diff options
Diffstat (limited to 'arch/x86/kernel/kprobes_64.c')
-rw-r--r-- | arch/x86/kernel/kprobes_64.c | 749 |
1 files changed, 749 insertions, 0 deletions
diff --git a/arch/x86/kernel/kprobes_64.c b/arch/x86/kernel/kprobes_64.c new file mode 100644 index 000000000000..a30e004682e2 --- /dev/null +++ b/arch/x86/kernel/kprobes_64.c | |||
@@ -0,0 +1,749 @@ | |||
1 | /* | ||
2 | * Kernel Probes (KProbes) | ||
3 | * arch/x86_64/kernel/kprobes.c | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
18 | * | ||
19 | * Copyright (C) IBM Corporation, 2002, 2004 | ||
20 | * | ||
21 | * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | ||
22 | * Probes initial implementation ( includes contributions from | ||
23 | * Rusty Russell). | ||
24 | * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | ||
25 | * interface to access function arguments. | ||
26 | * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi | ||
27 | * <prasanna@in.ibm.com> adapted for x86_64 | ||
28 | * 2005-Mar Roland McGrath <roland@redhat.com> | ||
29 | * Fixed to handle %rip-relative addressing mode correctly. | ||
30 | * 2005-May Rusty Lynch <rusty.lynch@intel.com> | ||
31 | * Added function return probes functionality | ||
32 | */ | ||
33 | |||
34 | #include <linux/kprobes.h> | ||
35 | #include <linux/ptrace.h> | ||
36 | #include <linux/string.h> | ||
37 | #include <linux/slab.h> | ||
38 | #include <linux/preempt.h> | ||
39 | #include <linux/module.h> | ||
40 | #include <linux/kdebug.h> | ||
41 | |||
42 | #include <asm/pgtable.h> | ||
43 | #include <asm/uaccess.h> | ||
44 | #include <asm/alternative.h> | ||
45 | |||
46 | void jprobe_return_end(void); | ||
47 | static void __kprobes arch_copy_kprobe(struct kprobe *p); | ||
48 | |||
49 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | ||
50 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | ||
51 | |||
52 | /* | ||
53 | * returns non-zero if opcode modifies the interrupt flag. | ||
54 | */ | ||
55 | static __always_inline int is_IF_modifier(kprobe_opcode_t *insn) | ||
56 | { | ||
57 | switch (*insn) { | ||
58 | case 0xfa: /* cli */ | ||
59 | case 0xfb: /* sti */ | ||
60 | case 0xcf: /* iret/iretd */ | ||
61 | case 0x9d: /* popf/popfd */ | ||
62 | return 1; | ||
63 | } | ||
64 | |||
65 | if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf) | ||
66 | return 1; | ||
67 | return 0; | ||
68 | } | ||
69 | |||
70 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | ||
71 | { | ||
72 | /* insn: must be on special executable page on x86_64. */ | ||
73 | p->ainsn.insn = get_insn_slot(); | ||
74 | if (!p->ainsn.insn) { | ||
75 | return -ENOMEM; | ||
76 | } | ||
77 | arch_copy_kprobe(p); | ||
78 | return 0; | ||
79 | } | ||
80 | |||
81 | /* | ||
82 | * Determine if the instruction uses the %rip-relative addressing mode. | ||
83 | * If it does, return the address of the 32-bit displacement word. | ||
84 | * If not, return null. | ||
85 | */ | ||
86 | static s32 __kprobes *is_riprel(u8 *insn) | ||
87 | { | ||
88 | #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \ | ||
89 | (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ | ||
90 | (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ | ||
91 | (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ | ||
92 | (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ | ||
93 | << (row % 64)) | ||
94 | static const u64 onebyte_has_modrm[256 / 64] = { | ||
95 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | ||
96 | /* ------------------------------- */ | ||
97 | W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */ | ||
98 | W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */ | ||
99 | W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */ | ||
100 | W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */ | ||
101 | W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */ | ||
102 | W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */ | ||
103 | W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */ | ||
104 | W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */ | ||
