aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/system.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/include/asm/system.h')
-rw-r--r--arch/x86/include/asm/system.h523
1 files changed, 0 insertions, 523 deletions
diff --git a/arch/x86/include/asm/system.h b/arch/x86/include/asm/system.h
deleted file mode 100644
index 2d2f01ce6dcb..000000000000
--- a/arch/x86/include/asm/system.h
+++ /dev/null
@@ -1,523 +0,0 @@
1#ifndef _ASM_X86_SYSTEM_H
2#define _ASM_X86_SYSTEM_H
3
4#include <asm/asm.h>
5#include <asm/segment.h>
6#include <asm/cpufeature.h>
7#include <asm/cmpxchg.h>
8#include <asm/nops.h>
9
10#include <linux/kernel.h>
11#include <linux/irqflags.h>
12
13/* entries in ARCH_DLINFO: */
14#if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64)
15# define AT_VECTOR_SIZE_ARCH 2
16#else /* else it's non-compat x86-64 */
17# define AT_VECTOR_SIZE_ARCH 1
18#endif
19
20struct task_struct; /* one of the stranger aspects of C forward declarations */
21struct task_struct *__switch_to(struct task_struct *prev,
22 struct task_struct *next);
23struct tss_struct;
24void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
25 struct tss_struct *tss);
26extern void show_regs_common(void);
27
28#ifdef CONFIG_X86_32
29
30#ifdef CONFIG_CC_STACKPROTECTOR
31#define __switch_canary \
32 "movl %P[task_canary](%[next]), %%ebx\n\t" \
33 "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
34#define __switch_canary_oparam \
35 , [stack_canary] "=m" (stack_canary.canary)
36#define __switch_canary_iparam \
37 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
38#else /* CC_STACKPROTECTOR */
39#define __switch_canary
40#define __switch_canary_oparam
41#define __switch_canary_iparam
42#endif /* CC_STACKPROTECTOR */
43
44/*
45 * Saving eflags is important. It switches not only IOPL between tasks,
46 * it also protects other tasks from NT leaking through sysenter etc.
47 */
48#define switch_to(prev, next, last) \
49do { \
50 /* \
51 * Context-switching clobbers all registers, so we clobber \
52 * them explicitly, via unused output variables. \
53 * (EAX and EBP is not listed because EBP is saved/restored \
54 * explicitly for wchan access and EAX is the return value of \
55 * __switch_to()) \
56 */ \
57 unsigned long ebx, ecx, edx, esi, edi; \
58 \
59 asm volatile("pushfl\n\t" /* save flags */ \
60 "pushl %%ebp\n\t" /* save EBP */ \
61 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
62 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
63 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
64 "pushl %[next_ip]\n\t" /* restore EIP */ \
65 __switch_canary \
66 "jmp __switch_to\n" /* regparm call */ \
67 "1:\t" \
68 "popl %%ebp\n\t" /* restore EBP */ \
69 "popfl\n" /* restore flags */ \
70 \
71 /* output parameters */ \
72 : [prev_sp] "=m" (prev->thread.sp), \
73 [prev_ip] "=m" (prev->thread.ip), \
74 "=a" (last), \
75 \
76 /* clobbered output registers: */ \
77 "=b" (ebx), "=c" (ecx), "=d" (edx), \
78 "=S" (esi), "=D" (edi) \
79 \
80 __switch_canary_oparam \
81 \
82 /* input parameters: */ \
83 : [next_sp] "m" (next->thread.sp), \
84 [next_ip] "m" (next->thread.ip), \
85 \
86 /* regparm parameters for __switch_to(): */ \
87 [prev] "a" (prev), \
88 [next] "d" (next) \
89 \
90 __switch_canary_iparam \
91 \
92 : /* reloaded segment registers */ \
93 "memory"); \
94} while (0)
95
96/*
97 * disable hlt during certain critical i/o operations
98 */
99#define HAVE_DISABLE_HLT
100#else
101
102/* frame pointer must be last for get_wchan */
103#define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
104#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
105
106#define __EXTRA_CLOBBER \
107 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
108 "r12", "r13", "r14", "r15"
109
110#ifdef CONFIG_CC_STACKPROTECTOR
111#define __switch_canary \
112 "movq %P[task_canary](%%rsi),%%r8\n\t" \
113 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
114#define __switch_canary_oparam \
115 , [gs_canary] "=m" (irq_stack_union.stack_canary)
116#define __switch_canary_iparam \
117 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
118#else /* CC_STACKPROTECTOR */
119#define __switch_canary
120#define __switch_canary_oparam
121#define __switch_canary_iparam
122#endif /* CC_STACKPROTECTOR */
123
124/* Save restore flags to clear handle leaking NT */
125#define switch_to(prev, next, last) \
126 asm volatile(SAVE_CONTEXT \
127 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
128 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
129 "call __switch_to\n\t" \
130 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
131 __switch_canary \
132 "movq %P[thread_info](%%rsi),%%r8\n\t" \
133 "movq %%rax,%%rdi\n\t" \
134 "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
135 "jnz ret_from_fork\n\t" \
136 RESTORE_CONTEXT \
137 : "=a" (last) \
138 __switch_canary_oparam \
139 : [next] "S" (next), [prev] "D" (prev), \
140 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
141 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
142 [_tif_fork] "i" (_TIF_FORK), \
143 [thread_info] "i" (offsetof(struct task_struct, stack)), \
144 [current_task] "m" (current_task) \
145 __switch_canary_iparam \
146 : "memory", "cc" __EXTRA_CLOBBER)
147#endif
148
149#ifdef __KERNEL__
150
151extern void native_load_gs_index(unsigned);
152
153/*
154 * Load a segment. Fall back on loading the zero
155 * segment if something goes wrong..
