aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/crypto')
-rw-r--r--arch/x86/crypto/Makefile3
-rw-r--r--arch/x86/crypto/camellia-aesni-avx-asm_64.S1102
-rw-r--r--arch/x86/crypto/camellia_aesni_avx_glue.c558
3 files changed, 1663 insertions, 0 deletions
diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile
index 84d7dbaba26e..e0ca7c9ac383 100644
--- a/arch/x86/crypto/Makefile
+++ b/arch/x86/crypto/Makefile
@@ -12,6 +12,7 @@ obj-$(CONFIG_CRYPTO_SERPENT_SSE2_586) += serpent-sse2-i586.o
12 12
13obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o 13obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
14obj-$(CONFIG_CRYPTO_CAMELLIA_X86_64) += camellia-x86_64.o 14obj-$(CONFIG_CRYPTO_CAMELLIA_X86_64) += camellia-x86_64.o
15obj-$(CONFIG_CRYPTO_CAMELLIA_AESNI_AVX_X86_64) += camellia-aesni-avx-x86_64.o
15obj-$(CONFIG_CRYPTO_CAST5_AVX_X86_64) += cast5-avx-x86_64.o 16obj-$(CONFIG_CRYPTO_CAST5_AVX_X86_64) += cast5-avx-x86_64.o
16obj-$(CONFIG_CRYPTO_CAST6_AVX_X86_64) += cast6-avx-x86_64.o 17obj-$(CONFIG_CRYPTO_CAST6_AVX_X86_64) += cast6-avx-x86_64.o
17obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o 18obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o
@@ -34,6 +35,8 @@ serpent-sse2-i586-y := serpent-sse2-i586-asm_32.o serpent_sse2_glue.o
34 35
35aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o 36aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
36camellia-x86_64-y := camellia-x86_64-asm_64.o camellia_glue.o 37camellia-x86_64-y := camellia-x86_64-asm_64.o camellia_glue.o
38camellia-aesni-avx-x86_64-y := camellia-aesni-avx-asm_64.o \
39 camellia_aesni_avx_glue.o
37cast5-avx-x86_64-y := cast5-avx-x86_64-asm_64.o cast5_avx_glue.o 40cast5-avx-x86_64-y := cast5-avx-x86_64-asm_64.o cast5_avx_glue.o
38cast6-avx-x86_64-y := cast6-avx-x86_64-asm_64.o cast6_avx_glue.o 41cast6-avx-x86_64-y := cast6-avx-x86_64-asm_64.o cast6_avx_glue.o
39blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o 42blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o
diff --git a/arch/x86/crypto/camellia-aesni-avx-asm_64.S b/arch/x86/crypto/camellia-aesni-avx-asm_64.S
new file mode 100644
index 000000000000..2306d2e4816f
--- /dev/null
+++ b/arch/x86/crypto/camellia-aesni-avx-asm_64.S
@@ -0,0 +1,1102 @@
1/*
2 * x86_64/AVX/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13/*
14 * Version licensed under 2-clause BSD License is available at:
15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16 */
17
18#define CAMELLIA_TABLE_BYTE_LEN 272
19
20/* struct camellia_ctx: */
21#define key_table 0
22#define key_length CAMELLIA_TABLE_BYTE_LEN
23
24/* register macros */
25#define CTX %rdi
26
27/**********************************************************************
28 16-way camellia
29 **********************************************************************/
30#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
31 vpand x, mask4bit, tmp0; \
32 vpandn x, mask4bit, x; \
33 vpsrld $4, x, x; \
34 \
35 vpshufb tmp0, lo_t, tmp0; \
36 vpshufb x, hi_t, x; \
37 vpxor tmp0, x, x;
38
39/*
40 * IN:
41 * x0..x7: byte-sliced AB state
42 * mem_cd: register pointer storing CD state
43 * key: index for key material
44 * OUT:
45 * x0..x7: new byte-sliced CD state
46 */
47#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
48 t7, mem_cd, key) \
49 /* \
50 * S-function with AES subbytes \
51 */ \
52 vmovdqa .Linv_shift_row, t4; \
53 vbroadcastss .L0f0f0f0f, t7; \
54 vmovdqa .Lpre_tf_lo_s1, t0; \
55 vmovdqa .Lpre_tf_hi_s1, t1; \
56 \
57 /* AES inverse shift rows */ \
58 vpshufb t4, x0, x0; \
59 vpshufb t4, x7, x7; \
60 vpshufb t4, x1, x1; \
61 vpshufb t4, x4, x4; \
62 vpshufb t4, x2, x2; \
63 vpshufb t4, x5, x5; \
64 vpshufb t4, x3, x3; \
65 vpshufb t4, x6, x6; \
66 \
67 /* prefilter sboxes 1, 2 and 3 */ \
68 vmovdqa .Lpre_tf_lo_s4, t2; \
69 vmovdqa .Lpre_tf_hi_s4, t3; \
70 filter_8bit(x0, t0, t1, t7, t6); \
71 filter_8bit(x7, t0, t1, t7, t6); \
72 filter_8bit(x1, t0, t1, t7, t6); \
73 filter_8bit(x4, t0, t1, t7, t6); \
74 filter_8bit(x2, t0, t1, t7, t6); \
75 filter_8bit(x5, t0, t1, t7, t6); \
76 \
77 /* prefilter sbox 4 */ \
78 vpxor t4, t4, t4; \
79 filter_8bit(x3, t2, t3, t7, t6); \
80 filter_8bit(x6, t2, t3, t7, t6); \
81 \
82 /* AES subbytes + AES shift rows */ \
83 vmovdqa .Lpost_tf_lo_s1, t0; \
84 vmovdqa .Lpost_tf_hi_s1, t1; \
85 vaesenclast t4, x0, x0; \
86 vaesenclast t4, x7, x7; \
87 vaesenclast t4, x1, x1; \
88 vaesenclast t4, x4, x4; \
89 vaesenclast t4, x2, x2; \
90 vaesenclast t4, x5, x5; \
91 vaesenclast t4, x3, x3; \
92 vaesenclast t4, x6, x6; \
93 \
94 /* postfilter sboxes 1 and 4 */ \
95 vmovdqa .Lpost_tf_lo_s3, t2; \
96 vmovdqa .Lpost_tf_hi_s3, t3; \
97 filter_8bit(x0, t0, t1, t7, t6); \
98 filter_8bit(x7, t0, t1, t7, t6); \
99 filter_8bit(x3, t0, t1, t7, t6); \
100 filter_8bit(x6, t0, t1, t7, t6); \
101 \
102 /* postfilter sbox 3 */ \
103 vmovdqa .Lpost_tf_lo_s2, t4; \
104 vmovdqa .Lpost_tf_hi_s2, t5; \
105 filter_8bit(x2, t2, t3, t7, t6); \
106 filter_8bit(x5, t2, t3, t7, t6); \
107 \
108 vpxor t6, t6, t6; \
109 vmovq key, t0; \
110 \
111 /* postfilter sbox 2 */ \
112 filter_8bit(x1, t4, t5, t7, t2); \
113 filter_8bit(x4, t4, t5, t7, t2); \
114 \
115 vpsrldq $5, t0, t5; \
116 vpsrldq $1, t0, t1; \
117 vpsrldq $2, t0, t2; \
118 vpsrldq $3, t0, t3; \
119 vpsrldq $4, t0, t4; \
120 vpshufb t6, t0, t0; \
121 vpshufb t6, t1, t1; \
122 vpshufb t6, t2, t2; \
123 vpshufb t6, t3, t3; \
124 vpshufb t6, t4, t4; \
125 vpsrldq $2, t5, t7; \
126 vpshufb t6, t7, t7; \
127 \
128 /* \
129 * P-function \
130 */ \
131 vpxor x5, x0, x0; \
132 vpxor x6, x1, x1; \
133 vpxor x7, x2, x2; \
134 vpxor x4, x3, x3; \
135 \
136 vpxor x2, x4, x4; \
137 vpxor x3, x5, x5; \
