aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c')
-rw-r--r--arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c799
1 files changed, 799 insertions, 0 deletions
diff --git a/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
new file mode 100644
index 000000000000..705e13a30781
--- /dev/null
+++ b/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
@@ -0,0 +1,799 @@
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36
37#include <linux/acpi.h>
38#include <acpi/processor.h>
39
40#include <asm/io.h>
41#include <asm/msr.h>
42#include <asm/processor.h>
43#include <asm/cpufeature.h>
44#include <asm/delay.h>
45#include <asm/uaccess.h>
46
47#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
48
49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51MODULE_LICENSE("GPL");
52
53enum {
54 UNDEFINED_CAPABLE = 0,
55 SYSTEM_INTEL_MSR_CAPABLE,
56 SYSTEM_IO_CAPABLE,
57};
58
59#define INTEL_MSR_RANGE (0xffff)
60#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
61
62struct acpi_cpufreq_data {
63 struct acpi_processor_performance *acpi_data;
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int max_freq;
66 unsigned int resume;
67 unsigned int cpu_feature;
68};
69
70static struct acpi_cpufreq_data *drv_data[NR_CPUS];
71/* acpi_perf_data is a pointer to percpu data. */
72static struct acpi_processor_performance *acpi_perf_data;
73
74static struct cpufreq_driver acpi_cpufreq_driver;
75
76static unsigned int acpi_pstate_strict;
77
78static int check_est_cpu(unsigned int cpuid)
79{
80 struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
81
82 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
83 !cpu_has(cpu, X86_FEATURE_EST))
84 return 0;
85
86 return 1;
87}
88
89static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
90{
91 struct acpi_processor_performance *perf;
92 int i;
93
94 perf = data->acpi_data;
95
96 for (i=0; i<perf->state_count; i++) {
97 if (value == perf->states[i].status)
98 return data->freq_table[i].frequency;
99 }
100 return 0;
101}
102
103static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
104{
105 int i;
106 struct acpi_processor_performance *perf;
107
108 msr &= INTEL_MSR_RANGE;
109 perf = data->acpi_data;
110
111 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
112 if (msr == perf->states[data->freq_table[i].index].status)
113 return data->freq_table[i].frequency;
114 }
115 return data->freq_table[0].frequency;
116}
117
118static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
119{
120 switch (data->cpu_feature) {
121 case SYSTEM_INTEL_MSR_CAPABLE:
122 return extract_msr(val, data);
123 case SYSTEM_IO_CAPABLE:
124 return extract_io(val, data);
125 default:
126 return 0;
127 }
128}
129
130struct msr_addr {
131 u32 reg;
132};
133
134struct io_addr {
135 u16 port;
136 u8 bit_width;
137};
138
139typedef union {
140 struct msr_addr msr;
141 struct io_addr io;
142} drv_addr_union;
143
144struct drv_cmd {
145 unsigned int type;
146 cpumask_t mask;
147 drv_addr_union addr;
148 u32 val;
149};
150
151static void do_drv_read(struct drv_cmd *cmd)
152{
153 u32 h;
154
155 switch (cmd->type) {
156 case SYSTEM_INTEL_MSR_CAPABLE:
157 rdmsr(cmd->addr.msr.reg, cmd->val, h);
158 break;
159 case SYSTEM_IO_CAPABLE:
160 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
161 &cmd->val,
162 (u32)cmd->addr.io.bit_width);
163 break;
164 default:
165 break;
166 }
167}
168
169static void do_drv_write(struct drv_cmd *cmd)
170{
171 u32 lo, hi;
172
173 switch (cmd->type) {
174 case SYSTEM_INTEL_MSR_CAPABLE:
175 rdmsr(cmd->addr.msr.reg, lo, hi);
176 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
177 wrmsr(cmd->addr.msr.reg, lo, hi);
178 break;
179 case SYSTEM_IO_CAPABLE:
180 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
181 cmd->val,
182 (u32)cmd->addr.io.bit_width);
183 break;
184 default:
185 break;
186 }
187}
188
189static void drv_read(struct drv_cmd *cmd)
190{
191 cpumask_t saved_mask = current->cpus_allowed;
192 cmd->val = 0;
193
194 set_cpus_allowed(current, cmd->mask);
195 do_drv_read(cmd);
196 set_cpus_allowed(current, saved_mask);
197}
198
199static void drv_write(struct drv_cmd *cmd)
200{
201 cpumask_t saved_mask = current->cpus_allowed;
202 unsigned int i;
203
