aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/intel_cacheinfo.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/cpu/intel_cacheinfo.c')
-rw-r--r--arch/x86/kernel/cpu/intel_cacheinfo.c806
1 files changed, 806 insertions, 0 deletions
diff --git a/arch/x86/kernel/cpu/intel_cacheinfo.c b/arch/x86/kernel/cpu/intel_cacheinfo.c
new file mode 100644
index 000000000000..db6c25aa5776
--- /dev/null
+++ b/arch/x86/kernel/cpu/intel_cacheinfo.c
@@ -0,0 +1,806 @@
1/*
2 * Routines to indentify caches on Intel CPU.
3 *
4 * Changes:
5 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
6 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
7 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
8 */
9
10#include <linux/init.h>
11#include <linux/slab.h>
12#include <linux/device.h>
13#include <linux/compiler.h>
14#include <linux/cpu.h>
15#include <linux/sched.h>
16
17#include <asm/processor.h>
18#include <asm/smp.h>
19
20#define LVL_1_INST 1
21#define LVL_1_DATA 2
22#define LVL_2 3
23#define LVL_3 4
24#define LVL_TRACE 5
25
26struct _cache_table
27{
28 unsigned char descriptor;
29 char cache_type;
30 short size;
31};
32
33/* all the cache descriptor types we care about (no TLB or trace cache entries) */
34static struct _cache_table cache_table[] __cpuinitdata =
35{
36 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
37 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
38 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
39 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
40 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
41 { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
42 { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
43 { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
44 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
45 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
46 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
47 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
48 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
49 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
50 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
51 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
52 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
53 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
54 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
55 { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
56 { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
57 { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
58 { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
59 { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
60 { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
61 { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
62 { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
63 { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
64 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
65 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
66 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
67 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
68 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
69 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
70 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
71 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
72 { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
73 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
74 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
75 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
76 { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
77 { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
78 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
79 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
80 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
81 { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
82 { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
83 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
84 { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
85 { 0x00, 0, 0}
86};
87
88
89enum _cache_type
90{
91 CACHE_TYPE_NULL = 0,
92 CACHE_TYPE_DATA = 1,
93 CACHE_TYPE_INST = 2,
94 CACHE_TYPE_UNIFIED = 3
95};
96
97union _cpuid4_leaf_eax {
98 struct {
99 enum _cache_type type:5;
100 unsigned int level:3;
101 unsigned int is_self_initializing:1;
102 unsigned int is_fully_associative:1;
103 unsigned int reserved:4;
104 unsigned int num_threads_sharing:12;
105 unsigned int num_cores_on_die:6;
106 } split;
107 u32 full;
108};
109
110union _cpuid4_leaf_ebx {
111 struct {
112 unsigned int coherency_line_size:12;
113 unsigned int physical_line_partition:10;
114 unsigned int ways_of_associativity:10;
115 } split;
116 u32 full;
117};
118
119union _cpuid4_leaf_ecx {
120 struct {
121 unsigned int number_of_sets:32;
122 } split;
123 u32 full;
124};
125
126struct _cpuid4_info {
127 union _cpuid4_leaf_eax eax;
128 union _cpuid4_leaf_ebx ebx;
129 union _cpuid4_leaf_ecx ecx;
130 unsigned long size;
131 cpumask_t shared_cpu_map;
132};
133
134unsigned short num_cache_leaves;
135
136/* AMD doesn't have CPUID4. Emulate it here to report the same
137 information to the user. This makes some assumptions about the machine:
138 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
139
140 In theory the TLBs could be reported as fake type (they are in "dummy").
141 Maybe later */
142union l1_cache {
143 struct {
144 unsigned line_size : 8;
145 unsigned lines_per_tag : 8;
146 unsigned assoc : 8;
147 unsigned size_in_kb : 8;
148 };
149 unsigned val;
150};
151
152union l2_cache {
153 struct {
154 unsigned line_size : 8;
155 unsigned lines_per_tag : 4;
156 unsigned assoc : 4;
157 unsigned size_in_kb : 16;
158 };
159 unsigned val;
160};
161
162union l3_cache {
163 struct {
164 unsigned line_size : 8;
165 unsigned lines_per_tag : 4;
166 unsigned assoc : 4;
167 unsigned res : 2;
168 unsigned size_encoded : 14;
169 };
170 unsigned val;
171};
172
173static const unsigned short assocs[] = {
174 [1] = 1, [2] = 2, [4] = 4, [6] = 8,
175 [8] = 16, [0xa] = 32, [0xb] = 48,
176 [0xc] = 64,
177 [0xf] = 0xffff // ??
