diff options
Diffstat (limited to 'arch/x86/kernel/apb_timer.c')
| -rw-r--r-- | arch/x86/kernel/apb_timer.c | 785 |
1 files changed, 785 insertions, 0 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c new file mode 100644 index 000000000000..a35347501d36 --- /dev/null +++ b/arch/x86/kernel/apb_timer.c | |||
| @@ -0,0 +1,785 @@ | |||
| 1 | /* | ||
| 2 | * apb_timer.c: Driver for Langwell APB timers | ||
| 3 | * | ||
| 4 | * (C) Copyright 2009 Intel Corporation | ||
| 5 | * Author: Jacob Pan (jacob.jun.pan@intel.com) | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or | ||
| 8 | * modify it under the terms of the GNU General Public License | ||
| 9 | * as published by the Free Software Foundation; version 2 | ||
| 10 | * of the License. | ||
| 11 | * | ||
| 12 | * Note: | ||
| 13 | * Langwell is the south complex of Intel Moorestown MID platform. There are | ||
| 14 | * eight external timers in total that can be used by the operating system. | ||
| 15 | * The timer information, such as frequency and addresses, is provided to the | ||
| 16 | * OS via SFI tables. | ||
| 17 | * Timer interrupts are routed via FW/HW emulated IOAPIC independently via | ||
| 18 | * individual redirection table entries (RTE). | ||
| 19 | * Unlike HPET, there is no master counter, therefore one of the timers are | ||
| 20 | * used as clocksource. The overall allocation looks like: | ||
| 21 | * - timer 0 - NR_CPUs for per cpu timer | ||
| 22 | * - one timer for clocksource | ||
| 23 | * - one timer for watchdog driver. | ||
| 24 | * It is also worth notice that APB timer does not support true one-shot mode, | ||
| 25 | * free-running mode will be used here to emulate one-shot mode. | ||
| 26 | * APB timer can also be used as broadcast timer along with per cpu local APIC | ||
| 27 | * timer, but by default APB timer has higher rating than local APIC timers. | ||
| 28 | */ | ||
| 29 | |||
| 30 | #include <linux/clocksource.h> | ||
| 31 | #include <linux/clockchips.h> | ||
| 32 | #include <linux/delay.h> | ||
| 33 | #include <linux/errno.h> | ||
| 34 | #include <linux/init.h> | ||
| 35 | #include <linux/sysdev.h> | ||
| 36 | #include <linux/slab.h> | ||
| 37 | #include <linux/pm.h> | ||
| 38 | #include <linux/pci.h> | ||
| 39 | #include <linux/sfi.h> | ||
| 40 | #include <linux/interrupt.h> | ||
| 41 | #include <linux/cpu.h> | ||
| 42 | #include <linux/irq.h> | ||
| 43 | |||
| 44 | #include <asm/fixmap.h> | ||
| 45 | #include <asm/apb_timer.h> | ||
| 46 | |||
| 47 | #define APBT_MASK CLOCKSOURCE_MASK(32) | ||
| 48 | #define APBT_SHIFT 22 | ||
| 49 | #define APBT_CLOCKEVENT_RATING 150 | ||
| 50 | #define APBT_CLOCKSOURCE_RATING 250 | ||
| 51 | #define APBT_MIN_DELTA_USEC 200 | ||
| 52 | |||
| 53 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) | ||
| 54 | #define APBT_CLOCKEVENT0_NUM (0) | ||
| 55 | #define APBT_CLOCKEVENT1_NUM (1) | ||
| 56 | #define APBT_CLOCKSOURCE_NUM (2) | ||
| 57 | |||
| 58 | static unsigned long apbt_address; | ||
| 59 | static int apb_timer_block_enabled; | ||
| 60 | static void __iomem *apbt_virt_address; | ||
| 61 | static int phy_cs_timer_id; | ||
| 62 | |||
| 63 | /* | ||
| 64 | * Common DW APB timer info | ||
| 65 | */ | ||
| 66 | static uint64_t apbt_freq; | ||
| 67 | |||
| 68 | static void apbt_set_mode(enum clock_event_mode mode, | ||
| 69 | struct clock_event_device *evt); | ||
| 70 | static int apbt_next_event(unsigned long delta, | ||
| 71 | struct clock_event_device *evt); | ||
| 72 | static cycle_t apbt_read_clocksource(struct clocksource *cs); | ||
| 73 | static void apbt_restart_clocksource(struct clocksource *cs); | ||
| 74 | |||
| 75 | struct apbt_dev { | ||
| 76 | struct clock_event_device evt; | ||
| 77 | unsigned int num; | ||
| 78 | int cpu; | ||
| 79 | unsigned int irq; | ||
| 80 | unsigned int tick; | ||
| 81 | unsigned int count; | ||