204 for_each_cpu_mask(i, cmd->mask) {
205 set_cpus_allowed(current, cpumask_of_cpu(i));
206 do_drv_write(cmd);
207 }
208
209 set_cpus_allowed(current, saved_mask);
210 return;
211}
212
213static u32 get_cur_val(cpumask_t mask)
214{
215 struct acpi_processor_performance *perf;
216 struct drv_cmd cmd;
217
218 if (unlikely(cpus_empty(mask)))
219 return 0;
220
221 switch (drv_data[first_cpu(mask)]->cpu_feature) {
222 case SYSTEM_INTEL_MSR_CAPABLE:
223 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
224 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
225 break;
226 case SYSTEM_IO_CAPABLE:
227 cmd.type = SYSTEM_IO_CAPABLE;
228 perf = drv_data[first_cpu(mask)]->acpi_data;
229 cmd.addr.io.port = perf->control_register.address;
230 cmd.addr.io.bit_width = perf->control_register.bit_width;
231 break;
232 default:
233 return 0;
234 }
235
236 cmd.mask = mask;
237
238 drv_read(&cmd);
239
240 dprintk("get_cur_val = %u\n", cmd.val);
241
242 return cmd.val;
243}
244
245/*
246 * Return the measured active (C0) frequency on this CPU since last call
247 * to this function.
248 * Input: cpu number
249 * Return: Average CPU frequency in terms of max frequency (zero on error)
250 *
251 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
252 * over a period of time, while CPU is in C0 state.
253 * IA32_MPERF counts at the rate of max advertised frequency
254 * IA32_APERF counts at the rate of actual CPU frequency
255 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
256 * no meaning should be associated with absolute values of these MSRs.
257 */
258static unsigned int get_measured_perf(unsigned int cpu)
259{
260 union {
261 struct {
262 u32 lo;
263 u32 hi;
264 } split;
265 u64 whole;
266 } aperf_cur, mperf_cur;
267
268 cpumask_t saved_mask;
269 unsigned int perf_percent;
270 unsigned int retval;
271
272 saved_mask = current->cpus_allowed;
273 set_cpus_allowed(current, cpumask_of_cpu(cpu));
274 if (get_cpu() != cpu) {
275 /* We were not able to run on requested processor */
276 put_cpu();
277 return 0;
278 }
279
280 rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
281 rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
282
283 wrmsr(MSR_IA32_APERF, 0,0);
284 wrmsr(MSR_IA32_MPERF, 0,0);
285
286#ifdef __i386__
287 /*
288 * We dont want to do 64 bit divide with 32 bit kernel
289 * Get an approximate value. Return failure in case we cannot get
290 * an approximate value.
291 */
292 if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
293 int shift_count;
294 u32 h;
295
296 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
297 shift_count = fls(h);
298
299 aperf_cur.whole >>= shift_count;
300 mperf_cur.whole >>= shift_count;
301 }
302
303 if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
304 int shift_count = 7;
305 aperf_cur.split.lo >>= shift_count;
306 mperf_cur.split.lo >>= shift_count;
307 }
308
309 if (aperf_cur.split.lo && mperf_cur.split.lo)
310 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
311 else
312 perf_percent = 0;
313
314#else
315 if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
316 int shift_count = 7;
317 aperf_cur.whole >>= shift_count;
318 mperf_cur.whole >>= shift_count;
319 }
320
321 if (aperf_cur.whole && mperf_cur.whole)
322 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
323 else
324 perf_percent = 0;
325
326#endif
327
328 retval = drv_data[cpu]->max_freq * perf_percent / 100;
329
330 put_cpu();
331 set_cpus_allowed(current, saved_mask);
332
333 dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
334 return retval;
335}
336
337static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
338{
339 struct acpi_cpufreq_data *data = drv_data[cpu];
340 unsigned int freq;
341
342 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
343
344 if (unlikely(data == NULL ||
345 data->acpi_data == NULL || data->freq_table == NULL)) {
346 return 0;
347 }
348
349 freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
350 dprintk("cur freq = %u\n", freq);
351
352 return freq;
353}
354
355static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
356 struct acpi_cpufreq_data *data)
357{
358 unsigned int cur_freq;
359 unsigned int i;
360
361 for (i=0; i<100; i++) {
362 cur_freq = extract_freq(get_cur_val(mask), data);