178};
179
180static const unsigned char levels[] = { 1, 1, 2, 3 };
181static const unsigned char types[] = { 1, 2, 3, 3 };
182
183static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
184 union _cpuid4_leaf_ebx *ebx,
185 union _cpuid4_leaf_ecx *ecx)
186{
187 unsigned dummy;
188 unsigned line_size, lines_per_tag, assoc, size_in_kb;
189 union l1_cache l1i, l1d;
190 union l2_cache l2;
191 union l3_cache l3;
192 union l1_cache *l1 = &l1d;
193
194 eax->full = 0;
195 ebx->full = 0;
196 ecx->full = 0;
197
198 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
199 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
200
201 switch (leaf) {
202 case 1:
203 l1 = &l1i;
204 case 0:
205 if (!l1->val)
206 return;
207 assoc = l1->assoc;
208 line_size = l1->line_size;
209 lines_per_tag = l1->lines_per_tag;
210 size_in_kb = l1->size_in_kb;
211 break;
212 case 2:
213 if (!l2.val)
214 return;
215 assoc = l2.assoc;
216 line_size = l2.line_size;
217 lines_per_tag = l2.lines_per_tag;
218 /* cpu_data has errata corrections for K7 applied */
219 size_in_kb = current_cpu_data.x86_cache_size;
220 break;
221 case 3:
222 if (!l3.val)
223 return;
224 assoc = l3.assoc;
225 line_size = l3.line_size;
226 lines_per_tag = l3.lines_per_tag;
227 size_in_kb = l3.size_encoded * 512;
228 break;
229 default:
230 return;
231 }
232
233 eax->split.is_self_initializing = 1;
234 eax->split.type = types[leaf];
235 eax->split.level = levels[leaf];
236 if (leaf == 3)
237 eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
238 else
239 eax->split.num_threads_sharing = 0;
240 eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
241
242
243 if (assoc == 0xf)
244 eax->split.is_fully_associative = 1;
245 ebx->split.coherency_line_size = line_size - 1;
246 ebx->split.ways_of_associativity = assocs[assoc] - 1;
247 ebx->split.physical_line_partition = lines_per_tag - 1;
248 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
249 (ebx->split.ways_of_associativity + 1) - 1;
250}
251
252static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
253{
254 union _cpuid4_leaf_eax eax;
255 union _cpuid4_leaf_ebx ebx;
256 union _cpuid4_leaf_ecx ecx;
257 unsigned edx;
258
259 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
260 amd_cpuid4(index, &eax, &ebx, &ecx);
261 else
262 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
263 if (eax.split.type == CACHE_TYPE_NULL)
264 return -EIO; /* better error ? */
265
266 this_leaf->eax = eax;
267 this_leaf->ebx = ebx;
268 this_leaf->ecx = ecx;
269 this_leaf->size = (ecx.split.number_of_sets + 1) *
270 (ebx.split.coherency_line_size + 1) *
271 (ebx.split.physical_line_partition + 1) *
272 (ebx.split.ways_of_associativity + 1);
273 return 0;
274}
275
276static int __cpuinit find_num_cache_leaves(void)
277{
278 unsigned int eax, ebx, ecx, edx;
279 union _cpuid4_leaf_eax cache_eax;
280 int i = -1;
281
282 do {
283 ++i;
284 /* Do cpuid(4) loop to find out num_cache_leaves */
285 cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
286 cache_eax.full = eax;
287 } while (cache_eax.split.type != CACHE_TYPE_NULL);
288 return i;
289}
290
291unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
292{
293 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
294 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
295 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
296 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
297#ifdef CONFIG_X86_HT
298 unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
299#endif
300
301 if (c->cpuid_level > 3) {
302 static int is_initialized;
303
304 if (is_initialized == 0) {
305 /* Init num_cache_leaves from boot CPU */
306 num_cache_leaves = find_num_cache_leaves();
307 is_initialized++;
308 }
309
310 /*
311 * Whenever possible use cpuid(4), deterministic cache
312 * parameters cpuid leaf to find the cache details
313 */
314 for (i = 0; i < num_cache_leaves; i++) {
315 struct _cpuid4_info this_leaf;
316
317 int retval;
318
319 retval = cpuid4_cache_lookup(i, &this_leaf);
320 if (retval >= 0) {
321 switch(this_leaf.eax.split.level) {
322 case 1:
323 if (this_leaf.eax.split.type ==
324 CACHE_TYPE_DATA)
325 new_l1d = this_leaf.size/1024;