156 */
157#define loadsegment(seg, value) \
158do { \
159 unsigned short __val = (value); \
160 \
161 asm volatile(" \n" \
162 "1: movl %k0,%%" #seg " \n" \
163 \
164 ".section .fixup,\"ax\" \n" \
165 "2: xorl %k0,%k0 \n" \
166 " jmp 1b \n" \
167 ".previous \n" \
168 \
169 _ASM_EXTABLE(1b, 2b) \
170 \
171 : "+r" (__val) : : "memory"); \
172} while (0)
173
174/*
175 * Save a segment register away
176 */
177#define savesegment(seg, value) \
178 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
179
180/*
181 * x86_32 user gs accessors.
182 */
183#ifdef CONFIG_X86_32
184#ifdef CONFIG_X86_32_LAZY_GS
185#define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
186#define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
187#define task_user_gs(tsk) ((tsk)->thread.gs)
188#define lazy_save_gs(v) savesegment(gs, (v))
189#define lazy_load_gs(v) loadsegment(gs, (v))
190#else /* X86_32_LAZY_GS */
191#define get_user_gs(regs) (u16)((regs)->gs)
192#define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
193#define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
194#define lazy_save_gs(v) do { } while (0)
195#define lazy_load_gs(v) do { } while (0)
196#endif /* X86_32_LAZY_GS */
197#endif /* X86_32 */
198
199static inline unsigned long get_limit(unsigned long segment)
200{
201 unsigned long __limit;
202 asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
203 return __limit + 1;
204}
205
206static inline void native_clts(void)
207{
208 asm volatile("clts");
209}
210
211/*
212 * Volatile isn't enough to prevent the compiler from reordering the
213 * read/write functions for the control registers and messing everything up.
214 * A memory clobber would solve the problem, but would prevent reordering of
215 * all loads stores around it, which can hurt performance. Solution is to
216 * use a variable and mimic reads and writes to it to enforce serialization
217 */
218static unsigned long __force_order;
219
220static inline unsigned long native_read_cr0(void)
221{
222 unsigned long val;
223 asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
224 return val;
225}
226
227static inline void native_write_cr0(unsigned long val)
228{
229 asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
230}
231
232static inline unsigned long native_read_cr2(void)
233{
234 unsigned long val;
235 asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
236 return val;
237}
238
239static inline void native_write_cr2(unsigned long val)
240{
241 asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
242}
243
244static inline unsigned long native_read_cr3(void)
245{
246 unsigned long val;
247 asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
248 return val;
249}
250
251static inline void native_write_cr3(unsigned long val)
252{
253 asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
254}
255
256static inline unsigned long native_read_cr4(void)
257{
258 unsigned long val;
259 asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
260 return val;
261}
262
263static inline unsigned long native_read_cr4_safe(void)
264{
265 unsigned long val;
266 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
267 * exists, so it will never fail. */
268#ifdef CONFIG_X86_32
269 asm volatile("1: mov %%cr4, %0\n"
270 "2:\n"
271 _ASM_EXTABLE(1b, 2b)
272 : "=r" (val), "=m" (__force_order) : "0" (0));
273#else
274 val = native_read_cr4();
275#endif
276 return val;
277}
278
279static inline void native_write_cr4(unsigned long val)
280{
281 asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
282}
283
284#ifdef CONFIG_X86_64
285static inline unsigned long native_read_cr8(void)
286{
287 unsigned long cr8;
288 asm volatile("movq %%cr8,%0" : "=r" (cr8));
289 return cr8;
290}
291
292static inline void native_write_cr8(unsigned long val)
293{
294 asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
295}
296#endif
297
298static inline void native_wbinvd(void)
299{
300 asm volatile("wbinvd": : :"memory");
301}
302
303#ifdef CONFIG_PARAVIRT
304#include <asm/paravirt.h>
305#else
306
307static inline unsigned long read_cr0(void)
308{
309 return native_read_cr0();
310}
311
312static inline void write_cr0(unsigned long x)
313{
314 native_write_cr0(x);
315}
316
317static inline unsigned long read_cr2(void)
318{
319 return native_read_cr2();
320}
321
322static inline void write_cr2(unsigned long x)
323{
324 native_write_cr2(x);
325}
326
327static inline unsigned long read_cr3(void)
328{
329 return native_read_cr3();
330}
331
332static inline void write_cr3(unsigned long x)
333{
334 native_write_cr3(x);
335}
336
337static inline unsigned long read_cr4(void)
338{
339 return native_read_cr4();
340}
341
342static inline unsigned long read_cr4_safe(void)
343{
344 return native_read_cr4_safe();
345}
346
347static inline void write_cr4(unsigned long x)
348{
349 native_write_cr4(x);
350}
351
352static inline void wbinvd(void)
353{
354 native_wbinvd();
355}
356
357#ifdef CONFIG_X86_64
358
359static inline unsigned long read_cr8(void)
360{
361 return native_read_cr8();
362}
363
364static inline void write_cr8(unsigned long x)
365{
366 native_write_cr8(x);
367}
368
369static inline void load_gs_index(unsigned selector)
370{
371 native_load_gs_index(selector);
372}
373
374#endif
375
376/* Clear the 'TS' bit */
377static inline void clts(void)
378{
379 native_clts();
380}
381
382#endif/* CONFIG_PARAVIRT */
383
384#define stts() write_cr0(read_cr0() | X86_CR0_TS)
385
386#endif /* __KERNEL__ */
387
388static inline void clflush(volatile void *__p)
389{
390 asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
391}
392
393#define nop() asm volatile ("nop")
394
395void disable_hlt(void);
396void enable_hlt(void);
397
398void cpu_idle_wait(void);
399
400extern unsigned long arch_align_stack(unsigned long sp);
401extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
402
403void default_idle(void);
404bool set_pm_idle_to_default(void);
405
406void stop_this_cpu(void *dummy);
407
408/*
409 * Force strict CPU ordering.