| 82 | unsigned int flags; | ||
| 83 | char name[10]; | ||
| 84 | }; | ||
| 85 | |||
| 86 | int disable_apbt_percpu __cpuinitdata; | ||
| 87 | |||
| 88 | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); | ||
| 89 | |||
| 90 | #ifdef CONFIG_SMP | ||
| 91 | static unsigned int apbt_num_timers_used; | ||
| 92 | static struct apbt_dev *apbt_devs; | ||
| 93 | #endif | ||
| 94 | |||
| 95 | static inline unsigned long apbt_readl_reg(unsigned long a) | ||
| 96 | { | ||
| 97 | return readl(apbt_virt_address + a); | ||
| 98 | } | ||
| 99 | |||
| 100 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) | ||
| 101 | { | ||
| 102 | writel(d, apbt_virt_address + a); | ||
| 103 | } | ||
| 104 | |||
| 105 | static inline unsigned long apbt_readl(int n, unsigned long a) | ||
| 106 | { | ||
| 107 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
| 108 | } | ||
| 109 | |||
| 110 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) | ||
| 111 | { | ||
| 112 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
| 113 | } | ||
| 114 | |||
| 115 | static inline void apbt_set_mapping(void) | ||
| 116 | { | ||
| 117 | struct sfi_timer_table_entry *mtmr; | ||
| 118 | |||
| 119 | if (apbt_virt_address) { | ||
| 120 | pr_debug("APBT base already mapped\n"); | ||
| 121 | return; | ||
| 122 | } | ||
| 123 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
| 124 | if (mtmr == NULL) { | ||
| 125 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
| 126 | APBT_CLOCKEVENT0_NUM); | ||
| 127 | return; | ||
| 128 | } | ||
| 129 | apbt_address = (unsigned long)mtmr->phys_addr; | ||
| 130 | if (!apbt_address) { | ||
| 131 | printk(KERN_WARNING "No timer base from SFI, use default\n"); | ||
| 132 | apbt_address = APBT_DEFAULT_BASE; | ||
| 133 | } | ||
| 134 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | ||
| 135 | if (apbt_virt_address) { | ||
| 136 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ | ||
| 137 | (void *)apbt_address, (void *)apbt_virt_address); | ||
| 138 | } else { | ||
| 139 | pr_debug("Failed mapping APBT phy address at %p\n",\ | ||
| 140 | (void *)apbt_address); | ||
| 141 | goto panic_noapbt; | ||
| 142 | } | ||
| 143 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; | ||
| 144 | sfi_free_mtmr(mtmr); | ||
| 145 | |||
| 146 | /* Now figure out the physical timer id for clocksource device */ | ||
| 147 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | ||
| 148 | if (mtmr == NULL) | ||
| 149 | goto panic_noapbt; | ||
| 150 | |||
| 151 | /* Now figure out the physical timer id */ | ||
| 152 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) | ||
| 153 | / APBTMRS_REG_SIZE; | ||
| 154 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); | ||
| 155 | return; | ||
| 156 | |||
| 157 | panic_noapbt: | ||
| 158 | panic("Failed to setup APB system timer\n"); | ||
| 159 | |||
| 160 | } | ||
| 161 | |||
| 162 | static inline void apbt_clear_mapping(void) | ||
| 163 | { | ||
| 164 | iounmap(apbt_virt_address); | ||
| 165 | apbt_virt_address = NULL; | ||
| 166 | } | ||
| 167 | |||
| 168 | /* | ||
| 169 | * APBT timer interrupt enable / disable | ||
| 170 | */ | ||
| 171 | static inline int is_apbt_capable(void) | ||
| 172 | { | ||
| 173 | return apbt_virt_address ? 1 : 0; | ||
| 174 | } | ||
| 175 | |||
| 176 | static struct clocksource clocksource_apbt = { | ||
| 177 | .name = "apbt", | ||
| 178 | .rating = APBT_CLOCKSOURCE_RATING, | ||
| 179 | .read = apbt_read_clocksource, | ||
| 180 | .mask = APBT_MASK, | ||
| 181 | .shift = APBT_SHIFT, | ||
| 182 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
| 183 | .resume = apbt_restart_clocksource, | ||
| 184 | }; | ||
| 185 | |||
| 186 | /* boot APB clock event device */ | ||
| 187 | static struct clock_event_device apbt_clockevent = { | ||
| 188 | .name = "apbt0", | ||
| 189 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