138 vpxor x0, x6, x6; \
139 vpxor x1, x7, x7; \
140 \
141 vpxor x7, x0, x0; \
142 vpxor x4, x1, x1; \
143 vpxor x5, x2, x2; \
144 vpxor x6, x3, x3; \
145 \
146 vpxor x3, x4, x4; \
147 vpxor x0, x5, x5; \
148 vpxor x1, x6, x6; \
149 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
150 \
151 /* \
152 * Add key material and result to CD (x becomes new CD) \
153 */ \
154 \
155 vpxor t3, x4, x4; \
156 vpxor 0 * 16(mem_cd), x4, x4; \
157 \
158 vpxor t2, x5, x5; \
159 vpxor 1 * 16(mem_cd), x5, x5; \
160 \
161 vpsrldq $1, t5, t3; \
162 vpshufb t6, t5, t5; \
163 vpshufb t6, t3, t6; \
164 \
165 vpxor t1, x6, x6; \
166 vpxor 2 * 16(mem_cd), x6, x6; \
167 \
168 vpxor t0, x7, x7; \
169 vpxor 3 * 16(mem_cd), x7, x7; \
170 \
171 vpxor t7, x0, x0; \
172 vpxor 4 * 16(mem_cd), x0, x0; \
173 \
174 vpxor t6, x1, x1; \
175 vpxor 5 * 16(mem_cd), x1, x1; \
176 \
177 vpxor t5, x2, x2; \
178 vpxor 6 * 16(mem_cd), x2, x2; \
179 \
180 vpxor t4, x3, x3; \
181 vpxor 7 * 16(mem_cd), x3, x3;
182
183/*
184 * Size optimization... with inlined roundsm16, binary would be over 5 times
185 * larger and would only be 0.5% faster (on sandy-bridge).
186 */
187.align 8
188roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
189 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
190 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
191 %rcx, (%r9));
192 ret;
193
194.align 8
195roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
196 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
197 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
198 %rax, (%r9));
199 ret;
200
201/*
202 * IN/OUT:
203 * x0..x7: byte-sliced AB state preloaded
204 * mem_ab: byte-sliced AB state in memory
205 * mem_cb: byte-sliced CD state in memory
206 */
207#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
208 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
209 leaq (key_table + (i) * 8)(CTX), %r9; \
210 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
211 \
212 vmovdqu x4, 0 * 16(mem_cd); \
213 vmovdqu x5, 1 * 16(mem_cd); \
214 vmovdqu x6, 2 * 16(mem_cd); \
215 vmovdqu x7, 3 * 16(mem_cd); \
216 vmovdqu x0, 4 * 16(mem_cd); \
217 vmovdqu x1, 5 * 16(mem_cd); \
218 vmovdqu x2, 6 * 16(mem_cd); \
219 vmovdqu x3, 7 * 16(mem_cd); \
220 \
221 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
222 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
223 \
224 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
225
226#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
227
228#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
229 /* Store new AB state */ \
230 vmovdqu x0, 0 * 16(mem_ab); \
231 vmovdqu x1, 1 * 16(mem_ab); \
232 vmovdqu x2, 2 * 16(mem_ab); \
233 vmovdqu x3, 3 * 16(mem_ab); \
234 vmovdqu x4, 4 * 16(mem_ab); \
235 vmovdqu x5, 5 * 16(mem_ab); \
236 vmovdqu x6, 6 * 16(mem_ab); \
237 vmovdqu x7, 7 * 16(mem_ab);
238
239#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
240 y6, y7, mem_ab, mem_cd, i) \
241 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
242 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
243 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
244 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
245 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
247
248#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
249 y6, y7, mem_ab, mem_cd, i) \
250 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
251 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
252 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
253 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
254 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
255 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
256
257/*
258 * IN:
259 * v0..3: byte-sliced 32-bit integers
260 * OUT:
261 * v0..3: (IN <<< 1)
262 */
263#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
264 vpcmpgtb v0, zero, t0; \
265 vpaddb v0, v0, v0; \
266 vpabsb t0, t0; \
267 \
268 vpcmpgtb v1, zero, t1; \
269 vpaddb v1, v1, v1; \
270 vpabsb t1, t1; \
271 \
272 vpcmpgtb v2, zero, t2; \
273 vpaddb v2, v2, v2; \
274 vpabsb t2, t2; \
275 \
276 vpor t0, v1, v1; \
277 \
278 vpcmpgtb v3, zero, t0; \
279 vpaddb v3, v3, v3; \
280 vpabsb t0, t0; \
281 \
282 vpor t1, v2, v2; \
283 vpor t2, v3, v3; \
284 vpor t0, v0, v0;
285
286/*
287 * IN:
288 * r: byte-sliced AB state in memory
289 * l: byte-sliced CD state in memory
290 * OUT:
291 * x0..x7: new byte-sliced CD state
292 */
293#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
294 tt1, tt2, tt3, kll, klr, krl, krr) \
295 /* \
296 * t0 = kll; \
297 * t0 &= ll; \
298 * lr ^= rol32(t0, 1); \
299 */ \
300 vpxor tt0, tt0, tt0; \
301 vmovd kll, t0; \
302 vpshufb tt0, t0, t3; \
303 vpsrldq $1, t0, t0; \
304 vpshufb tt0, t0, t2; \
305 vpsrldq $1, t0, t0; \
306 vpshufb tt0, t0, t1; \
307 vpsrldq $1, t0, t0; \
308 vpshufb tt0, t0, t0; \
309 \
310 vpand l0, t0, t0; \
311 vpand l1, t1, t1; \
312 vpand l2, t2, t2; \
313 vpand l3, t3, t3; \
314 \
315 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
316 \
317 vpxor l4, t0, l4; \
318 vmovdqu l4, 4 * 16(l); \
319 vpxor l5, t1, l5; \
320 vmovdqu l5, 5 * 16(l); \
321 vpxor l6, t2, l6; \
322 vmovdqu l6, 6 * 16(l); \
323 vpxor l7, t3, l7; \
324 vmovdqu l7, 7 * 16(l); \
325 \
326 /* \
327 * t2 = krr; \
328 * t2 |= rr; \
329 * rl ^= t2; \
330 */ \
331 \
332 vmovd krr, t0; \
333 vpshufb tt0, t0, t3; \
334 vpsrldq $1, t0, t0; \
335 vpshufb tt0, t0, t2; \
336 vpsrldq $1, t0, t0; \
337 vpshufb tt0, t0, t1; \
338 vpsrldq $1, t0, t0; \
339 vpshufb tt0, t0, t0; \
340 \
341 vpor 4 * 16(r), t0, t0; \
342 vpor 5 * 16(r), t1, t1; \
343 vpor 6 * 16(r), t2, t2; \
344 vpor 7 * 16(r), t3, t3; \
345 \
346 vpxor 0 * 16(r), t0, t0; \
