "sw_ack sflush dflush sok dnomsg dmult starget\n"); | ||
466 | } | ||
467 | if (cpu < num_possible_cpus() && cpu_online(cpu)) { | ||
468 | stat = &per_cpu(ptcstats, cpu); | ||
469 | seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", | ||
470 | cpu, stat->requestor, | ||
471 | stat->requestee, stat->onetlb, stat->alltlb, | ||
472 | stat->s_retry, stat->d_retry, stat->ptc_i); | ||
473 | seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", | ||
474 | uv_read_global_mmr64(uv_blade_to_pnode | ||
475 | (uv_cpu_to_blade_id(cpu)), | ||
476 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), | ||
477 | stat->sflush, stat->dflush, | ||
478 | stat->retriesok, stat->nomsg, | ||
479 | stat->multmsg, stat->ntargeted); | ||
480 | } | ||
481 | |||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * 0: display meaning of the statistics | ||
487 | * >0: retry limit | ||
488 | */ | ||
489 | static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, | ||
490 | size_t count, loff_t *data) | ||
491 | { | ||
492 | long newmode; | ||
493 | char optstr[64]; | ||
494 | |||
495 | if (count == 0 || count > sizeof(optstr)) | ||
496 | return -EINVAL; | ||
497 | if (copy_from_user(optstr, user, count)) | ||
498 | return -EFAULT; | ||
499 | optstr[count - 1] = '\0'; | ||
500 | if (strict_strtoul(optstr, 10, &newmode) < 0) { | ||
501 | printk(KERN_DEBUG "%s is invalid\n", optstr); | ||
502 | return -EINVAL; | ||
503 | } | ||
504 | |||
505 | if (newmode == 0) { | ||
506 | printk(KERN_DEBUG "# cpu: cpu number\n"); | ||
507 | printk(KERN_DEBUG | ||
508 | "requestor: times this cpu was the flush requestor\n"); | ||
509 | printk(KERN_DEBUG | ||
510 | "requestee: times this cpu was requested to flush its TLBs\n"); | ||
511 | printk(KERN_DEBUG | ||
512 | "one: times requested to flush a single address\n"); | ||
513 | printk(KERN_DEBUG | ||
514 | "all: times requested to flush all TLB's\n"); | ||
515 | printk(KERN_DEBUG | ||
516 | "sretry: number of retries of source-side timeouts\n"); | ||
517 | printk(KERN_DEBUG | ||
518 | "dretry: number of retries of destination-side timeouts\n"); | ||
519 | printk(KERN_DEBUG | ||
520 | "ptc_i: times UV fell through to IPI-style flushes\n"); | ||
521 | printk(KERN_DEBUG | ||
522 | "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); | ||
523 | printk(KERN_DEBUG | ||
524 | "sflush_us: cycles spent in uv_flush_tlb_others()\n"); | ||
525 | printk(KERN_DEBUG | ||
526 | "dflush_us: cycles spent in handling flush requests\n"); | ||
527 | printk(KERN_DEBUG "sok: successes on retry\n"); | ||
528 | printk(KERN_DEBUG "dnomsg: interrupts with no message\n"); | ||
529 | printk(KERN_DEBUG | ||
530 | "dmult: interrupts with multiple messages\n"); | ||
531 | printk(KERN_DEBUG "starget: nodes targeted\n"); | ||
532 | } else { | ||
533 | uv_bau_retry_limit = newmode; | ||
534 | printk(KERN_DEBUG "timeout retry limit:%d\n", | ||
535 | uv_bau_retry_limit); | ||
536 | } | ||
537 | |||
538 | return count; | ||
539 | } | ||
540 | |||
541 | static const struct seq_operations uv_ptc_seq_ops = { | ||
542 | .start = uv_ptc_seq_start, | ||
543 | .next = uv_ptc_seq_next, | ||
544 | .stop = uv_ptc_seq_stop, | ||
545 | .show = uv_ptc_seq_show | ||
546 | }; | ||
547 | |||
548 | static int uv_ptc_proc_open(struct inode *inode, struct file *file) | ||
549 | { | ||
550 | return seq_open(file, &uv_ptc_seq_ops); | ||
551 | } | ||
552 | |||
553 | static const struct file_operations proc_uv_ptc_operations = { | ||
554 | .open = uv_ptc_proc_open, | ||
555 | .read = seq_read, | ||
556 | .write = uv_ptc_proc_write, | ||
557 | .llseek = seq_lseek, | ||
558 | .release = seq_release, | ||
559 | }; | ||
560 | |||
561 | static int __init uv_ptc_init(void) | ||
562 | { | ||
563 | struct proc_dir_entry *proc_uv_ptc; | ||
564 | |||
565 | if (!is_uv_system()) | ||
566 | return 0; | ||
567 | |||
568 | if (!proc_mkdir("sgi_uv", NULL)) | ||
569 | return -EINVAL; | ||
570 | |||