| 190 | .set_mode = apbt_set_mode, | ||
| 191 | .set_next_event = apbt_next_event, | ||
| 192 | .shift = APBT_SHIFT, | ||
| 193 | .irq = 0, | ||
| 194 | .rating = APBT_CLOCKEVENT_RATING, | ||
| 195 | }; | ||
| 196 | |||
| 197 | /* | ||
| 198 | * if user does not want to use per CPU apb timer, just give it a lower rating | ||
| 199 | * than local apic timer and skip the late per cpu timer init. | ||
| 200 | */ | ||
| 201 | static inline int __init setup_x86_mrst_timer(char *arg) | ||
| 202 | { | ||
| 203 | if (!arg) | ||
| 204 | return -EINVAL; | ||
| 205 | |||
| 206 | if (strcmp("apbt_only", arg) == 0) | ||
| 207 | disable_apbt_percpu = 0; | ||
| 208 | else if (strcmp("lapic_and_apbt", arg) == 0) | ||
| 209 | disable_apbt_percpu = 1; | ||
| 210 | else { | ||
| 211 | pr_warning("X86 MRST timer option %s not recognised" | ||
| 212 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", | ||
| 213 | arg); | ||
| 214 | return -EINVAL; | ||
| 215 | } | ||
| 216 | return 0; | ||
| 217 | } | ||
| 218 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); | ||
| 219 | |||
| 220 | /* | ||
| 221 | * start count down from 0xffff_ffff. this is done by toggling the enable bit | ||
| 222 | * then load initial load count to ~0. | ||
| 223 | */ | ||
| 224 | static void apbt_start_counter(int n) | ||
| 225 | { | ||
| 226 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
| 227 | |||
| 228 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 229 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
| 230 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); | ||
| 231 | /* enable, mask interrupt */ | ||
| 232 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
| 233 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); | ||
| 234 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
| 235 | /* read it once to get cached counter value initialized */ | ||
| 236 | apbt_read_clocksource(&clocksource_apbt); | ||
| 237 | } | ||
| 238 | |||
| 239 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) | ||
| 240 | { | ||
| 241 | struct apbt_dev *dev = (struct apbt_dev *)data; | ||
| 242 | struct clock_event_device *aevt = &dev->evt; | ||
| 243 | |||
| 244 | if (!aevt->event_handler) { | ||
| 245 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", | ||
| 246 | dev->num); | ||
| 247 | return IRQ_NONE; | ||
| 248 | } | ||
| 249 | aevt->event_handler(aevt); | ||
| 250 | return IRQ_HANDLED; | ||
| 251 | } | ||
| 252 | |||
| 253 | static void apbt_restart_clocksource(struct clocksource *cs) | ||
| 254 | { | ||
| 255 | apbt_start_counter(phy_cs_timer_id); | ||
| 256 | } | ||
| 257 | |||
| 258 | /* Setup IRQ routing via IOAPIC */ | ||
| 259 | #ifdef CONFIG_SMP | ||
| 260 | static void apbt_setup_irq(struct apbt_dev *adev) | ||
| 261 | { | ||
| 262 | struct irq_chip *chip; | ||
| 263 | struct irq_desc *desc; | ||
| 264 | |||
| 265 | /* timer0 irq has been setup early */ | ||
| 266 | if (adev->irq == 0) | ||
| 267 | return; | ||
| 268 | desc = irq_to_desc(adev->irq); | ||
| 269 | chip = get_irq_chip(adev->irq); | ||
| 270 | disable_irq(adev->irq); | ||
| 271 | desc->status |= IRQ_MOVE_PCNTXT; | ||
| 272 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | ||
| 273 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ | ||
| 274 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); | ||
| 275 | enable_irq(adev->irq); | ||
| 276 | if (system_state == SYSTEM_BOOTING) | ||
| 277 | if (request_irq(adev->irq, apbt_interrupt_handler, | ||
| 278 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
| 279 | adev->name, adev)) { | ||
| 280 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
| 281 | adev->num); | ||
| 282 | } | ||
| 283 | } | ||
| 284 | #endif | ||
| 285 | |||
| 286 | static void apbt_enable_int(int n) | ||
| 287 | { | ||
| 288 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