347 vpxor 1 * 16(r), t1, t1; \
348 vpxor 2 * 16(r), t2, t2; \
349 vpxor 3 * 16(r), t3, t3; \
350 vmovdqu t0, 0 * 16(r); \
351 vmovdqu t1, 1 * 16(r); \
352 vmovdqu t2, 2 * 16(r); \
353 vmovdqu t3, 3 * 16(r); \
354 \
355 /* \
356 * t2 = krl; \
357 * t2 &= rl; \
358 * rr ^= rol32(t2, 1); \
359 */ \
360 vmovd krl, t0; \
361 vpshufb tt0, t0, t3; \
362 vpsrldq $1, t0, t0; \
363 vpshufb tt0, t0, t2; \
364 vpsrldq $1, t0, t0; \
365 vpshufb tt0, t0, t1; \
366 vpsrldq $1, t0, t0; \
367 vpshufb tt0, t0, t0; \
368 \
369 vpand 0 * 16(r), t0, t0; \
370 vpand 1 * 16(r), t1, t1; \
371 vpand 2 * 16(r), t2, t2; \
372 vpand 3 * 16(r), t3, t3; \
373 \
374 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
375 \
376 vpxor 4 * 16(r), t0, t0; \
377 vpxor 5 * 16(r), t1, t1; \
378 vpxor 6 * 16(r), t2, t2; \
379 vpxor 7 * 16(r), t3, t3; \
380 vmovdqu t0, 4 * 16(r); \
381 vmovdqu t1, 5 * 16(r); \
382 vmovdqu t2, 6 * 16(r); \
383 vmovdqu t3, 7 * 16(r); \
384 \
385 /* \
386 * t0 = klr; \
387 * t0 |= lr; \
388 * ll ^= t0; \
389 */ \
390 \
391 vmovd klr, t0; \
392 vpshufb tt0, t0, t3; \
393 vpsrldq $1, t0, t0; \
394 vpshufb tt0, t0, t2; \
395 vpsrldq $1, t0, t0; \
396 vpshufb tt0, t0, t1; \
397 vpsrldq $1, t0, t0; \
398 vpshufb tt0, t0, t0; \
399 \
400 vpor l4, t0, t0; \
401 vpor l5, t1, t1; \
402 vpor l6, t2, t2; \
403 vpor l7, t3, t3; \
404 \
405 vpxor l0, t0, l0; \
406 vmovdqu l0, 0 * 16(l); \
407 vpxor l1, t1, l1; \
408 vmovdqu l1, 1 * 16(l); \
409 vpxor l2, t2, l2; \
410 vmovdqu l2, 2 * 16(l); \
411 vpxor l3, t3, l3; \
412 vmovdqu l3, 3 * 16(l);
413
414#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
415 vpunpckhdq x1, x0, t2; \
416 vpunpckldq x1, x0, x0; \
417 \
418 vpunpckldq x3, x2, t1; \
419 vpunpckhdq x3, x2, x2; \
420 \
421 vpunpckhqdq t1, x0, x1; \
422 vpunpcklqdq t1, x0, x0; \
423 \
424 vpunpckhqdq x2, t2, x3; \
425 vpunpcklqdq x2, t2, x2;
426
427#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
428 b3, c3, d3, st0, st1) \
429 vmovdqu d2, st0; \
430 vmovdqu d3, st1; \
431 transpose_4x4(a0, a1, a2, a3, d2, d3); \
432 transpose_4x4(b0, b1, b2, b3, d2, d3); \
433 vmovdqu st0, d2; \
434 vmovdqu st1, d3; \
435 \
436 vmovdqu a0, st0; \
437 vmovdqu a1, st1; \
438 transpose_4x4(c0, c1, c2, c3, a0, a1); \
439 transpose_4x4(d0, d1, d2, d3, a0, a1); \
440 \
441 vmovdqu .Lshufb_16x16b, a0; \
442 vmovdqu st1, a1; \
443 vpshufb a0, a2, a2; \
444 vpshufb a0, a3, a3; \
445 vpshufb a0, b0, b0; \
446 vpshufb a0, b1, b1; \
447 vpshufb a0, b2, b2; \
448 vpshufb a0, b3, b3; \
449 vpshufb a0, a1, a1; \
450 vpshufb a0, c0, c0; \
451 vpshufb a0, c1, c1; \
452 vpshufb a0, c2, c2; \
453 vpshufb a0, c3, c3; \
454 vpshufb a0, d0, d0; \
455 vpshufb a0, d1, d1; \
456 vpshufb a0, d2, d2; \
457 vpshufb a0, d3, d3; \
458 vmovdqu d3, st1; \
459 vmovdqu st0, d3; \
460 vpshufb a0, d3, a0; \
461 vmovdqu d2, st0; \
462 \
463 transpose_4x4(a0, b0, c0, d0, d2, d3); \
464 transpose_4x4(a1, b1, c1, d1, d2, d3); \
465 vmovdqu st0, d2; \
466 vmovdqu st1, d3; \
467 \
468 vmovdqu b0, st0; \
469 vmovdqu b1, st1; \
470 transpose_4x4(a2, b2, c2, d2, b0, b1); \
471 transpose_4x4(a3, b3, c3, d3, b0, b1); \
472 vmovdqu st0, b0; \
473 vmovdqu st1, b1; \
474 /* does not adjust output bytes inside vectors */
475
476/* load blocks to registers and apply pre-whitening */
477#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
478 y6, y7, rio, key) \
479 vmovq key, x0; \
480 vpshufb .Lpack_bswap, x0, x0; \
481 \
482 vpxor 0 * 16(rio), x0, y7; \
483 vpxor 1 * 16(rio), x0, y6; \
484 vpxor 2 * 16(rio), x0, y5; \
485 vpxor 3 * 16(rio), x0, y4; \
486 vpxor 4 * 16(rio), x0, y3; \
487 vpxor 5 * 16(rio), x0, y2; \
488 vpxor 6 * 16(rio), x0, y1; \
489 vpxor 7 * 16(rio), x0, y0; \
490 vpxor 8 * 16(rio), x0, x7; \
491 vpxor 9 * 16(rio), x0, x6; \
492 vpxor 10 * 16(rio), x0, x5; \
493 vpxor 11 * 16(rio), x0, x4; \
494 vpxor 12 * 16(rio), x0, x3; \
495 vpxor 13 * 16(rio), x0, x2; \
496 vpxor 14 * 16(rio), x0, x1; \
497 vpxor 15 * 16(rio), x0, x0;
498
499/* byteslice pre-whitened blocks and store to temporary memory */
500#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
501 y6, y7, mem_ab, mem_cd) \
502 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
503 y5, y6, y7, (mem_ab), (mem_cd)); \
504 \
505 vmovdqu x0, 0 * 16(mem_ab); \
506 vmovdqu x1, 1 * 16(mem_ab); \
507 vmovdqu x2, 2 * 16(mem_ab); \
508 vmovdqu x3, 3 * 16(mem_ab); \
509 vmovdqu x4, 4 * 16(mem_ab); \
510 vmovdqu x5, 5 * 16(mem_ab); \
511 vmovdqu x6, 6 * 16(mem_ab); \
512 vmovdqu x7, 7 * 16(mem_ab); \
513 vmovdqu y0, 0 * 16(mem_cd); \
514 vmovdqu y1, 1 * 16(mem_cd); \
515 vmovdqu y2, 2 * 16(mem_cd); \
516 vmovdqu y3, 3 * 16(mem_cd); \
517 vmovdqu y4, 4 * 16(mem_cd); \
518 vmovdqu y5, 5 * 16(mem_cd); \
519 vmovdqu y6, 6 * 16(mem_cd); \
520 vmovdqu y7, 7 * 16(mem_cd);
521
522/* de-byteslice, apply post-whitening and store blocks */
523#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
524 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
525 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
526 y7, x3, x7, stack_tmp0, stack_tmp1); \
527 \
528 vmovdqu x0, stack_tmp0; \
529 \
530 vmovq key, x0; \
531 vpshufb .Lpack_bswap, x0, x0; \
532 \
533 vpxor x0, y7, y7; \
534 vpxor x0, y6, y6; \
535 vpxor x0, y5, y5; \
536 vpxor x0, y4, y4; \
537 vpxor x0, y3, y3; \
538 vpxor x0, y2, y2; \
539 vpxor x0, y1, y1; \
540 vpxor x0, y0, y0; \
541 vpxor x0, x7, x7; \
542 vpxor x0, x6, x6; \
543 vpxor x0, x5, x5; \
544 vpxor x0, x4, x4; \
545 vpxor x0, x3, x3; \
546 vpxor x0, x2, x2; \
547 vpxor x0, x1, x1; \
548 vpxor stack_tmp0, x0, x0;
549
550#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
551 y6, y7, rio) \
552 vmovdqu x0, 0 * 16(rio); \
553 vmovdqu x1, 1 * 16(rio); \