105 | W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */ | ||
106 | W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */ | ||
107 | W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */ | ||
108 | W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */ | ||
109 | W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */ | ||
110 | W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */ | ||
111 | W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */ | ||
112 | W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */ | ||
113 | /* ------------------------------- */ | ||
114 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | ||
115 | }; | ||
116 | static const u64 twobyte_has_modrm[256 / 64] = { | ||
117 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | ||
118 | /* ------------------------------- */ | ||
119 | W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */ | ||
120 | W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */ | ||
121 | W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */ | ||
122 | W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */ | ||
123 | W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */ | ||
124 | W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */ | ||
125 | W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */ | ||
126 | W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */ | ||
127 | W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */ | ||
128 | W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */ | ||
129 | W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */ | ||
130 | W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */ | ||
131 | W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */ | ||
132 | W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */ | ||
133 | W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */ | ||
134 | W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */ | ||
135 | /* ------------------------------- */ | ||
136 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | ||
137 | }; | ||
138 | #undef W | ||
139 | int need_modrm; | ||
140 | |||
141 | /* Skip legacy instruction prefixes. */ | ||
142 | while (1) { | ||
143 | switch (*insn) { | ||
144 | case 0x66: | ||
145 | case 0x67: | ||
146 | case 0x2e: | ||
147 | case 0x3e: | ||
148 | case 0x26: | ||
149 | case 0x64: | ||
150 | case 0x65: | ||
151 | case 0x36: | ||
152 | case 0xf0: | ||
153 | case 0xf3: | ||
154 | case 0xf2: | ||
155 | ++insn; | ||
156 | continue; | ||
157 | } | ||
158 | break; | ||
159 | } | ||
160 | |||
161 | /* Skip REX instruction prefix. */ | ||
162 | if ((*insn & 0xf0) == 0x40) | ||
163 | ++insn; | ||
164 | |||
165 | if (*insn == 0x0f) { /* Two-byte opcode. */ | ||
166 | ++insn; | ||
167 | need_modrm = test_bit(*insn, twobyte_has_modrm); | ||
168 | } else { /* One-byte opcode. */ | ||
169 | need_modrm = test_bit(*insn, onebyte_has_modrm); | ||
170 | } | ||
171 | |||
172 | if (need_modrm) { | ||
173 | u8 modrm = *++insn; | ||
174 | if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */ | ||
175 | /* Displacement follows ModRM byte. */ | ||
176 | return (s32 *) ++insn; | ||
177 | } | ||
178 | } | ||
179 | |||
180 | /* No %rip-relative addressing mode here. */ | ||
181 | return NULL; | ||
182 | } | ||
183 | |||
184 | static void __kprobes arch_copy_kprobe(struct kprobe *p) | ||
185 | { | ||
186 | s32 *ripdisp; | ||
187 | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); | ||
188 | ripdisp = is_riprel(p->ainsn.insn); | ||
189 | if (ripdisp) { | ||
190 | /* | ||
191 | * The copied instruction uses the %rip-relative | ||
192 | * addressing mode. Adjust the displacement for the | ||
193 | * difference between the original location of this | ||
194 | * instruction and the location of the copy that will | ||
195 | * actually be run. The tricky bit here is making sure | ||
196 | * that the sign extension happens correctly in this | ||
197 | * calculation, since we need a signed 32-bit result to | ||
198 | * be sign-extended to 64 bits when it's added to the | ||