363 if (cur_freq == freq)
364 return 1;
365 udelay(10);
366 }
367 return 0;
368}
369
370static int acpi_cpufreq_target(struct cpufreq_policy *policy,
371 unsigned int target_freq, unsigned int relation)
372{
373 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
374 struct acpi_processor_performance *perf;
375 struct cpufreq_freqs freqs;
376 cpumask_t online_policy_cpus;
377 struct drv_cmd cmd;
378 unsigned int next_state = 0; /* Index into freq_table */
379 unsigned int next_perf_state = 0; /* Index into perf table */
380 unsigned int i;
381 int result = 0;
382
383 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
384
385 if (unlikely(data == NULL ||
386 data->acpi_data == NULL || data->freq_table == NULL)) {
387 return -ENODEV;
388 }
389
390 perf = data->acpi_data;
391 result = cpufreq_frequency_table_target(policy,
392 data->freq_table,
393 target_freq,
394 relation, &next_state);
395 if (unlikely(result))
396 return -ENODEV;
397
398#ifdef CONFIG_HOTPLUG_CPU
399 /* cpufreq holds the hotplug lock, so we are safe from here on */
400 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
401#else
402 online_policy_cpus = policy->cpus;
403#endif
404
405 next_perf_state = data->freq_table[next_state].index;
406 if (perf->state == next_perf_state) {
407 if (unlikely(data->resume)) {
408 dprintk("Called after resume, resetting to P%d\n",
409 next_perf_state);
410 data->resume = 0;
411 } else {
412 dprintk("Already at target state (P%d)\n",
413 next_perf_state);
414 return 0;
415 }
416 }
417
418 switch (data->cpu_feature) {
419 case SYSTEM_INTEL_MSR_CAPABLE:
420 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
421 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
422 cmd.val = (u32) perf->states[next_perf_state].control;
423 break;
424 case SYSTEM_IO_CAPABLE:
425 cmd.type = SYSTEM_IO_CAPABLE;
426 cmd.addr.io.port = perf->control_register.address;
427 cmd.addr.io.bit_width = perf->control_register.bit_width;
428 cmd.val = (u32) perf->states[next_perf_state].control;
429 break;
430 default:
431 return -ENODEV;
432 }
433
434 cpus_clear(cmd.mask);
435
436 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
437 cmd.mask = online_policy_cpus;
438 else
439 cpu_set(policy->cpu, cmd.mask);
440
441 freqs.old = perf->states[perf->state].core_frequency * 1000;
442 freqs.new = data->freq_table[next_state].frequency;
443 for_each_cpu_mask(i, cmd.mask) {
444 freqs.cpu = i;
445 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
446 }
447
448 drv_write(&cmd);
449
450 if (acpi_pstate_strict) {
451 if (!check_freqs(cmd.mask, freqs.new, data)) {
452 dprintk("acpi_cpufreq_target failed (%d)\n",
453 policy->cpu);
454 return -EAGAIN;
455 }
456 }
457
458 for_each_cpu_mask(i, cmd.mask) {
459 freqs.cpu = i;
460 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
461 }
462 perf->state = next_perf_state;
463
464 return result;
465}
466
467static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
468{
469 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
470
471 dprintk("acpi_cpufreq_verify\n");
472
473 return cpufreq_frequency_table_verify(policy, data->freq_table);
474}
475
476static unsigned long
477acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
478{
479 struct acpi_processor_performance *perf = data->acpi_data;
480
481 if (cpu_khz) {
482 /* search the closest match to cpu_khz */
483 unsigned int i;
484 unsigned long freq;
485 unsigned long freqn = perf->states[0].core_frequency * 1000;
486
487 for (i=0; i<(perf->state_count-1); i++) {
488 freq = freqn;
489 freqn = perf->states[i+1].core_frequency * 1000;
490 if ((2 * cpu_khz) > (freqn + freq)) {
491 perf->state = i;
492 return freq;
493 }
494 }
495 perf->state = perf->state_count-1;
496 return freqn;
497 } else {
498 /* assume CPU is at P0... */
499 perf->state = 0;
500 return perf->states[0].core_frequency * 1000;
501 }
502}
503
504/*
505 * acpi_cpufreq_early_init - initialize ACPI P-States library
506 *
507 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
508 * in order to determine correct frequency and voltage pairings. We can
509 * do _PDC and _PSD and find out the processor dependency for the
510 * actual init that will happen later...