326 else if (this_leaf.eax.split.type ==
327 CACHE_TYPE_INST)
328 new_l1i = this_leaf.size/1024;
329 break;
330 case 2:
331 new_l2 = this_leaf.size/1024;
332 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
333 index_msb = get_count_order(num_threads_sharing);
334 l2_id = c->apicid >> index_msb;
335 break;
336 case 3:
337 new_l3 = this_leaf.size/1024;
338 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
339 index_msb = get_count_order(num_threads_sharing);
340 l3_id = c->apicid >> index_msb;
341 break;
342 default:
343 break;
344 }
345 }
346 }
347 }
348 /*
349 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
350 * trace cache
351 */
352 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
353 /* supports eax=2 call */
354 int i, j, n;
355 int regs[4];
356 unsigned char *dp = (unsigned char *)regs;
357 int only_trace = 0;
358
359 if (num_cache_leaves != 0 && c->x86 == 15)
360 only_trace = 1;
361
362 /* Number of times to iterate */
363 n = cpuid_eax(2) & 0xFF;
364
365 for ( i = 0 ; i < n ; i++ ) {
366 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
367
368 /* If bit 31 is set, this is an unknown format */
369 for ( j = 0 ; j < 3 ; j++ ) {
370 if ( regs[j] < 0 ) regs[j] = 0;
371 }
372
373 /* Byte 0 is level count, not a descriptor */
374 for ( j = 1 ; j < 16 ; j++ ) {
375 unsigned char des = dp[j];
376 unsigned char k = 0;
377
378 /* look up this descriptor in the table */
379 while (cache_table[k].descriptor != 0)
380 {
381 if (cache_table[k].descriptor == des) {
382 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
383 break;
384 switch (cache_table[k].cache_type) {
385 case LVL_1_INST:
386 l1i += cache_table[k].size;
387 break;
388 case LVL_1_DATA:
389 l1d += cache_table[k].size;
390 break;
391 case LVL_2:
392 l2 += cache_table[k].size;
393 break;
394 case LVL_3:
395 l3 += cache_table[k].size;
396 break;
397 case LVL_TRACE:
398 trace += cache_table[k].size;
399 break;
400 }
401
402 break;
403 }
404
405 k++;
406 }
407 }
408 }
409 }
410
411 if (new_l1d)
412 l1d = new_l1d;
413
414 if (new_l1i)
415 l1i = new_l1i;
416
417 if (new_l2) {
418 l2 = new_l2;
419#ifdef CONFIG_X86_HT
420 cpu_llc_id[cpu] = l2_id;
421#endif
422 }
423
424 if (new_l3) {
425 l3 = new_l3;
426#ifdef CONFIG_X86_HT
427 cpu_llc_id[cpu] = l3_id;
428#endif
429 }
430
431 if (trace)
432 printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
433 else if ( l1i )
434 printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
435
436 if (l1d)
437 printk(", L1 D cache: %dK\n", l1d);
438 else
439 printk("\n");
440
441 if (l2)
442 printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
443
444 if (l3)
445 printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
446
447 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
448
449 return l2;
450}
451
452/* pointer to _cpuid4_info array (for each cache leaf) */
453static struct _cpuid4_info *cpuid4_info[NR_CPUS];
454#define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
455
456#ifdef CONFIG_SMP
457static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
458{
459 struct _cpuid4_info *this_leaf, *sibling_leaf;
460 unsigned long num_threads_sharing;
461 int index_msb, i;
462 struct cpuinfo_x86 *c = cpu_data;
463
464 this_leaf = CPUID4_INFO_IDX(cpu, index);
465 num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
466
467 if (num_threads_sharing == 1)
468 cpu_set(cpu, this_leaf->shared_cpu_map);
469 else {
470 index_msb = get_count_order(num_threads_sharing);
471
472 for_each_online_cpu(i) {
473 if (c[i].apicid >> index_msb ==
474 c[cpu].apicid >> index_msb) {
475 cpu_set(i, this_leaf->shared_cpu_map);
476 if (i != cpu && cpuid4_info[i]) {
477 sibling_leaf = CPUID4_INFO_IDX(i, index);
478 cpu_set(cpu, sibling_leaf->shared_cpu_map);
479 }
480 }
481 }
482 }
483}
484static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
485{
486 struct _cpuid4_info *this_leaf, *sibling_leaf;
487 int sibling;
488
489 this_leaf = CPUID4_INFO_IDX(cpu, index);
490 for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
491 sibling_leaf = CPUID4_INFO_IDX(sibling, index);
492 cpu_clear(cpu, sibling_leaf->shared_cpu_map);
493 }
494}
495#else