| 289 | /* clear pending intr */ | ||
| 290 | apbt_readl(n, APBTMR_N_EOI); | ||
| 291 | ctrl &= ~APBTMR_CONTROL_INT; | ||
| 292 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
| 293 | } | ||
| 294 | |||
| 295 | static void apbt_disable_int(int n) | ||
| 296 | { | ||
| 297 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
| 298 | |||
| 299 | ctrl |= APBTMR_CONTROL_INT; | ||
| 300 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
| 301 | } | ||
| 302 | |||
| 303 | |||
| 304 | static int __init apbt_clockevent_register(void) | ||
| 305 | { | ||
| 306 | struct sfi_timer_table_entry *mtmr; | ||
| 307 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); | ||
| 308 | |||
| 309 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
| 310 | if (mtmr == NULL) { | ||
| 311 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
| 312 | APBT_CLOCKEVENT0_NUM); | ||
| 313 | return -ENODEV; | ||
| 314 | } | ||
| 315 | |||
| 316 | /* | ||
| 317 | * We need to calculate the scaled math multiplication factor for | ||
| 318 | * nanosecond to apbt tick conversion. | ||
| 319 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
| 320 | */ | ||
| 321 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz | ||
| 322 | , NSEC_PER_SEC, APBT_SHIFT); | ||
| 323 | |||
| 324 | /* Calculate the min / max delta */ | ||
| 325 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
| 326 | &apbt_clockevent); | ||
| 327 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( | ||
| 328 | APBT_MIN_DELTA_USEC*apbt_freq, | ||
| 329 | &apbt_clockevent); | ||
| 330 | /* | ||
| 331 | * Start apbt with the boot cpu mask and make it | ||
| 332 | * global if not used for per cpu timer. | ||
| 333 | */ | ||
| 334 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); | ||
| 335 | adev->num = smp_processor_id(); | ||
| 336 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); | ||
| 337 | |||
| 338 | if (disable_apbt_percpu) { | ||
| 339 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; | ||
| 340 | global_clock_event = &adev->evt; | ||
| 341 | printk(KERN_DEBUG "%s clockevent registered as global\n", | ||
| 342 | global_clock_event->name); | ||
| 343 | } | ||
| 344 | |||
| 345 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, | ||
| 346 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
| 347 | apbt_clockevent.name, adev)) { | ||
| 348 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
| 349 | apbt_clockevent.irq); | ||
| 350 | } | ||
| 351 | |||
| 352 | clockevents_register_device(&adev->evt); | ||
| 353 | /* Start APBT 0 interrupts */ | ||
| 354 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); | ||
| 355 | |||
| 356 | sfi_free_mtmr(mtmr); | ||
| 357 | return 0; | ||
| 358 | } | ||
| 359 | |||
| 360 | #ifdef CONFIG_SMP | ||
| 361 | /* Should be called with per cpu */ | ||
| 362 | void apbt_setup_secondary_clock(void) | ||
| 363 | { | ||
| 364 | struct apbt_dev *adev; | ||
| 365 | struct clock_event_device *aevt; | ||
| 366 | int cpu; | ||
| 367 | |||
| 368 | /* Don't register boot CPU clockevent */ | ||
| 369 | cpu = smp_processor_id(); | ||
| 370 | if (cpu == boot_cpu_id) | ||
| 371 | return; | ||
| 372 | /* | ||
| 373 | * We need to calculate the scaled math multiplication factor for | ||
| 374 | * nanosecond to apbt tick conversion. | ||
| 375 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
| 376 | */ | ||
| 377 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); | ||
| 378 | adev = &per_cpu(cpu_apbt_dev, cpu); | ||
| 379 | aevt = &adev->evt; | ||
| 380 | |||
| 381 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); | ||
| 382 | aevt->cpumask = cpumask_of(cpu); | ||
| 383 | aevt->name = adev->name; | ||
| 384 | aevt->mode = CLOCK_EVT_MODE_UNUSED; | ||
| 385 | |||
| 386 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", | ||