554 vmovdqu x2, 2 * 16(rio); \
555 vmovdqu x3, 3 * 16(rio); \
556 vmovdqu x4, 4 * 16(rio); \
557 vmovdqu x5, 5 * 16(rio); \
558 vmovdqu x6, 6 * 16(rio); \
559 vmovdqu x7, 7 * 16(rio); \
560 vmovdqu y0, 8 * 16(rio); \
561 vmovdqu y1, 9 * 16(rio); \
562 vmovdqu y2, 10 * 16(rio); \
563 vmovdqu y3, 11 * 16(rio); \
564 vmovdqu y4, 12 * 16(rio); \
565 vmovdqu y5, 13 * 16(rio); \
566 vmovdqu y6, 14 * 16(rio); \
567 vmovdqu y7, 15 * 16(rio);
568
569.data
570.align 16
571
572#define SHUFB_BYTES(idx) \
573 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
574
575.Lshufb_16x16b:
576 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
577
578.Lpack_bswap:
579 .long 0x00010203
580 .long 0x04050607
581 .long 0x80808080
582 .long 0x80808080
583
584/* For CTR-mode IV byteswap */
585.Lbswap128_mask:
586 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
587
588/*
589 * pre-SubByte transform
590 *
591 * pre-lookup for sbox1, sbox2, sbox3:
592 * swap_bitendianness(
593 * isom_map_camellia_to_aes(
594 * camellia_f(
595 * swap_bitendianess(in)
596 * )
597 * )
598 * )
599 *
600 * (note: '⊕ 0xc5' inside camellia_f())
601 */
602.Lpre_tf_lo_s1:
603 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
604 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
605.Lpre_tf_hi_s1:
606 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
607 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
608
609/*
610 * pre-SubByte transform
611 *
612 * pre-lookup for sbox4:
613 * swap_bitendianness(
614 * isom_map_camellia_to_aes(
615 * camellia_f(
616 * swap_bitendianess(in <<< 1)
617 * )
618 * )
619 * )
620 *
621 * (note: '⊕ 0xc5' inside camellia_f())
622 */
623.Lpre_tf_lo_s4:
624 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
625 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
626.Lpre_tf_hi_s4:
627 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
628 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
629
630/*
631 * post-SubByte transform
632 *
633 * post-lookup for sbox1, sbox4:
634 * swap_bitendianness(
635 * camellia_h(
636 * isom_map_aes_to_camellia(
637 * swap_bitendianness(
638 * aes_inverse_affine_transform(in)
639 * )
640 * )
641 * )
642 * )
643 *
644 * (note: '⊕ 0x6e' inside camellia_h())
645 */
646.Lpost_tf_lo_s1:
647 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
648 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
649.Lpost_tf_hi_s1:
650 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
651 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
652
653/*
654 * post-SubByte transform
655 *
656 * post-lookup for sbox2:
657 * swap_bitendianness(
658 * camellia_h(
659 * isom_map_aes_to_camellia(
660 * swap_bitendianness(
661 * aes_inverse_affine_transform(in)
662 * )
663 * )
664 * )
665 * ) <<< 1
666 *
667 * (note: '⊕ 0x6e' inside camellia_h())
668 */
669.Lpost_tf_lo_s2:
670 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
671 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
672.Lpost_tf_hi_s2:
673 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
674 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
675
676/*
677 * post-SubByte transform
678 *
679 * post-lookup for sbox3:
680 * swap_bitendianness(
681 * camellia_h(
682 * isom_map_aes_to_camellia(
683 * swap_bitendianness(
684 * aes_inverse_affine_transform(in)
685 * )
686 * )
687 * )
688 * ) >>> 1
689 *
690 * (note: '⊕ 0x6e' inside camellia_h())
691 */
692.Lpost_tf_lo_s3:
693 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
694 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
695.Lpost_tf_hi_s3:
696 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
697 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
698
699/* For isolating SubBytes from AESENCLAST, inverse shift row */
700.Linv_shift_row:
701 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
702 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
703
704/* 4-bit mask */
705.align 4
706.L0f0f0f0f:
707 .long 0x0f0f0f0f
708
709.text
710
711.align 8
712.type __camellia_enc_blk16,@function;
713
714__camellia_enc_blk16:
715 /* input:
716 * %rdi: ctx, CTX
717 * %rax: temporary storage, 256 bytes
718 * %xmm0..%xmm15: 16 plaintext blocks
719 * output:
720 * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
721 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
722 */
723
724 leaq 8 * 16(%rax), %rcx;
725
726 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
727 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
728 %xmm15, %rax, %rcx);
729
730 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
731 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
732 %xmm15, %rax, %rcx, 0);
733
734 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
735 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
736 %xmm15,
737 ((key_table + (8) * 8) + 0)(CTX),
738 ((key_table + (8) * 8) + 4)(CTX),
739 ((key_table + (8) * 8) + 8)(CTX),
740 ((key_table + (8) * 8) + 12)(CTX));
741
742 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
743 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
744 %xmm15, %rax, %rcx, 8);
745
746 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
747 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
748 %xmm15,
749 ((key_table + (16) * 8) + 0)(CTX),
750 ((key_table + (16) * 8) + 4)(CTX),
751 ((key_table + (16) * 8) + 8)(CTX),
752 ((key_table + (16) * 8) + 12)(CTX));
753
754 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
755 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
756 %xmm15, %rax, %rcx, 16);
757
758 movl $24, %r8d;
759 cmpl $16, key_length(CTX);
760 jne .Lenc_max32;
761
762.Lenc_done:
763 /* load CD for output */
764 vmovdqu 0 * 16(%rcx), %xmm8;