199 | * %rip value and yield the same 64-bit result that the | ||
200 | * sign-extension of the original signed 32-bit | ||
201 | * displacement would have given. | ||
202 | */ | ||
203 | s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn; | ||
204 | BUG_ON((s64) (s32) disp != disp); /* Sanity check. */ | ||
205 | *ripdisp = disp; | ||
206 | } | ||
207 | p->opcode = *p->addr; | ||
208 | } | ||
209 | |||
210 | void __kprobes arch_arm_kprobe(struct kprobe *p) | ||
211 | { | ||
212 | text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); | ||
213 | } | ||
214 | |||
215 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | ||
216 | { | ||
217 | text_poke(p->addr, &p->opcode, 1); | ||
218 | } | ||
219 | |||
220 | void __kprobes arch_remove_kprobe(struct kprobe *p) | ||
221 | { | ||
222 | mutex_lock(&kprobe_mutex); | ||
223 | free_insn_slot(p->ainsn.insn, 0); | ||
224 | mutex_unlock(&kprobe_mutex); | ||
225 | } | ||
226 | |||
227 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
228 | { | ||
229 | kcb->prev_kprobe.kp = kprobe_running(); | ||
230 | kcb->prev_kprobe.status = kcb->kprobe_status; | ||
231 | kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags; | ||
232 | kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags; | ||
233 | } | ||
234 | |||
235 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
236 | { | ||
237 | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | ||
238 | kcb->kprobe_status = kcb->prev_kprobe.status; | ||
239 | kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags; | ||
240 | kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags; | ||
241 | } | ||
242 | |||
243 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | ||
244 | struct kprobe_ctlblk *kcb) | ||
245 | { | ||
246 | __get_cpu_var(current_kprobe) = p; | ||
247 | kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags | ||
248 | = (regs->eflags & (TF_MASK | IF_MASK)); | ||
249 | if (is_IF_modifier(p->ainsn.insn)) | ||
250 | kcb->kprobe_saved_rflags &= ~IF_MASK; | ||
251 | } | ||
252 | |||
253 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | ||
254 | { | ||
255 | regs->eflags |= TF_MASK; | ||
256 | regs->eflags &= ~IF_MASK; | ||
257 | /*single step inline if the instruction is an int3*/ | ||
258 | if (p->opcode == BREAKPOINT_INSTRUCTION) | ||
259 | regs->rip = (unsigned long)p->addr; | ||
260 | else | ||
261 | regs->rip = (unsigned long)p->ainsn.insn; | ||
262 | } | ||
263 | |||
264 | /* Called with kretprobe_lock held */ | ||
265 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | ||
266 | struct pt_regs *regs) | ||
267 | { | ||
268 | unsigned long *sara = (unsigned long *)regs->rsp; | ||
269 | |||
270 | ri->ret_addr = (kprobe_opcode_t *) *sara; | ||
271 | /* Replace the return addr with trampoline addr */ | ||
272 | *sara = (unsigned long) &kretprobe_trampoline; | ||
273 | } | ||
274 | |||
275 | int __kprobes kprobe_handler(struct pt_regs *regs) | ||
276 | { | ||
277 | struct kprobe *p; | ||
278 | int ret = 0; | ||
279 | kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t)); | ||
280 | struct kprobe_ctlblk *kcb; | ||
281 | |||
282 | /* | ||
283 | * We don't want to be preempted for the entire | ||
284 | * duration of kprobe processing | ||
285 | */ | ||
286 | preempt_disable(); | ||
287 | kcb = get_kprobe_ctlblk(); | ||
288 | |||
289 | /* Check we're not actually recursing */ | ||
290 | if (kprobe_running()) { | ||
291 | p = get_kprobe(addr); | ||
292 | if (p) { | ||
293 | if (kcb->kprobe_status == KPROBE_HIT_SS && | ||
294 | *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | ||
295 | regs->eflags &= ~TF_MASK; | ||
296 | regs->eflags |= kcb->kprobe_saved_rflags; | ||
297 | goto no_kprobe; | ||
298 | } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) { | ||
299 | /* TODO: Provide re-entrancy from | ||
300 | * post_kprobes_handler() and avoid exception | ||
301 | * stack corruption while single-stepping on | ||
302 | * the instruction of the new probe. | ||
303 | */ | ||
304 | arch_disarm_kprobe(p); | ||