410 * And yes, this is required on UP too when we're talking
411 * to devices.
412 */
413#ifdef CONFIG_X86_32
414/*
415 * Some non-Intel clones support out of order store. wmb() ceases to be a
416 * nop for these.
417 */
418#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
419#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
420#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
421#else
422#define mb() asm volatile("mfence":::"memory")
423#define rmb() asm volatile("lfence":::"memory")
424#define wmb() asm volatile("sfence" ::: "memory")
425#endif
426
427/**
428 * read_barrier_depends - Flush all pending reads that subsequents reads
429 * depend on.
430 *
431 * No data-dependent reads from memory-like regions are ever reordered
432 * over this barrier. All reads preceding this primitive are guaranteed
433 * to access memory (but not necessarily other CPUs' caches) before any
434 * reads following this primitive that depend on the data return by
435 * any of the preceding reads. This primitive is much lighter weight than
436 * rmb() on most CPUs, and is never heavier weight than is
437 * rmb().
438 *
439 * These ordering constraints are respected by both the local CPU
440 * and the compiler.
441 *
442 * Ordering is not guaranteed by anything other than these primitives,
443 * not even by data dependencies. See the documentation for
444 * memory_barrier() for examples and URLs to more information.
445 *
446 * For example, the following code would force ordering (the initial
447 * value of "a" is zero, "b" is one, and "p" is "&a"):
448 *
449 * <programlisting>
450 * CPU 0 CPU 1
451 *
452 * b = 2;
453 * memory_barrier();
454 * p = &b; q = p;
455 * read_barrier_depends();
456 * d = *q;
457 * </programlisting>
458 *
459 * because the read of "*q" depends on the read of "p" and these
460 * two reads are separated by a read_barrier_depends(). However,
461 * the following code, with the same initial values for "a" and "b":
462 *
463 * <programlisting>
464 * CPU 0 CPU 1
465 *
466 * a = 2;
467 * memory_barrier();
468 * b = 3; y = b;
469 * read_barrier_depends();
470 * x = a;
471 * </programlisting>
472 *
473 * does not enforce ordering, since there is no data dependency between
474 * the read of "a" and the read of "b". Therefore, on some CPUs, such
475 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
476 * in cases like this where there are no data dependencies.
477 **/
478
479#define read_barrier_depends() do { } while (0)
480
481#ifdef CONFIG_SMP
482#define smp_mb() mb()
483#ifdef CONFIG_X86_PPRO_FENCE
484# define smp_rmb() rmb()
485#else
486# define smp_rmb() barrier()
487#endif
488#ifdef CONFIG_X86_OOSTORE
489# define smp_wmb() wmb()
490#else
491# define smp_wmb() barrier()
492#endif
493#define smp_read_barrier_depends() read_barrier_depends()
494#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
495#else
496#define smp_mb() barrier()
497#define smp_rmb() barrier()
498#define smp_wmb() barrier()
499#define smp_read_barrier_depends() do { } while (0)
500#define set_mb(var, value) do { var = value; barrier(); } while (0)
501#endif
502
503/*
504 * Stop RDTSC speculation. This is needed when you need to use RDTSC
505 * (or get_cycles or vread that possibly accesses the TSC) in a defined
506 * code region.
507 *
508 * (Could use an alternative three way for this if there was one.)
509 */
510static __always_inline void rdtsc_barrier(void)
511{
512 alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
513 alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
514}
515
516/*
517 * We handle most unaligned accesses in hardware. On the other hand
518 * unaligned DMA can be quite expensive on some Nehalem processors.
519 *
520 * Based on this we disable the IP header alignment in network drivers.
521 */
522#define NET_IP_ALIGN 0
523#endif /* _ASM_X86_SYSTEM_H */