571 | proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL); | ||
572 | if (!proc_uv_ptc) { | ||
573 | printk(KERN_ERR "unable to create %s proc entry\n", | ||
574 | UV_PTC_BASENAME); | ||
575 | remove_proc_entry("sgi_uv", NULL); | ||
576 | return -EINVAL; | ||
577 | } | ||
578 | proc_uv_ptc->proc_fops = &proc_uv_ptc_operations; | ||
579 | return 0; | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * begin the initialization of the per-blade control structures | ||
584 | */ | ||
585 | static struct bau_control * __init uv_table_bases_init(int blade, int node) | ||
586 | { | ||
587 | int i; | ||
588 | int *ip; | ||
589 | struct bau_msg_status *msp; | ||
590 | struct bau_control *bau_tabp; | ||
591 | |||
592 | bau_tabp = | ||
593 | kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); | ||
594 | BUG_ON(!bau_tabp); | ||
595 | |||
596 | bau_tabp->msg_statuses = | ||
597 | kmalloc_node(sizeof(struct bau_msg_status) * | ||
598 | DEST_Q_SIZE, GFP_KERNEL, node); | ||
599 | BUG_ON(!bau_tabp->msg_statuses); | ||
600 | |||
601 | for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++) | ||
602 | bau_cpubits_clear(&msp->seen_by, (int) | ||
603 | uv_blade_nr_possible_cpus(blade)); | ||
604 | |||
605 | bau_tabp->watching = | ||
606 | kmalloc_node(sizeof(int) * DEST_NUM_RESOURCES, GFP_KERNEL, node); | ||
607 | BUG_ON(!bau_tabp->watching); | ||
608 | |||
609 | for (i = 0, ip = bau_tabp->watching; i < DEST_Q_SIZE; i++, ip++) | ||
610 | *ip = 0; | ||
611 | |||
612 | uv_bau_table_bases[blade] = bau_tabp; | ||
613 | |||
614 | return bau_tabp; | ||
615 | } | ||
616 | |||
617 | /* | ||
618 | * finish the initialization of the per-blade control structures | ||
619 | */ | ||
620 | static void __init | ||
621 | uv_table_bases_finish(int blade, int node, int cur_cpu, | ||
622 | struct bau_control *bau_tablesp, | ||
623 | struct bau_desc *adp) | ||
624 | { | ||
625 | struct bau_control *bcp; | ||
626 | int i; | ||
627 | |||
628 | for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) { | ||
629 | bcp = (struct bau_control *)&per_cpu(bau_control, i); | ||
630 | |||
631 | bcp->bau_msg_head = bau_tablesp->va_queue_first; | ||
632 | bcp->va_queue_first = bau_tablesp->va_queue_first; | ||
633 | bcp->va_queue_last = bau_tablesp->va_queue_last; | ||
634 | bcp->watching = bau_tablesp->watching; | ||
635 | bcp->msg_statuses = bau_tablesp->msg_statuses; | ||
636 | bcp->descriptor_base = adp; | ||
637 | } | ||
638 | } | ||
639 | |||
640 | /* | ||
641 | * initialize the sending side's sending buffers | ||
642 | */ | ||
643 | static struct bau_desc * __init | ||
644 | uv_activation_descriptor_init(int node, int pnode) | ||
645 | { | ||
646 | int i; | ||
647 | unsigned long pa; | ||
648 | unsigned long m; | ||
649 | unsigned long n; | ||
650 | unsigned long mmr_image; | ||
651 | struct bau_desc *adp; | ||
652 | struct bau_desc *ad2; | ||
653 | |||
654 | adp = (struct bau_desc *) | ||
655 | kmalloc_node(16384, GFP_KERNEL, node); | ||
656 | BUG_ON(!adp); | ||
657 | |||
658 | pa = __pa((unsigned long)adp); | ||
659 | n = pa >> uv_nshift; | ||
660 | m = pa & uv_mmask; | ||
661 | |||
662 | mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE); | ||
663 | if (mmr_image) { | ||
664 | uv_write_global_mmr64(pnode, (unsigned long) | ||
665 | UVH_LB_BAU_SB_DESCRIPTOR_BASE, | ||
666 | (n << UV_DESC_BASE_PNODE_SHIFT | m)); | ||
667 | } | ||
668 | |||
669 | for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) { | ||
670 | memset(ad2, 0, sizeof(struct bau_desc)); | ||
671 | ad2->header.sw_ack_flag = 1; | ||
672 | ad2->header.base_dest_nodeid = | ||
673 | uv_blade_to_pnode(uv_cpu_to_blade_id(0)); | ||
674 | ad2->header.command = UV_NET_ENDPOINT_INTD; | ||
675 | ad2->header.int_both = 1; | ||
676 | /* | ||
677 | * all others need to be set to zero: | ||
678 | * fairness chaining multilevel count replied_to | ||
679 | */ | ||
680 | } | ||
681 | return adp; | ||
682 | } | ||
683 | |||
684 | /* | ||