305 | regs->rip = (unsigned long)p->addr; | ||
306 | reset_current_kprobe(); | ||
307 | ret = 1; | ||
308 | } else { | ||
309 | /* We have reentered the kprobe_handler(), since | ||
310 | * another probe was hit while within the | ||
311 | * handler. We here save the original kprobe | ||
312 | * variables and just single step on instruction | ||
313 | * of the new probe without calling any user | ||
314 | * handlers. | ||
315 | */ | ||
316 | save_previous_kprobe(kcb); | ||
317 | set_current_kprobe(p, regs, kcb); | ||
318 | kprobes_inc_nmissed_count(p); | ||
319 | prepare_singlestep(p, regs); | ||
320 | kcb->kprobe_status = KPROBE_REENTER; | ||
321 | return 1; | ||
322 | } | ||
323 | } else { | ||
324 | if (*addr != BREAKPOINT_INSTRUCTION) { | ||
325 | /* The breakpoint instruction was removed by | ||
326 | * another cpu right after we hit, no further | ||
327 | * handling of this interrupt is appropriate | ||
328 | */ | ||
329 | regs->rip = (unsigned long)addr; | ||
330 | ret = 1; | ||
331 | goto no_kprobe; | ||
332 | } | ||
333 | p = __get_cpu_var(current_kprobe); | ||
334 | if (p->break_handler && p->break_handler(p, regs)) { | ||
335 | goto ss_probe; | ||
336 | } | ||
337 | } | ||
338 | goto no_kprobe; | ||
339 | } | ||
340 | |||
341 | p = get_kprobe(addr); | ||
342 | if (!p) { | ||
343 | if (*addr != BREAKPOINT_INSTRUCTION) { | ||
344 | /* | ||
345 | * The breakpoint instruction was removed right | ||
346 | * after we hit it. Another cpu has removed | ||
347 | * either a probepoint or a debugger breakpoint | ||
348 | * at this address. In either case, no further | ||
349 | * handling of this interrupt is appropriate. | ||
350 | * Back up over the (now missing) int3 and run | ||
351 | * the original instruction. | ||
352 | */ | ||
353 | regs->rip = (unsigned long)addr; | ||
354 | ret = 1; | ||
355 | } | ||
356 | /* Not one of ours: let kernel handle it */ | ||
357 | goto no_kprobe; | ||
358 | } | ||
359 | |||
360 | set_current_kprobe(p, regs, kcb); | ||
361 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | ||
362 | |||
363 | if (p->pre_handler && p->pre_handler(p, regs)) | ||
364 | /* handler has already set things up, so skip ss setup */ | ||
365 | return 1; | ||
366 | |||
367 | ss_probe: | ||
368 | prepare_singlestep(p, regs); | ||
369 | kcb->kprobe_status = KPROBE_HIT_SS; | ||
370 | return 1; | ||
371 | |||
372 | no_kprobe: | ||
373 | preempt_enable_no_resched(); | ||
374 | return ret; | ||
375 | } | ||
376 | |||
377 | /* | ||
378 | * For function-return probes, init_kprobes() establishes a probepoint | ||
379 | * here. When a retprobed function returns, this probe is hit and | ||
380 | * trampoline_probe_handler() runs, calling the kretprobe's handler. | ||
381 | */ | ||
382 | void kretprobe_trampoline_holder(void) | ||
383 | { | ||
384 | asm volatile ( ".global kretprobe_trampoline\n" | ||
385 | "kretprobe_trampoline: \n" | ||
386 | "nop\n"); | ||
387 | } | ||
388 | |||
389 | /* | ||
390 | * Called when we hit the probe point at kretprobe_trampoline | ||
391 | */ | ||
392 | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | ||
393 | { | ||
394 | struct kretprobe_instance *ri = NULL; | ||
395 | struct hlist_head *head, empty_rp; | ||
396 | struct hlist_node *node, *tmp; | ||
397 | unsigned long flags, orig_ret_address = 0; | ||
398 | unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | ||
399 | |||
400 | INIT_HLIST_HEAD(&empty_rp); | ||
401 | spin_lock_irqsave(&kretprobe_lock, flags); | ||
402 | head = kretprobe_inst_table_head(current); | ||
403 | |||
404 | /* | ||
405 | * It is possible to have multiple instances associated with a given | ||
406 | * task either because an multiple functions in the call path | ||
407 | * have a return probe installed on them, and/or more then one return | ||
408 | * return probe was registered for a target function. | ||
409 | * | ||
410 | * We can handle this because: | ||
411 | * - instances are always inserted at the head of the list | ||
412 | * - when multiple return probes are registered for the same | ||