765 vmovdqu 1 * 16(%rcx), %xmm9;
766 vmovdqu 2 * 16(%rcx), %xmm10;
767 vmovdqu 3 * 16(%rcx), %xmm11;
768 vmovdqu 4 * 16(%rcx), %xmm12;
769 vmovdqu 5 * 16(%rcx), %xmm13;
770 vmovdqu 6 * 16(%rcx), %xmm14;
771 vmovdqu 7 * 16(%rcx), %xmm15;
772
773 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
774 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
775 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
776
777 ret;
778
779.align 8
780.Lenc_max32:
781 movl $32, %r8d;
782
783 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
784 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
785 %xmm15,
786 ((key_table + (24) * 8) + 0)(CTX),
787 ((key_table + (24) * 8) + 4)(CTX),
788 ((key_table + (24) * 8) + 8)(CTX),
789 ((key_table + (24) * 8) + 12)(CTX));
790
791 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
792 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
793 %xmm15, %rax, %rcx, 24);
794
795 jmp .Lenc_done;
796
797.align 8
798.type __camellia_dec_blk16,@function;
799
800__camellia_dec_blk16:
801 /* input:
802 * %rdi: ctx, CTX
803 * %rax: temporary storage, 256 bytes
804 * %r8d: 24 for 16 byte key, 32 for larger
805 * %xmm0..%xmm15: 16 encrypted blocks
806 * output:
807 * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
808 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
809 */
810
811 leaq 8 * 16(%rax), %rcx;
812
813 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
814 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
815 %xmm15, %rax, %rcx);
816
817 cmpl $32, %r8d;
818 je .Ldec_max32;
819
820.Ldec_max24:
821 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
822 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
823 %xmm15, %rax, %rcx, 16);
824
825 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
826 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
827 %xmm15,
828 ((key_table + (16) * 8) + 8)(CTX),
829 ((key_table + (16) * 8) + 12)(CTX),
830 ((key_table + (16) * 8) + 0)(CTX),
831 ((key_table + (16) * 8) + 4)(CTX));
832
833 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
834 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
835 %xmm15, %rax, %rcx, 8);
836
837 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
838 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
839 %xmm15,
840 ((key_table + (8) * 8) + 8)(CTX),
841 ((key_table + (8) * 8) + 12)(CTX),
842 ((key_table + (8) * 8) + 0)(CTX),
843 ((key_table + (8) * 8) + 4)(CTX));
844
845 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
846 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
847 %xmm15, %rax, %rcx, 0);
848
849 /* load CD for output */
850 vmovdqu 0 * 16(%rcx), %xmm8;
851 vmovdqu 1 * 16(%rcx), %xmm9;
852 vmovdqu 2 * 16(%rcx), %xmm10;
853 vmovdqu 3 * 16(%rcx), %xmm11;
854 vmovdqu 4 * 16(%rcx), %xmm12;
855 vmovdqu 5 * 16(%rcx), %xmm13;
856 vmovdqu 6 * 16(%rcx), %xmm14;
857 vmovdqu 7 * 16(%rcx), %xmm15;
858
859 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
860 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
861 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
862
863 ret;
864
865.align 8
866.Ldec_max32:
867 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
868 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
869 %xmm15, %rax, %rcx, 24);
870
871 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
872 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
873 %xmm15,
874 ((key_table + (24) * 8) + 8)(CTX),
875 ((key_table + (24) * 8) + 12)(CTX),
876 ((key_table + (24) * 8) + 0)(CTX),
877 ((key_table + (24) * 8) + 4)(CTX));
878
879 jmp .Ldec_max24;
880
881.align 8
882.global camellia_ecb_enc_16way
883.type camellia_ecb_enc_16way,@function;
884
885camellia_ecb_enc_16way:
886 /* input:
887 * %rdi: ctx, CTX
888 * %rsi: dst (16 blocks)
889 * %rdx: src (16 blocks)
890 */
891
892 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
893 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
894 %xmm15, %rdx, (key_table)(CTX));
895
896 /* now dst can be used as temporary buffer (even in src == dst case) */
897 movq %rsi, %rax;
898
899 call __camellia_enc_blk16;
900
901 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
902 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
903 %xmm8, %rsi);
904
905 ret;
906
907.align 8
908.global camellia_ecb_dec_16way
909.type camellia_ecb_dec_16way,@function;
910
911camellia_ecb_dec_16way:
912 /* input:
913 * %rdi: ctx, CTX
914 * %rsi: dst (16 blocks)
915 * %rdx: src (16 blocks)
916 */
917
918 cmpl $16, key_length(CTX);
919 movl $32, %r8d;
920 movl $24, %eax;
921 cmovel %eax, %r8d; /* max */
922
923 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
924 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
925 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
926
927 /* now dst can be used as temporary buffer (even in src == dst case) */
928 movq %rsi, %rax;
929
930 call __camellia_dec_blk16;
931
932 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
933 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
934 %xmm8, %rsi);
935
936 ret;
937
938.align 8
939.global camellia_cbc_dec_16way
940.type camellia_cbc_dec_16way,@function;
941
942camellia_cbc_dec_16way:
943 /* input:
944 * %rdi: ctx, CTX
945 * %rsi: dst (16 blocks)
946 * %rdx: src (16 blocks)
947 */
948
949 cmpl $16, key_length(CTX);
950 movl $32, %r8d;
951 movl $24, %eax;
952 cmovel %eax, %r8d; /* max */
953
954 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
955 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
956 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
957
958 /*
959 * dst might still be in-use (in case dst == src), so use stack for
960 * temporary storage.