| 387 | cpu, aevt->name, *(u32 *)aevt->cpumask); | ||
| 388 | |||
| 389 | apbt_setup_irq(adev); | ||
| 390 | |||
| 391 | clockevents_register_device(aevt); | ||
| 392 | |||
| 393 | apbt_enable_int(cpu); | ||
| 394 | |||
| 395 | return; | ||
| 396 | } | ||
| 397 | |||
| 398 | /* | ||
| 399 | * this notify handler process CPU hotplug events. in case of S0i3, nonboot | ||
| 400 | * cpus are disabled/enabled frequently, for performance reasons, we keep the | ||
| 401 | * per cpu timer irq registered so that we do need to do free_irq/request_irq. | ||
| 402 | * | ||
| 403 | * TODO: it might be more reliable to directly disable percpu clockevent device | ||
| 404 | * without the notifier chain. currently, cpu 0 may get interrupts from other | ||
| 405 | * cpu timers during the offline process due to the ordering of notification. | ||
| 406 | * the extra interrupt is harmless. | ||
| 407 | */ | ||
| 408 | static int apbt_cpuhp_notify(struct notifier_block *n, | ||
| 409 | unsigned long action, void *hcpu) | ||
| 410 | { | ||
| 411 | unsigned long cpu = (unsigned long)hcpu; | ||
| 412 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | ||
| 413 | |||
| 414 | switch (action & 0xf) { | ||
| 415 | case CPU_DEAD: | ||
| 416 | apbt_disable_int(cpu); | ||
| 417 | if (system_state == SYSTEM_RUNNING) | ||
| 418 | pr_debug("skipping APBT CPU %lu offline\n", cpu); | ||
| 419 | else if (adev) { | ||
| 420 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | ||
| 421 | free_irq(adev->irq, adev); | ||
| 422 | } | ||
| 423 | break; | ||
| 424 | default: | ||
| 425 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); | ||
| 426 | } | ||
| 427 | return NOTIFY_OK; | ||
| 428 | } | ||
| 429 | |||
| 430 | static __init int apbt_late_init(void) | ||
| 431 | { | ||
| 432 | if (disable_apbt_percpu || !apb_timer_block_enabled) | ||
| 433 | return 0; | ||
| 434 | /* This notifier should be called after workqueue is ready */ | ||
| 435 | hotcpu_notifier(apbt_cpuhp_notify, -20); | ||
| 436 | return 0; | ||
| 437 | } | ||
| 438 | fs_initcall(apbt_late_init); | ||
| 439 | #else | ||
| 440 | |||
| 441 | void apbt_setup_secondary_clock(void) {} | ||
| 442 | |||
| 443 | #endif /* CONFIG_SMP */ | ||
| 444 | |||
| 445 | static void apbt_set_mode(enum clock_event_mode mode, | ||
| 446 | struct clock_event_device *evt) | ||
| 447 | { | ||
| 448 | unsigned long ctrl; | ||
| 449 | uint64_t delta; | ||
| 450 | int timer_num; | ||
| 451 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
| 452 | |||
| 453 | timer_num = adev->num; | ||
| 454 | pr_debug("%s CPU %d timer %d mode=%d\n", | ||
| 455 | __func__, first_cpu(*evt->cpumask), timer_num, mode); | ||
| 456 | |||
| 457 | switch (mode) { | ||
| 458 | case CLOCK_EVT_MODE_PERIODIC: | ||
| 459 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; | ||
| 460 | delta >>= apbt_clockevent.shift; | ||
| 461 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
| 462 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; | ||
| 463 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 464 | /* | ||
| 465 | * DW APB p. 46, have to disable timer before load counter, | ||
| 466 | * may cause sync problem. | ||
| 467 | */ | ||
| 468 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 469 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 470 | udelay(1); | ||
| 471 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); | ||
| 472 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
| 473 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
| 474 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 475 | break; | ||
| 476 | /* APB timer does not have one-shot mode, use free running mode */ | ||
| 477 | case CLOCK_EVT_MODE_ONESHOT: | ||
| 478 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
| 479 | /* | ||
| 480 | * set free running mode, this mode will let timer reload max | ||