413 | * function, the first instance's ret_addr will point to the | ||
414 | * real return address, and all the rest will point to | ||
415 | * kretprobe_trampoline | ||
416 | */ | ||
417 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | ||
418 | if (ri->task != current) | ||
419 | /* another task is sharing our hash bucket */ | ||
420 | continue; | ||
421 | |||
422 | if (ri->rp && ri->rp->handler) | ||
423 | ri->rp->handler(ri, regs); | ||
424 | |||
425 | orig_ret_address = (unsigned long)ri->ret_addr; | ||
426 | recycle_rp_inst(ri, &empty_rp); | ||
427 | |||
428 | if (orig_ret_address != trampoline_address) | ||
429 | /* | ||
430 | * This is the real return address. Any other | ||
431 | * instances associated with this task are for | ||
432 | * other calls deeper on the call stack | ||
433 | */ | ||
434 | break; | ||
435 | } | ||
436 | |||
437 | kretprobe_assert(ri, orig_ret_address, trampoline_address); | ||
438 | regs->rip = orig_ret_address; | ||
439 | |||
440 | reset_current_kprobe(); | ||
441 | spin_unlock_irqrestore(&kretprobe_lock, flags); | ||
442 | preempt_enable_no_resched(); | ||
443 | |||
444 | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | ||
445 | hlist_del(&ri->hlist); | ||
446 | kfree(ri); | ||
447 | } | ||
448 | /* | ||
449 | * By returning a non-zero value, we are telling | ||
450 | * kprobe_handler() that we don't want the post_handler | ||
451 | * to run (and have re-enabled preemption) | ||
452 | */ | ||
453 | return 1; | ||
454 | } | ||
455 | |||
456 | /* | ||
457 | * Called after single-stepping. p->addr is the address of the | ||
458 | * instruction whose first byte has been replaced by the "int 3" | ||
459 | * instruction. To avoid the SMP problems that can occur when we | ||
460 | * temporarily put back the original opcode to single-step, we | ||
461 | * single-stepped a copy of the instruction. The address of this | ||
462 | * copy is p->ainsn.insn. | ||
463 | * | ||
464 | * This function prepares to return from the post-single-step | ||
465 | * interrupt. We have to fix up the stack as follows: | ||
466 | * | ||
467 | * 0) Except in the case of absolute or indirect jump or call instructions, | ||
468 | * the new rip is relative to the copied instruction. We need to make | ||
469 | * it relative to the original instruction. | ||
470 | * | ||
471 | * 1) If the single-stepped instruction was pushfl, then the TF and IF | ||
472 | * flags are set in the just-pushed eflags, and may need to be cleared. | ||
473 | * | ||
474 | * 2) If the single-stepped instruction was a call, the return address | ||
475 | * that is atop the stack is the address following the copied instruction. | ||
476 | * We need to make it the address following the original instruction. | ||
477 | */ | ||
478 | static void __kprobes resume_execution(struct kprobe *p, | ||
479 | struct pt_regs *regs, struct kprobe_ctlblk *kcb) | ||
480 | { | ||
481 | unsigned long *tos = (unsigned long *)regs->rsp; | ||
482 | unsigned long next_rip = 0; | ||
483 | unsigned long copy_rip = (unsigned long)p->ainsn.insn; | ||
484 | unsigned long orig_rip = (unsigned long)p->addr; | ||
485 | kprobe_opcode_t *insn = p->ainsn.insn; | ||
486 | |||
487 | /*skip the REX prefix*/ | ||
488 | if (*insn >= 0x40 && *insn <= 0x4f) | ||
489 | insn++; | ||
490 | |||
491 | switch (*insn) { | ||
492 | case 0x9c: /* pushfl */ | ||
493 | *tos &= ~(TF_MASK | IF_MASK); | ||
494 | *tos |= kcb->kprobe_old_rflags; | ||
495 | break; | ||
496 | case 0xc3: /* ret/lret */ | ||
497 | case 0xcb: | ||
498 | case 0xc2: | ||
499 | case 0xca: | ||
500 | regs->eflags &= ~TF_MASK; | ||
501 | /* rip is already adjusted, no more changes required*/ | ||
502 | return; | ||
503 | case 0xe8: /* call relative - Fix return addr */ | ||
504 | *tos = orig_rip + (*tos - copy_rip); | ||
505 | break; | ||
506 | case 0xff: | ||
507 | if ((insn[1] & 0x30) == 0x10) { | ||
508 | /* call absolute, indirect */ | ||
509 | /* Fix return addr; rip is correct. */ | ||
510 | next_rip = regs->rip; | ||
511 | *tos = orig_rip + (*tos - copy_rip); | ||