511 */
512static int __init acpi_cpufreq_early_init(void)
513{
514 dprintk("acpi_cpufreq_early_init\n");
515
516 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
517 if (!acpi_perf_data) {
518 dprintk("Memory allocation error for acpi_perf_data.\n");
519 return -ENOMEM;
520 }
521
522 /* Do initialization in ACPI core */
523 acpi_processor_preregister_performance(acpi_perf_data);
524 return 0;
525}
526
527#ifdef CONFIG_SMP
528/*
529 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
530 * or do it in BIOS firmware and won't inform about it to OS. If not
531 * detected, this has a side effect of making CPU run at a different speed
532 * than OS intended it to run at. Detect it and handle it cleanly.
533 */
534static int bios_with_sw_any_bug;
535
536static int sw_any_bug_found(struct dmi_system_id *d)
537{
538 bios_with_sw_any_bug = 1;
539 return 0;
540}
541
542static struct dmi_system_id sw_any_bug_dmi_table[] = {
543 {
544 .callback = sw_any_bug_found,
545 .ident = "Supermicro Server X6DLP",
546 .matches = {
547 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
548 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
549 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
550 },
551 },
552 { }
553};
554#endif
555
556static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
557{
558 unsigned int i;
559 unsigned int valid_states = 0;
560 unsigned int cpu = policy->cpu;
561 struct acpi_cpufreq_data *data;
562 unsigned int result = 0;
563 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
564 struct acpi_processor_performance *perf;
565
566 dprintk("acpi_cpufreq_cpu_init\n");
567
568 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
569 if (!data)
570 return -ENOMEM;
571
572 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
573 drv_data[cpu] = data;
574
575 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
576 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
577
578 result = acpi_processor_register_performance(data->acpi_data, cpu);
579 if (result)
580 goto err_free;
581
582 perf = data->acpi_data;
583 policy->shared_type = perf->shared_type;
584
585 /*
586 * Will let policy->cpus know about dependency only when software
587 * coordination is required.
588 */
589 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
590 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
591 policy->cpus = perf->shared_cpu_map;
592 }
593
594#ifdef CONFIG_SMP
595 dmi_check_system(sw_any_bug_dmi_table);
596 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
597 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
598 policy->cpus = cpu_core_map[cpu];
599 }
600#endif
601
602 /* capability check */
603 if (perf->state_count <= 1) {
604 dprintk("No P-States\n");
605 result = -ENODEV;
606 goto err_unreg;
607 }
608
609 if (perf->control_register.space_id != perf->status_register.space_id) {
610 result = -ENODEV;
611 goto err_unreg;
612 }
613
614 switch (perf->control_register.space_id) {
615 case ACPI_ADR_SPACE_SYSTEM_IO:
616 dprintk("SYSTEM IO addr space\n");
617 data->cpu_feature = SYSTEM_IO_CAPABLE;
618 break;
619 case ACPI_ADR_SPACE_FIXED_HARDWARE:
620 dprintk("HARDWARE addr space\n");
621 if (!check_est_cpu(cpu)) {
622 result = -ENODEV;
623 goto err_unreg;
624 }
625 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
626 break;
627 default:
628 dprintk("Unknown addr space %d\n",
629 (u32) (perf->control_register.space_id));
630 result = -ENODEV;
631 goto err_unreg;
632 }
633
634 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
635 (perf->state_count+1), GFP_KERNEL);
636 if (!data->freq_table) {
637 result = -ENOMEM;
638 goto err_unreg;
639 }
640
641 /* detect transition latency */
642 policy->cpuinfo.transition_latency = 0;
643 for (i=0; i<perf->state_count; i++) {
644 if ((perf->states[i].transition_latency * 1000) >
645 policy->cpuinfo.transition_latency)
646 policy->cpuinfo.transition_latency =
647 perf->states[i].transition_latency * 1000;
648 }