961 */
962 subq $(16 * 16), %rsp;
963 movq %rsp, %rax;
964
965 call __camellia_dec_blk16;
966
967 addq $(16 * 16), %rsp;
968
969 vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
970 vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
971 vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
972 vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
973 vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
974 vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
975 vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
976 vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
977 vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
978 vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
979 vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
980 vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
981 vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
982 vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
983 vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
984 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
985 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
986 %xmm8, %rsi);
987
988 ret;
989
990#define inc_le128(x, minus_one, tmp) \
991 vpcmpeqq minus_one, x, tmp; \
992 vpsubq minus_one, x, x; \
993 vpslldq $8, tmp, tmp; \
994 vpsubq tmp, x, x;
995
996.align 8
997.global camellia_ctr_16way
998.type camellia_ctr_16way,@function;
999
1000camellia_ctr_16way:
1001 /* input:
1002 * %rdi: ctx, CTX
1003 * %rsi: dst (16 blocks)
1004 * %rdx: src (16 blocks)
1005 * %rcx: iv (little endian, 128bit)
1006 */
1007
1008 subq $(16 * 16), %rsp;
1009 movq %rsp, %rax;
1010
1011 vmovdqa .Lbswap128_mask, %xmm14;
1012
1013 /* load IV and byteswap */
1014 vmovdqu (%rcx), %xmm0;
1015 vpshufb %xmm14, %xmm0, %xmm15;
1016 vmovdqu %xmm15, 15 * 16(%rax);
1017
1018 vpcmpeqd %xmm15, %xmm15, %xmm15;
1019 vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1020
1021 /* construct IVs */
1022 inc_le128(%xmm0, %xmm15, %xmm13);
1023 vpshufb %xmm14, %xmm0, %xmm13;
1024 vmovdqu %xmm13, 14 * 16(%rax);
1025 inc_le128(%xmm0, %xmm15, %xmm13);
1026 vpshufb %xmm14, %xmm0, %xmm13;
1027 vmovdqu %xmm13, 13 * 16(%rax);
1028 inc_le128(%xmm0, %xmm15, %xmm13);
1029 vpshufb %xmm14, %xmm0, %xmm12;
1030 inc_le128(%xmm0, %xmm15, %xmm13);
1031 vpshufb %xmm14, %xmm0, %xmm11;
1032 inc_le128(%xmm0, %xmm15, %xmm13);
1033 vpshufb %xmm14, %xmm0, %xmm10;
1034 inc_le128(%xmm0, %xmm15, %xmm13);
1035 vpshufb %xmm14, %xmm0, %xmm9;
1036 inc_le128(%xmm0, %xmm15, %xmm13);
1037 vpshufb %xmm14, %xmm0, %xmm8;
1038 inc_le128(%xmm0, %xmm15, %xmm13);
1039 vpshufb %xmm14, %xmm0, %xmm7;
1040 inc_le128(%xmm0, %xmm15, %xmm13);
1041 vpshufb %xmm14, %xmm0, %xmm6;
1042 inc_le128(%xmm0, %xmm15, %xmm13);
1043 vpshufb %xmm14, %xmm0, %xmm5;
1044 inc_le128(%xmm0, %xmm15, %xmm13);
1045 vpshufb %xmm14, %xmm0, %xmm4;
1046 inc_le128(%xmm0, %xmm15, %xmm13);
1047 vpshufb %xmm14, %xmm0, %xmm3;
1048 inc_le128(%xmm0, %xmm15, %xmm13);
1049 vpshufb %xmm14, %xmm0, %xmm2;
1050 inc_le128(%xmm0, %xmm15, %xmm13);
1051 vpshufb %xmm14, %xmm0, %xmm1;
1052 inc_le128(%xmm0, %xmm15, %xmm13);
1053 vmovdqa %xmm0, %xmm13;
1054 vpshufb %xmm14, %xmm0, %xmm0;
1055 inc_le128(%xmm13, %xmm15, %xmm14);
1056 vmovdqu %xmm13, (%rcx);
1057
1058 /* inpack16_pre: */
1059 vmovq (key_table)(CTX), %xmm15;
1060 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1061 vpxor %xmm0, %xmm15, %xmm0;
1062 vpxor %xmm1, %xmm15, %xmm1;
1063 vpxor %xmm2, %xmm15, %xmm2;
1064 vpxor %xmm3, %xmm15, %xmm3;
1065 vpxor %xmm4, %xmm15, %xmm4;
1066 vpxor %xmm5, %xmm15, %xmm5;
1067 vpxor %xmm6, %xmm15, %xmm6;
1068 vpxor %xmm7, %xmm15, %xmm7;
1069 vpxor %xmm8, %xmm15, %xmm8;
1070 vpxor %xmm9, %xmm15, %xmm9;
1071 vpxor %xmm10, %xmm15, %xmm10;
1072 vpxor %xmm11, %xmm15, %xmm11;
1073 vpxor %xmm12, %xmm15, %xmm12;
1074 vpxor 13 * 16(%rax), %xmm15, %xmm13;
1075 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1076 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1077
1078 call __camellia_enc_blk16;
1079
1080 addq $(16 * 16), %rsp;
1081
1082 vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1083 vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1084 vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1085 vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1086 vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1087 vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1088 vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1089 vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1090 vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1091 vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1092 vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1093 vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1094 vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1095 vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1096 vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1097 vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1098 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1099 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1100 %xmm8, %rsi);
1101
1102 ret;
diff --git a/arch/x86/crypto/camellia_aesni_avx_glue.c b/arch/x86/crypto/camellia_aesni_avx_glue.c
new file mode 100644
index 000000000000..96cbb6068fce
--- /dev/null
+++ b/arch/x86/crypto/camellia_aesni_avx_glue.c
@@ -0,0 +1,558 @@
1/*
2 * Glue Code for x86_64/AVX/AES-NI assembler optimized version of Camellia
3 *
4 * Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13#include <linux/module.h>
14#include <linux/types.h>
15#include <linux/crypto.h>
16#include <linux/err.h>
17#include <crypto/algapi.h>
18#include <crypto/ctr.h>
19#include <crypto/lrw.h>
20#include <crypto/xts.h>
21#include <asm/xcr.h>