512 | } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ | ||
513 | ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ | ||
514 | /* rip is correct. */ | ||
515 | next_rip = regs->rip; | ||
516 | } | ||
517 | break; | ||
518 | case 0xea: /* jmp absolute -- rip is correct */ | ||
519 | next_rip = regs->rip; | ||
520 | break; | ||
521 | default: | ||
522 | break; | ||
523 | } | ||
524 | |||
525 | regs->eflags &= ~TF_MASK; | ||
526 | if (next_rip) { | ||
527 | regs->rip = next_rip; | ||
528 | } else { | ||
529 | regs->rip = orig_rip + (regs->rip - copy_rip); | ||
530 | } | ||
531 | } | ||
532 | |||
533 | int __kprobes post_kprobe_handler(struct pt_regs *regs) | ||
534 | { | ||
535 | struct kprobe *cur = kprobe_running(); | ||
536 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
537 | |||
538 | if (!cur) | ||
539 | return 0; | ||
540 | |||
541 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | ||
542 | kcb->kprobe_status = KPROBE_HIT_SSDONE; | ||
543 | cur->post_handler(cur, regs, 0); | ||
544 | } | ||
545 | |||
546 | resume_execution(cur, regs, kcb); | ||
547 | regs->eflags |= kcb->kprobe_saved_rflags; | ||
548 | |||
549 | /* Restore the original saved kprobes variables and continue. */ | ||
550 | if (kcb->kprobe_status == KPROBE_REENTER) { | ||
551 | restore_previous_kprobe(kcb); | ||
552 | goto out; | ||
553 | } | ||
554 | reset_current_kprobe(); | ||
555 | out: | ||
556 | preempt_enable_no_resched(); | ||
557 | |||
558 | /* | ||
559 | * if somebody else is singlestepping across a probe point, eflags | ||
560 | * will have TF set, in which case, continue the remaining processing | ||
561 | * of do_debug, as if this is not a probe hit. | ||
562 | */ | ||
563 | if (regs->eflags & TF_MASK) | ||
564 | return 0; | ||
565 | |||
566 | return 1; | ||
567 | } | ||
568 | |||
569 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | ||
570 | { | ||
571 | struct kprobe *cur = kprobe_running(); | ||
572 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
573 | const struct exception_table_entry *fixup; | ||
574 | |||
575 | switch(kcb->kprobe_status) { | ||
576 | case KPROBE_HIT_SS: | ||
577 | case KPROBE_REENTER: | ||
578 | /* | ||
579 | * We are here because the instruction being single | ||
580 | * stepped caused a page fault. We reset the current | ||
581 | * kprobe and the rip points back to the probe address | ||
582 | * and allow the page fault handler to continue as a | ||
583 | * normal page fault. | ||
584 | */ | ||
585 | regs->rip = (unsigned long)cur->addr; | ||
586 | regs->eflags |= kcb->kprobe_old_rflags; | ||
587 | if (kcb->kprobe_status == KPROBE_REENTER) | ||
588 | restore_previous_kprobe(kcb); | ||
589 | else | ||
590 | reset_current_kprobe(); | ||
591 | preempt_enable_no_resched(); | ||
592 | break; | ||
593 | case KPROBE_HIT_ACTIVE: | ||
594 | case KPROBE_HIT_SSDONE: | ||
595 | /* | ||
596 | * We increment the nmissed count for accounting, | ||
597 | * we can also use npre/npostfault count for accouting | ||
598 | * these specific fault cases. | ||
599 | */ | ||
600 | kprobes_inc_nmissed_count(cur); | ||
601 | |||
602 | /* | ||
603 | * We come here because instructions in the pre/post | ||
604 | * handler caused the page_fault, this could happen | ||
605 | * if handler tries to access user space by | ||
606 | * copy_from_user(), get_user() etc. Let the | ||
607 | * user-specified handler try to fix it first. | ||
608 | */ | ||
609 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | ||
610 | return 1; | ||
611 | |||
612 | /* | ||
613 | * In case the user-specified fault handler returned | ||
614 | * zero, try to fix up. | ||
615 | */ | ||
616 | fixup = search_exception_tables(regs->rip); | ||
617 | if (fixup) { | ||
618 | regs->rip = fixup->fixup; | ||
619 | return 1; | ||
620 | } | ||
621 | |||
622 | /* | ||
623 | * fixup() could not handle it, | ||
624 | * Let do_page_fault() fix it. | ||
625 | */ | ||
626 | break; | ||
627 | default: | ||
628 | break; | ||
629 | } | ||
630 | return 0; | ||
631 | } | ||
632 | |||
633 | /* | ||