496static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
497static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
498#endif
499
500static void free_cache_attributes(unsigned int cpu)
501{
502 kfree(cpuid4_info[cpu]);
503 cpuid4_info[cpu] = NULL;
504}
505
506static int __cpuinit detect_cache_attributes(unsigned int cpu)
507{
508 struct _cpuid4_info *this_leaf;
509 unsigned long j;
510 int retval;
511 cpumask_t oldmask;
512
513 if (num_cache_leaves == 0)
514 return -ENOENT;
515
516 cpuid4_info[cpu] = kzalloc(
517 sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
518 if (cpuid4_info[cpu] == NULL)
519 return -ENOMEM;
520
521 oldmask = current->cpus_allowed;
522 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
523 if (retval)
524 goto out;
525
526 /* Do cpuid and store the results */
527 retval = 0;
528 for (j = 0; j < num_cache_leaves; j++) {
529 this_leaf = CPUID4_INFO_IDX(cpu, j);
530 retval = cpuid4_cache_lookup(j, this_leaf);
531 if (unlikely(retval < 0))
532 break;
533 cache_shared_cpu_map_setup(cpu, j);
534 }
535 set_cpus_allowed(current, oldmask);
536
537out:
538 if (retval)
539 free_cache_attributes(cpu);
540 return retval;
541}
542
543#ifdef CONFIG_SYSFS
544
545#include <linux/kobject.h>
546#include <linux/sysfs.h>
547
548extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
549
550/* pointer to kobject for cpuX/cache */
551static struct kobject * cache_kobject[NR_CPUS];
552
553struct _index_kobject {
554 struct kobject kobj;
555 unsigned int cpu;
556 unsigned short index;
557};
558
559/* pointer to array of kobjects for cpuX/cache/indexY */
560static struct _index_kobject *index_kobject[NR_CPUS];
561#define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
562
563#define show_one_plus(file_name, object, val) \
564static ssize_t show_##file_name \
565 (struct _cpuid4_info *this_leaf, char *buf) \
566{ \
567 return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
568}
569
570show_one_plus(level, eax.split.level, 0);
571show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
572show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
573show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
574show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
575
576static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
577{
578 return sprintf (buf, "%luK\n", this_leaf->size / 1024);
579}
580
581static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
582{
583 char mask_str[NR_CPUS];
584 cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
585 return sprintf(buf, "%s\n", mask_str);
586}
587
588static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
589 switch(this_leaf->eax.split.type) {
590 case CACHE_TYPE_DATA:
591 return sprintf(buf, "Data\n");
592 break;
593 case CACHE_TYPE_INST:
594 return sprintf(buf, "Instruction\n");
595 break;
596 case CACHE_TYPE_UNIFIED:
597 return sprintf(buf, "Unified\n");
598 break;
599 default:
600 return sprintf(buf, "Unknown\n");
601 break;
602 }
603}
604
605struct _cache_attr {
606 struct attribute attr;
607 ssize_t (*show)(struct _cpuid4_info *, char *);
608 ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
609};
610
611#define define_one_ro(_name) \
612static struct _cache_attr _name = \
613 __ATTR(_name, 0444, show_##_name, NULL)
614
615define_one_ro(level);
616define_one_ro(type);
617define_one_ro(coherency_line_size);
618define_one_ro(physical_line_partition);
619define_one_ro(ways_of_associativity);
620define_one_ro(number_of_sets);
621define_one_ro(size);
622define_one_ro(shared_cpu_map);
623
624static struct attribute * default_attrs[] = {
625 &type.attr,
626 &level.attr,
627 &coherency_line_size.attr,
628 &physical_line_partition.attr,
629 &ways_of_associativity.attr,
630 &number_of_sets.attr,
631 &size.attr,
632 &shared_cpu_map.attr,
633 NULL
634};
635
636#define to_object(k) container_of(k, struct _index_kobject, kobj)
637#define to_attr(a) container_of(a, struct _cache_attr, attr)
638
639static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
640{
641 struct _cache_attr *fattr = to_attr(attr);
642 struct _index_kobject *this_leaf = to_object(kobj);
643 ssize_t ret;
644
645 ret = fattr->show ?