22#include <asm/xsave.h>
23#include <asm/crypto/camellia.h>
24#include <asm/crypto/ablk_helper.h>
25#include <asm/crypto/glue_helper.h>
26
27#define CAMELLIA_AESNI_PARALLEL_BLOCKS 16
28
29/* 16-way AES-NI parallel cipher functions */
30asmlinkage void camellia_ecb_enc_16way(struct camellia_ctx *ctx, u8 *dst,
31 const u8 *src);
32asmlinkage void camellia_ecb_dec_16way(struct camellia_ctx *ctx, u8 *dst,
33 const u8 *src);
34
35asmlinkage void camellia_cbc_dec_16way(struct camellia_ctx *ctx, u8 *dst,
36 const u8 *src);
37asmlinkage void camellia_ctr_16way(struct camellia_ctx *ctx, u8 *dst,
38 const u8 *src, le128 *iv);
39
40static const struct common_glue_ctx camellia_enc = {
41 .num_funcs = 3,
42 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
43
44 .funcs = { {
45 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
46 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_enc_16way) }
47 }, {
48 .num_blocks = 2,
49 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_enc_blk_2way) }
50 }, {
51 .num_blocks = 1,
52 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_enc_blk) }
53 } }
54};
55
56static const struct common_glue_ctx camellia_ctr = {
57 .num_funcs = 3,
58 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
59
60 .funcs = { {
61 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
62 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_ctr_16way) }
63 }, {
64 .num_blocks = 2,
65 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_crypt_ctr_2way) }
66 }, {
67 .num_blocks = 1,
68 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_crypt_ctr) }
69 } }
70};
71
72static const struct common_glue_ctx camellia_dec = {
73 .num_funcs = 3,
74 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
75
76 .funcs = { {
77 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
78 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_dec_16way) }
79 }, {
80 .num_blocks = 2,
81 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_dec_blk_2way) }
82 }, {
83 .num_blocks = 1,
84 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_dec_blk) }
85 } }
86};
87
88static const struct common_glue_ctx camellia_dec_cbc = {
89 .num_funcs = 3,
90 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
91
92 .funcs = { {
93 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
94 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_cbc_dec_16way) }
95 }, {
96 .num_blocks = 2,
97 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_decrypt_cbc_2way) }
98 }, {
99 .num_blocks = 1,
100 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_dec_blk) }
101 } }
102};
103
104static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
105 struct scatterlist *src, unsigned int nbytes)
106{
107 return glue_ecb_crypt_128bit(&camellia_enc, desc, dst, src, nbytes);
108}
109
110static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
111 struct scatterlist *src, unsigned int nbytes)
112{
113 return glue_ecb_crypt_128bit(&camellia_dec, desc, dst, src, nbytes);
114}
115
116static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
117 struct scatterlist *src, unsigned int nbytes)
118{
119 return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(camellia_enc_blk), desc,
120 dst, src, nbytes);
121}
122
123static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
124 struct scatterlist *src, unsigned int nbytes)
125{
126 return glue_cbc_decrypt_128bit(&camellia_dec_cbc, desc, dst, src,
127 nbytes);
128}
129
130static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
131 struct scatterlist *src, unsigned int nbytes)
132{
133 return glue_ctr_crypt_128bit(&camellia_ctr, desc, dst, src, nbytes);
134}
135
136static inline bool camellia_fpu_begin(bool fpu_enabled, unsigned int nbytes)
137{
138 return glue_fpu_begin(CAMELLIA_BLOCK_SIZE,
139 CAMELLIA_AESNI_PARALLEL_BLOCKS, NULL, fpu_enabled,
140 nbytes);
141}
142
143static inline void camellia_fpu_end(bool fpu_enabled)
144{
145 glue_fpu_end(fpu_enabled);
146}
147
148static int camellia_setkey(struct crypto_tfm *tfm, const u8 *in_key,
149 unsigned int key_len)
150{
151 return __camellia_setkey(crypto_tfm_ctx(tfm), in_key, key_len,
152 &tfm->crt_flags);
153}
154
155struct crypt_priv {
156 struct camellia_ctx *ctx;
157 bool fpu_enabled;
158};
159
160static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
161{
162 const unsigned int bsize = CAMELLIA_BLOCK_SIZE;
163 struct crypt_priv *ctx = priv;
164 int i;
165
166 ctx->fpu_enabled = camellia_fpu_begin(ctx->fpu_enabled, nbytes);
167
168 if (nbytes >= CAMELLIA_AESNI_PARALLEL_BLOCKS * bsize) {
169 camellia_ecb_enc_16way(ctx->ctx, srcdst, srcdst);
170 srcdst += bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
171 nbytes -= bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
172 }
173
174 while (nbytes >= CAMELLIA_PARALLEL_BLOCKS * bsize) {
175 camellia_enc_blk_2way(ctx->ctx, srcdst, srcdst);
176 srcdst += bsize * CAMELLIA_PARALLEL_BLOCKS;
177 nbytes -= bsize * CAMELLIA_PARALLEL_BLOCKS;
178 }
179
180 for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
181 camellia_enc_blk(ctx->ctx, srcdst, srcdst);
182}
183
184static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
185{
186 const unsigned int bsize = CAMELLIA_BLOCK_SIZE;
187 struct crypt_priv *ctx = priv;
188 int i;
189
190 ctx->fpu_enabled = camellia_fpu_begin(ctx->fpu_enabled, nbytes);
191
192 if (nbytes >= CAMELLIA_AESNI_PARALLEL_BLOCKS * bsize) {
193 camellia_ecb_dec_16way(ctx->ctx, srcdst, srcdst);
194 srcdst += bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
195 nbytes -= bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
196 }
197
198 while (nbytes >= CAMELLIA_PARALLEL_BLOCKS * bsize) {
199 camellia_dec_blk_2way(ctx->ctx, srcdst, srcdst);