| 481 | * timeout which will give time (3min on 25MHz clock) to rearm | ||
| 482 | * the next event, therefore emulate the one-shot mode. | ||
| 483 | */ | ||
| 484 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 485 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
| 486 | |||
| 487 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 488 | /* write again to set free running mode */ | ||
| 489 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 490 | |||
| 491 | /* | ||
| 492 | * DW APB p. 46, load counter with all 1s before starting free | ||
| 493 | * running mode. | ||
| 494 | */ | ||
| 495 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); | ||
| 496 | ctrl &= ~APBTMR_CONTROL_INT; | ||
| 497 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
| 498 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 499 | break; | ||
| 500 | |||
| 501 | case CLOCK_EVT_MODE_UNUSED: | ||
| 502 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
| 503 | apbt_disable_int(timer_num); | ||
| 504 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
| 505 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 506 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 507 | break; | ||
| 508 | |||
| 509 | case CLOCK_EVT_MODE_RESUME: | ||
| 510 | apbt_enable_int(timer_num); | ||
| 511 | break; | ||
| 512 | } | ||
| 513 | } | ||
| 514 | |||
| 515 | static int apbt_next_event(unsigned long delta, | ||
| 516 | struct clock_event_device *evt) | ||
| 517 | { | ||
| 518 | unsigned long ctrl; | ||
| 519 | int timer_num; | ||
| 520 | |||
| 521 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
| 522 | |||
| 523 | timer_num = adev->num; | ||
| 524 | /* Disable timer */ | ||
| 525 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
| 526 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 527 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 528 | /* write new count */ | ||
| 529 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
| 530 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
| 531 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
| 532 | return 0; | ||
| 533 | } | ||
| 534 | |||
| 535 | /* | ||
| 536 | * APB timer clock is not in sync with pclk on Langwell, which translates to | ||
| 537 | * unreliable read value caused by sampling error. the error does not add up | ||
| 538 | * overtime and only happens when sampling a 0 as a 1 by mistake. so the time | ||
| 539 | * would go backwards. the following code is trying to prevent time traveling | ||
| 540 | * backwards. little bit paranoid. | ||
| 541 | */ | ||
| 542 | static cycle_t apbt_read_clocksource(struct clocksource *cs) | ||
| 543 | { | ||
| 544 | unsigned long t0, t1, t2; | ||
| 545 | static unsigned long last_read; | ||
| 546 | |||
| 547 | bad_count: | ||
| 548 | t1 = apbt_readl(phy_cs_timer_id, | ||
| 549 | APBTMR_N_CURRENT_VALUE); | ||
| 550 | t2 = apbt_readl(phy_cs_timer_id, | ||
| 551 | APBTMR_N_CURRENT_VALUE); | ||
| 552 | if (unlikely(t1 < t2)) { | ||
| 553 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", | ||
| 554 | t1, t2, t2 - t1); | ||
| 555 | goto bad_count; | ||
| 556 | } | ||
| 557 | /* | ||
| 558 | * check against cached last read, makes sure time does not go back. | ||
| 559 | * it could be a normal rollover but we will do tripple check anyway | ||
| 560 | */ | ||
| 561 | if (unlikely(t2 > last_read)) { | ||
| 562 | /* check if we have a normal rollover */ | ||
| 563 | unsigned long raw_intr_status = | ||
| 564 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); | ||
| 565 | /* | ||
| 566 | * cs timer interrupt is masked but raw intr bit is set if | ||
| 567 | * rollover occurs. then we read EOI reg to clear it. | ||
| 568 | */ | ||
| 569 | if (raw_intr_status & (1 << phy_cs_timer_id)) { | ||
| 570 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); | ||