685 | * initialize the destination side's receiving buffers | ||
686 | */ | ||
687 | static struct bau_payload_queue_entry * __init | ||
688 | uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) | ||
689 | { | ||
690 | struct bau_payload_queue_entry *pqp; | ||
691 | char *cp; | ||
692 | |||
693 | pqp = (struct bau_payload_queue_entry *) kmalloc_node( | ||
694 | (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), | ||
695 | GFP_KERNEL, node); | ||
696 | BUG_ON(!pqp); | ||
697 | |||
698 | cp = (char *)pqp + 31; | ||
699 | pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); | ||
700 | bau_tablesp->va_queue_first = pqp; | ||
701 | uv_write_global_mmr64(pnode, | ||
702 | UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, | ||
703 | ((unsigned long)pnode << | ||
704 | UV_PAYLOADQ_PNODE_SHIFT) | | ||
705 | uv_physnodeaddr(pqp)); | ||
706 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, | ||
707 | uv_physnodeaddr(pqp)); | ||
708 | bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1); | ||
709 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, | ||
710 | (unsigned long) | ||
711 | uv_physnodeaddr(bau_tablesp->va_queue_last)); | ||
712 | memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); | ||
713 | |||
714 | return pqp; | ||
715 | } | ||
716 | |||
717 | /* | ||
718 | * Initialization of each UV blade's structures | ||
719 | */ | ||
720 | static int __init uv_init_blade(int blade, int node, int cur_cpu) | ||
721 | { | ||
722 | int pnode; | ||
723 | unsigned long pa; | ||
724 | unsigned long apicid; | ||
725 | struct bau_desc *adp; | ||
726 | struct bau_payload_queue_entry *pqp; | ||
727 | struct bau_control *bau_tablesp; | ||
728 | |||
729 | bau_tablesp = uv_table_bases_init(blade, node); | ||
730 | pnode = uv_blade_to_pnode(blade); | ||
731 | adp = uv_activation_descriptor_init(node, pnode); | ||
732 | pqp = uv_payload_queue_init(node, pnode, bau_tablesp); | ||
733 | uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp); | ||
734 | /* | ||
735 | * the below initialization can't be in firmware because the | ||
736 | * messaging IRQ will be determined by the OS | ||
737 | */ | ||
738 | apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); | ||
739 | pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); | ||
740 | if ((pa & 0xff) != UV_BAU_MESSAGE) { | ||
741 | uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, | ||
742 | ((apicid << 32) | UV_BAU_MESSAGE)); | ||
743 | } | ||
744 | return 0; | ||
745 | } | ||
746 | |||
747 | /* | ||
748 | * Initialization of BAU-related structures | ||
749 | */ | ||
750 | static int __init uv_bau_init(void) | ||
751 | { | ||
752 | int blade; | ||
753 | int node; | ||
754 | int nblades; | ||
755 | int last_blade; | ||
756 | int cur_cpu = 0; | ||
757 | |||
758 | if (!is_uv_system()) | ||
759 | return 0; | ||
760 | |||
761 | uv_bau_retry_limit = 1; | ||
762 | uv_nshift = uv_hub_info->n_val; | ||
763 | uv_mmask = (1UL << uv_hub_info->n_val) - 1; | ||
764 | nblades = 0; | ||
765 | last_blade = -1; | ||
766 | for_each_online_node(node) { | ||
767 | blade = uv_node_to_blade_id(node); | ||
768 | if (blade == last_blade) | ||
769 | continue; | ||
770 | last_blade = blade; | ||
771 | nblades++; | ||
772 | } | ||
773 | uv_bau_table_bases = (struct bau_control **) | ||
774 | kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); | ||
775 | BUG_ON(!uv_bau_table_bases); | ||
776 | |||
777 | last_blade = -1; | ||
778 | for_each_online_node(node) { | ||
779 | blade = uv_node_to_blade_id(node); | ||
780 | if (blade == last_blade) | ||
781 | continue; | ||
782 | last_blade = blade; | ||
783 | uv_init_blade(blade, node, cur_cpu); | ||
784 | cur_cpu += uv_blade_nr_possible_cpus(blade); | ||
785 | } | ||
786 | set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); | ||
787 | uv_enable_timeouts(); | ||
788 | |||
789 | return 0; | ||
790 | } | ||
791 | __initcall(uv_bau_init); | ||
792 | __initcall(uv_ptc_init); | ||