634 | * Wrapper routine for handling exceptions. | ||
635 | */ | ||
636 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | ||
637 | unsigned long val, void *data) | ||
638 | { | ||
639 | struct die_args *args = (struct die_args *)data; | ||
640 | int ret = NOTIFY_DONE; | ||
641 | |||
642 | if (args->regs && user_mode(args->regs)) | ||
643 | return ret; | ||
644 | |||
645 | switch (val) { | ||
646 | case DIE_INT3: | ||
647 | if (kprobe_handler(args->regs)) | ||
648 | ret = NOTIFY_STOP; | ||
649 | break; | ||
650 | case DIE_DEBUG: | ||
651 | if (post_kprobe_handler(args->regs)) | ||
652 | ret = NOTIFY_STOP; | ||
653 | break; | ||
654 | case DIE_GPF: | ||
655 | case DIE_PAGE_FAULT: | ||
656 | /* kprobe_running() needs smp_processor_id() */ | ||
657 | preempt_disable(); | ||
658 | if (kprobe_running() && | ||
659 | kprobe_fault_handler(args->regs, args->trapnr)) | ||
660 | ret = NOTIFY_STOP; | ||
661 | preempt_enable(); | ||
662 | break; | ||
663 | default: | ||
664 | break; | ||
665 | } | ||
666 | return ret; | ||
667 | } | ||
668 | |||
669 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
670 | { | ||
671 | struct jprobe *jp = container_of(p, struct jprobe, kp); | ||
672 | unsigned long addr; | ||
673 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
674 | |||
675 | kcb->jprobe_saved_regs = *regs; | ||
676 | kcb->jprobe_saved_rsp = (long *) regs->rsp; | ||
677 | addr = (unsigned long)(kcb->jprobe_saved_rsp); | ||
678 | /* | ||
679 | * As Linus pointed out, gcc assumes that the callee | ||
680 | * owns the argument space and could overwrite it, e.g. | ||
681 | * tailcall optimization. So, to be absolutely safe | ||
682 | * we also save and restore enough stack bytes to cover | ||
683 | * the argument area. | ||
684 | */ | ||
685 | memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, | ||
686 | MIN_STACK_SIZE(addr)); | ||
687 | regs->eflags &= ~IF_MASK; | ||
688 | regs->rip = (unsigned long)(jp->entry); | ||
689 | return 1; | ||
690 | } | ||
691 | |||
692 | void __kprobes jprobe_return(void) | ||
693 | { | ||
694 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
695 | |||
696 | asm volatile (" xchg %%rbx,%%rsp \n" | ||
697 | " int3 \n" | ||
698 | " .globl jprobe_return_end \n" | ||
699 | " jprobe_return_end: \n" | ||
700 | " nop \n"::"b" | ||
701 | (kcb->jprobe_saved_rsp):"memory"); | ||
702 | } | ||
703 | |||
704 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | ||
705 | { | ||
706 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
707 | u8 *addr = (u8 *) (regs->rip - 1); | ||
708 | unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp); | ||
709 | struct jprobe *jp = container_of(p, struct jprobe, kp); | ||
710 | |||
711 | if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { | ||
712 | if ((long *)regs->rsp != kcb->jprobe_saved_rsp) { | ||
713 | struct pt_regs *saved_regs = | ||
714 | container_of(kcb->jprobe_saved_rsp, | ||
715 | struct pt_regs, rsp); | ||
716 | printk("current rsp %p does not match saved rsp %p\n", | ||
717 | (long *)regs->rsp, kcb->jprobe_saved_rsp); | ||
718 | printk("Saved registers for jprobe %p\n", jp); | ||
719 | show_registers(saved_regs); | ||
720 | printk("Current registers\n"); | ||
721 | show_registers(regs); | ||
722 | BUG(); | ||
723 | } | ||
724 | *regs = kcb->jprobe_saved_regs; | ||
725 | memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, | ||
726 | MIN_STACK_SIZE(stack_addr)); | ||
727 | preempt_enable_no_resched(); | ||
728 | return 1; | ||
729 | } | ||
730 | return 0; | ||
731 | } | ||
732 | |||
733 | static struct kprobe trampoline_p = { | ||
734 | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | ||
735 | .pre_handler = trampoline_probe_handler | ||
736 | }; | ||
737 | |||
738 | int __init arch_init_kprobes(void) | ||
739 | { | ||
740 | return register_kprobe(&trampoline_p); | ||
741 | } | ||
742 | |||
743 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | ||
744 | { | ||
745 | if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) | ||
746 | return 1; | ||
747 | |||
748 | return 0; | ||
749 | } | ||