| 571 | goto out; | ||
| 572 | } | ||
| 573 | pr_debug("APB CS going back %lx:%lx:%lx ", | ||
| 574 | t2, last_read, t2 - last_read); | ||
| 575 | bad_count_x3: | ||
| 576 | pr_debug(KERN_INFO "tripple check enforced\n"); | ||
| 577 | t0 = apbt_readl(phy_cs_timer_id, | ||
| 578 | APBTMR_N_CURRENT_VALUE); | ||
| 579 | udelay(1); | ||
| 580 | t1 = apbt_readl(phy_cs_timer_id, | ||
| 581 | APBTMR_N_CURRENT_VALUE); | ||
| 582 | udelay(1); | ||
| 583 | t2 = apbt_readl(phy_cs_timer_id, | ||
| 584 | APBTMR_N_CURRENT_VALUE); | ||
| 585 | if ((t2 > t1) || (t1 > t0)) { | ||
| 586 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); | ||
| 587 | goto bad_count_x3; | ||
| 588 | } | ||
| 589 | } | ||
| 590 | out: | ||
| 591 | last_read = t2; | ||
| 592 | return (cycle_t)~t2; | ||
| 593 | } | ||
| 594 | |||
| 595 | static int apbt_clocksource_register(void) | ||
| 596 | { | ||
| 597 | u64 start, now; | ||
| 598 | cycle_t t1; | ||
| 599 | |||
| 600 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ | ||
| 601 | apbt_start_counter(phy_cs_timer_id); | ||
| 602 | |||
| 603 | /* Verify whether apbt counter works */ | ||
| 604 | t1 = apbt_read_clocksource(&clocksource_apbt); | ||
| 605 | rdtscll(start); | ||
| 606 | |||
| 607 | /* | ||
| 608 | * We don't know the TSC frequency yet, but waiting for | ||
| 609 | * 200000 TSC cycles is safe: | ||
| 610 | * 4 GHz == 50us | ||
| 611 | * 1 GHz == 200us | ||
| 612 | */ | ||
| 613 | do { | ||
| 614 | rep_nop(); | ||
| 615 | rdtscll(now); | ||
| 616 | } while ((now - start) < 200000UL); | ||
| 617 | |||
| 618 | /* APBT is the only always on clocksource, it has to work! */ | ||
| 619 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) | ||
| 620 | panic("APBT counter not counting. APBT disabled\n"); | ||
| 621 | |||
| 622 | /* | ||
| 623 | * initialize and register APBT clocksource | ||
| 624 | * convert that to ns/clock cycle | ||
| 625 | * mult = (ns/c) * 2^APBT_SHIFT | ||
| 626 | */ | ||
| 627 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, | ||
| 628 | (unsigned long) apbt_freq, APBT_SHIFT); | ||
| 629 | clocksource_register(&clocksource_apbt); | ||
| 630 | |||
| 631 | return 0; | ||
| 632 | } | ||
| 633 | |||
| 634 | /* | ||
| 635 | * Early setup the APBT timer, only use timer 0 for booting then switch to | ||
| 636 | * per CPU timer if possible. | ||
| 637 | * returns 1 if per cpu apbt is setup | ||
| 638 | * returns 0 if no per cpu apbt is chosen | ||
| 639 | * panic if set up failed, this is the only platform timer on Moorestown. | ||
| 640 | */ | ||
| 641 | void __init apbt_time_init(void) | ||
| 642 | { | ||
| 643 | #ifdef CONFIG_SMP | ||
| 644 | int i; | ||
| 645 | struct sfi_timer_table_entry *p_mtmr; | ||
| 646 | unsigned int percpu_timer; | ||
| 647 | struct apbt_dev *adev; | ||
| 648 | #endif | ||
| 649 | |||
| 650 | if (apb_timer_block_enabled) | ||
| 651 | return; | ||
| 652 | apbt_set_mapping(); | ||
| 653 | if (apbt_virt_address) { | ||
| 654 | pr_debug("Found APBT version 0x%lx\n",\ | ||
| 655 | apbt_readl_reg(APBTMRS_COMP_VERSION)); | ||
| 656 | } else | ||
| 657 | goto out_noapbt; | ||
| 658 | /* | ||
| 659 | * Read the frequency and check for a sane value, for ESL model | ||
| 660 | * we extend the possible clock range to allow time scaling. | ||
| 661 | */ | ||
| 662 | |||
| 663 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | ||
| 664 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); | ||
| 665 | goto out_noapbt; | ||
| 666 | } | ||
| 667 | if (apbt_clocksource_register()) { | ||
| 668 | pr_debug("APBT has failed to register clocksource\n"); | ||
| 669 | goto out_noapbt; | ||
| 670 | } | ||
| 671 | if (!apbt_clockevent_register()) | ||
| 672 | apb_timer_block_enabled = 1; | ||
| 673 | else { | ||
| 674 | pr_debug("APBT has failed to register clockevent\n"); | ||
| 675 | goto out_noapbt; | ||
| 676 | } | ||