649 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
650
651 data->max_freq = perf->states[0].core_frequency * 1000;
652 /* table init */
653 for (i=0; i<perf->state_count; i++) {
654 if (i>0 && perf->states[i].core_frequency >=
655 data->freq_table[valid_states-1].frequency / 1000)
656 continue;
657
658 data->freq_table[valid_states].index = i;
659 data->freq_table[valid_states].frequency =
660 perf->states[i].core_frequency * 1000;
661 valid_states++;
662 }
663 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
664 perf->state = 0;
665
666 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
667 if (result)
668 goto err_freqfree;
669
670 switch (perf->control_register.space_id) {
671 case ACPI_ADR_SPACE_SYSTEM_IO:
672 /* Current speed is unknown and not detectable by IO port */
673 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
674 break;
675 case ACPI_ADR_SPACE_FIXED_HARDWARE:
676 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
677 policy->cur = get_cur_freq_on_cpu(cpu);
678 break;
679 default:
680 break;
681 }
682
683 /* notify BIOS that we exist */
684 acpi_processor_notify_smm(THIS_MODULE);
685
686 /* Check for APERF/MPERF support in hardware */
687 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
688 unsigned int ecx;
689 ecx = cpuid_ecx(6);
690 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
691 acpi_cpufreq_driver.getavg = get_measured_perf;
692 }
693
694 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
695 for (i = 0; i < perf->state_count; i++)
696 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
697 (i == perf->state ? '*' : ' '), i,
698 (u32) perf->states[i].core_frequency,
699 (u32) perf->states[i].power,
700 (u32) perf->states[i].transition_latency);
701
702 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
703
704 /*
705 * the first call to ->target() should result in us actually
706 * writing something to the appropriate registers.
707 */
708 data->resume = 1;
709
710 return result;
711
712err_freqfree:
713 kfree(data->freq_table);
714err_unreg:
715 acpi_processor_unregister_performance(perf, cpu);
716err_free:
717 kfree(data);
718 drv_data[cpu] = NULL;
719
720 return result;
721}
722
723static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
724{
725 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
726
727 dprintk("acpi_cpufreq_cpu_exit\n");
728
729 if (data) {
730 cpufreq_frequency_table_put_attr(policy->cpu);
731 drv_data[policy->cpu] = NULL;
732 acpi_processor_unregister_performance(data->acpi_data,
733 policy->cpu);
734 kfree(data);
735 }
736
737 return 0;
738}
739
740static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
741{
742 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
743
744 dprintk("acpi_cpufreq_resume\n");
745
746 data->resume = 1;
747
748 return 0;
749}
750
751static struct freq_attr *acpi_cpufreq_attr[] = {
752 &cpufreq_freq_attr_scaling_available_freqs,
753 NULL,
754};
755
756static struct cpufreq_driver acpi_cpufreq_driver = {
757 .verify = acpi_cpufreq_verify,
758 .target = acpi_cpufreq_target,
759 .init = acpi_cpufreq_cpu_init,
760 .exit = acpi_cpufreq_cpu_exit,
761 .resume = acpi_cpufreq_resume,
762 .name = "acpi-cpufreq",
763 .owner = THIS_MODULE,
764 .attr = acpi_cpufreq_attr,
765};
766
767static int __init acpi_cpufreq_init(void)
768{
769 int ret;
770
771 dprintk("acpi_cpufreq_init\n");
772
773 ret = acpi_cpufreq_early_init();
774 if (ret)
775 return ret;
776
777 return cpufreq_register_driver(&acpi_cpufreq_driver);
778}
779
780static void __exit acpi_cpufreq_exit(void)
781{
782 dprintk("acpi_cpufreq_exit\n");
783
784 cpufreq_unregister_driver(&acpi_cpufreq_driver);
785
786 free_percpu(acpi_perf_data);
787
788 return;
789}
790
791module_param(acpi_pstate_strict, uint, 0644);
792MODULE_PARM_DESC(acpi_pstate_strict,
793 "value 0 or non-zero. non-zero -> strict ACPI checks are "
794 "performed during frequency changes.");
795
796late_initcall(acpi_cpufreq_init);
797module_exit(acpi_cpufreq_exit);
798
799MODULE_ALIAS("acpi");