646 fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
647 buf) :
648 0;
649 return ret;
650}
651
652static ssize_t store(struct kobject * kobj, struct attribute * attr,
653 const char * buf, size_t count)
654{
655 return 0;
656}
657
658static struct sysfs_ops sysfs_ops = {
659 .show = show,
660 .store = store,
661};
662
663static struct kobj_type ktype_cache = {
664 .sysfs_ops = &sysfs_ops,
665 .default_attrs = default_attrs,
666};
667
668static struct kobj_type ktype_percpu_entry = {
669 .sysfs_ops = &sysfs_ops,
670};
671
672static void cpuid4_cache_sysfs_exit(unsigned int cpu)
673{
674 kfree(cache_kobject[cpu]);
675 kfree(index_kobject[cpu]);
676 cache_kobject[cpu] = NULL;
677 index_kobject[cpu] = NULL;
678 free_cache_attributes(cpu);
679}
680
681static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
682{
683
684 if (num_cache_leaves == 0)
685 return -ENOENT;
686
687 detect_cache_attributes(cpu);
688 if (cpuid4_info[cpu] == NULL)
689 return -ENOENT;
690
691 /* Allocate all required memory */
692 cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
693 if (unlikely(cache_kobject[cpu] == NULL))
694 goto err_out;
695
696 index_kobject[cpu] = kzalloc(
697 sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
698 if (unlikely(index_kobject[cpu] == NULL))
699 goto err_out;
700
701 return 0;
702
703err_out:
704 cpuid4_cache_sysfs_exit(cpu);
705 return -ENOMEM;
706}
707
708/* Add/Remove cache interface for CPU device */
709static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
710{
711 unsigned int cpu = sys_dev->id;
712 unsigned long i, j;
713 struct _index_kobject *this_object;
714 int retval = 0;
715
716 retval = cpuid4_cache_sysfs_init(cpu);
717 if (unlikely(retval < 0))
718 return retval;
719
720 cache_kobject[cpu]->parent = &sys_dev->kobj;
721 kobject_set_name(cache_kobject[cpu], "%s", "cache");
722 cache_kobject[cpu]->ktype = &ktype_percpu_entry;
723 retval = kobject_register(cache_kobject[cpu]);
724
725 for (i = 0; i < num_cache_leaves; i++) {
726 this_object = INDEX_KOBJECT_PTR(cpu,i);
727 this_object->cpu = cpu;
728 this_object->index = i;
729 this_object->kobj.parent = cache_kobject[cpu];
730 kobject_set_name(&(this_object->kobj), "index%1lu", i);
731 this_object->kobj.ktype = &ktype_cache;
732 retval = kobject_register(&(this_object->kobj));
733 if (unlikely(retval)) {
734 for (j = 0; j < i; j++) {
735 kobject_unregister(
736 &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
737 }
738 kobject_unregister(cache_kobject[cpu]);
739 cpuid4_cache_sysfs_exit(cpu);
740 break;
741 }
742 }
743 return retval;
744}
745
746static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
747{
748 unsigned int cpu = sys_dev->id;
749 unsigned long i;
750
751 if (cpuid4_info[cpu] == NULL)
752 return;
753 for (i = 0; i < num_cache_leaves; i++) {
754 cache_remove_shared_cpu_map(cpu, i);
755 kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
756 }
757 kobject_unregister(cache_kobject[cpu]);
758 cpuid4_cache_sysfs_exit(cpu);
759 return;
760}
761
762static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
763 unsigned long action, void *hcpu)
764{
765 unsigned int cpu = (unsigned long)hcpu;
766 struct sys_device *sys_dev;
767
768 sys_dev = get_cpu_sysdev(cpu);
769 switch (action) {
770 case CPU_ONLINE:
771 case CPU_ONLINE_FROZEN:
772 cache_add_dev(sys_dev);
773 break;
774 case CPU_DEAD:
775 case CPU_DEAD_FROZEN:
776 cache_remove_dev(sys_dev);
777 break;
778 }
779 return NOTIFY_OK;
780}
781
782static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
783{
784 .notifier_call = cacheinfo_cpu_callback,
785};
786
787static int __cpuinit cache_sysfs_init(void)
788{
789 int i;
790
791 if (num_cache_leaves == 0)
792 return 0;
793
794 register_hotcpu_notifier(&cacheinfo_cpu_notifier);
795
796 for_each_online_cpu(i) {
797 cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
798 (void *)(long)i);
799 }
800
801 return 0;
802}
803
804device_initcall(cache_sysfs_init);
805
806#endif