| 677 | #ifdef CONFIG_SMP | ||
| 678 | /* kernel cmdline disable apb timer, so we will use lapic timers */ | ||
| 679 | if (disable_apbt_percpu) { | ||
| 680 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); | ||
| 681 | return; | ||
| 682 | } | ||
| 683 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | ||
| 684 | if (num_possible_cpus() <= sfi_mtimer_num) { | ||
| 685 | percpu_timer = 1; | ||
| 686 | apbt_num_timers_used = num_possible_cpus(); | ||
| 687 | } else { | ||
| 688 | percpu_timer = 0; | ||
| 689 | apbt_num_timers_used = 1; | ||
| 690 | adev = &per_cpu(cpu_apbt_dev, 0); | ||
| 691 | adev->flags &= ~APBT_DEV_USED; | ||
| 692 | } | ||
| 693 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | ||
| 694 | |||
| 695 | /* here we set up per CPU timer data structure */ | ||
| 696 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, | ||
| 697 | GFP_KERNEL); | ||
| 698 | if (!apbt_devs) { | ||
| 699 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); | ||
| 700 | return; | ||
| 701 | } | ||
| 702 | for (i = 0; i < apbt_num_timers_used; i++) { | ||
| 703 | adev = &per_cpu(cpu_apbt_dev, i); | ||
| 704 | adev->num = i; | ||
| 705 | adev->cpu = i; | ||
| 706 | p_mtmr = sfi_get_mtmr(i); | ||
| 707 | if (p_mtmr) { | ||
| 708 | adev->tick = p_mtmr->freq_hz; | ||
| 709 | adev->irq = p_mtmr->irq; | ||
| 710 | } else | ||
| 711 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | ||
| 712 | adev->count = 0; | ||
| 713 | sprintf(adev->name, "apbt%d", i); | ||
| 714 | } | ||
| 715 | #endif | ||
| 716 | |||
| 717 | return; | ||
| 718 | |||
| 719 | out_noapbt: | ||
| 720 | apbt_clear_mapping(); | ||
| 721 | apb_timer_block_enabled = 0; | ||
| 722 | panic("failed to enable APB timer\n"); | ||
| 723 | } | ||
| 724 | |||
| 725 | static inline void apbt_disable(int n) | ||
| 726 | { | ||
| 727 | if (is_apbt_capable()) { | ||
| 728 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
| 729 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
| 730 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
| 731 | } | ||
| 732 | } | ||
| 733 | |||
| 734 | /* called before apb_timer_enable, use early map */ | ||
| 735 | unsigned long apbt_quick_calibrate() | ||
| 736 | { | ||
| 737 | int i, scale; | ||
| 738 | u64 old, new; | ||
| 739 | cycle_t t1, t2; | ||
| 740 | unsigned long khz = 0; | ||
| 741 | u32 loop, shift; | ||
| 742 | |||
| 743 | apbt_set_mapping(); | ||
| 744 | apbt_start_counter(phy_cs_timer_id); | ||
| 745 | |||
| 746 | /* check if the timer can count down, otherwise return */ | ||
| 747 | old = apbt_read_clocksource(&clocksource_apbt); | ||
| 748 | i = 10000; | ||
| 749 | while (--i) { | ||
| 750 | if (old != apbt_read_clocksource(&clocksource_apbt)) | ||
| 751 | break; | ||
| 752 | } | ||
| 753 | if (!i) | ||
| 754 | goto failed; | ||
| 755 | |||
| 756 | /* count 16 ms */ | ||
| 757 | loop = (apbt_freq * 1000) << 4; | ||
| 758 | |||
| 759 | /* restart the timer to ensure it won't get to 0 in the calibration */ | ||
| 760 | apbt_start_counter(phy_cs_timer_id); | ||
| 761 | |||
| 762 | old = apbt_read_clocksource(&clocksource_apbt); | ||
| 763 | old += loop; | ||
| 764 | |||
| 765 | t1 = __native_read_tsc(); | ||
| 766 | |||
| 767 | do { | ||
| 768 | new = apbt_read_clocksource(&clocksource_apbt); | ||
| 769 | } while (new < old); | ||
| 770 | |||
| 771 | t2 = __native_read_tsc(); | ||
| 772 | |||
| 773 | shift = 5; | ||
| 774 | if (unlikely(loop >> shift == 0)) { | ||
| 775 | printk(KERN_INFO | ||
| 776 | "APBT TSC calibration failed, not enough resolution\n"); | ||
| 777 | return 0; | ||
| 778 | } | ||
| 779 | scale = (int)div_u64((t2 - t1), loop >> shift); | ||
| 780 | khz = (scale * apbt_freq * 1000) >> shift; | ||
| 781 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | ||
| 782 | return khz; | ||
| 783 | failed: | ||
| 784 | return 0; | ||
| 785 | } | ||