200 srcdst += bsize * CAMELLIA_PARALLEL_BLOCKS;
201 nbytes -= bsize * CAMELLIA_PARALLEL_BLOCKS;
202 }
203
204 for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
205 camellia_dec_blk(ctx->ctx, srcdst, srcdst);
206}
207
208static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
209 struct scatterlist *src, unsigned int nbytes)
210{
211 struct camellia_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
212 be128 buf[CAMELLIA_AESNI_PARALLEL_BLOCKS];
213 struct crypt_priv crypt_ctx = {
214 .ctx = &ctx->camellia_ctx,
215 .fpu_enabled = false,
216 };
217 struct lrw_crypt_req req = {
218 .tbuf = buf,
219 .tbuflen = sizeof(buf),
220
221 .table_ctx = &ctx->lrw_table,
222 .crypt_ctx = &crypt_ctx,
223 .crypt_fn = encrypt_callback,
224 };
225 int ret;
226
227 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
228 ret = lrw_crypt(desc, dst, src, nbytes, &req);
229 camellia_fpu_end(crypt_ctx.fpu_enabled);
230
231 return ret;
232}
233
234static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
235 struct scatterlist *src, unsigned int nbytes)
236{
237 struct camellia_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
238 be128 buf[CAMELLIA_AESNI_PARALLEL_BLOCKS];
239 struct crypt_priv crypt_ctx = {
240 .ctx = &ctx->camellia_ctx,
241 .fpu_enabled = false,
242 };
243 struct lrw_crypt_req req = {
244 .tbuf = buf,
245 .tbuflen = sizeof(buf),
246
247 .table_ctx = &ctx->lrw_table,
248 .crypt_ctx = &crypt_ctx,
249 .crypt_fn = decrypt_callback,
250 };
251 int ret;
252
253 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
254 ret = lrw_crypt(desc, dst, src, nbytes, &req);
255 camellia_fpu_end(crypt_ctx.fpu_enabled);
256
257 return ret;
258}
259
260static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
261 struct scatterlist *src, unsigned int nbytes)
262{
263 struct camellia_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
264 be128 buf[CAMELLIA_AESNI_PARALLEL_BLOCKS];
265 struct crypt_priv crypt_ctx = {
266 .ctx = &ctx->crypt_ctx,
267 .fpu_enabled = false,
268 };
269 struct xts_crypt_req req = {
270 .tbuf = buf,
271 .tbuflen = sizeof(buf),
272
273 .tweak_ctx = &ctx->tweak_ctx,
274 .tweak_fn = XTS_TWEAK_CAST(camellia_enc_blk),
275 .crypt_ctx = &crypt_ctx,
276 .crypt_fn = encrypt_callback,
277 };
278 int ret;
279
280 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
281 ret = xts_crypt(desc, dst, src, nbytes, &req);
282 camellia_fpu_end(crypt_ctx.fpu_enabled);
283
284 return ret;
285}
286
287static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
288 struct scatterlist *src, unsigned int nbytes)
289{
290 struct camellia_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
291 be128 buf[CAMELLIA_AESNI_PARALLEL_BLOCKS];
292 struct crypt_priv crypt_ctx = {
293 .ctx = &ctx->crypt_ctx,
294 .fpu_enabled = false,
295 };
296 struct xts_crypt_req req = {
297 .tbuf = buf,
298 .tbuflen = sizeof(buf),
299
300 .tweak_ctx = &ctx->tweak_ctx,
301 .tweak_fn = XTS_TWEAK_CAST(camellia_enc_blk),
302 .crypt_ctx = &crypt_ctx,
303 .crypt_fn = decrypt_callback,
304 };
305 int ret;
306
307 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
308 ret = xts_crypt(desc, dst, src, nbytes, &req);
309 camellia_fpu_end(crypt_ctx.fpu_enabled);
310
311 return ret;
312}
313
314static struct crypto_alg cmll_algs[10] = { {
315 .cra_name = "__ecb-camellia-aesni",
316 .cra_driver_name = "__driver-ecb-camellia-aesni",
317 .cra_priority = 0,
318 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
319 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
320 .cra_ctxsize = sizeof(struct camellia_ctx),
321 .cra_alignmask = 0,
322 .cra_type = &crypto_blkcipher_type,
323 .cra_module = THIS_MODULE,
324 .cra_u = {
325 .blkcipher = {
326 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
327 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
328 .setkey = camellia_setkey,
329 .encrypt = ecb_encrypt,
330 .decrypt = ecb_decrypt,
331 },
332 },
333}, {
334 .cra_name = "__cbc-camellia-aesni",
335 .cra_driver_name = "__driver-cbc-camellia-aesni",
336 .cra_priority = 0,
337 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
338 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
339 .cra_ctxsize = sizeof(struct camellia_ctx),
340 .cra_alignmask = 0,
341 .cra_type = &crypto_blkcipher_type,
342 .cra_module = THIS_MODULE,
343 .cra_u = {
344 .blkcipher = {
345 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
346 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
347 .setkey = camellia_setkey,
348 .encrypt = cbc_encrypt,
349 .decrypt = cbc_decrypt,
350 },
351 },
352}, {
353 .cra_name = "__ctr-camellia-aesni",
354 .cra_driver_name = "__driver-ctr-camellia-aesni",
355 .cra_priority = 0,
356 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
357 .cra_blocksize = 1,
358 .cra_ctxsize = sizeof(struct camellia_ctx),
359 .cra_alignmask = 0,
360 .cra_type = &crypto_blkcipher_type,
361 .cra_module = THIS_MODULE,
362 .cra_u = {
363 .blkcipher = {
364 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
365 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
366 .ivsize = CAMELLIA_BLOCK_SIZE,
367 .setkey = camellia_setkey,
368 .encrypt = ctr_crypt,
369 .decrypt = ctr_crypt,
370 },
371 },
372}, {
373 .cra_name = "__lrw-camellia-aesni",
374 .cra_driver_name = "__driver-lrw-camellia-aesni",
375 .cra_priority = 0,
376 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
377 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
378 .cra_ctxsize = sizeof(struct camellia_lrw_ctx),
379 .cra_alignmask = 0,
380 .cra_type = &crypto_blkcipher_type,
381 .cra_module = THIS_MODULE,
382 .cra_exit = lrw_camellia_exit_tfm,
383 .cra_u = {
384 .blkcipher = {
385 .min_keysize = CAMELLIA_MIN_KEY_SIZE +
386 CAMELLIA_BLOCK_SIZE,
387 .max_keysize = CAMELLIA_MAX_KEY_SIZE +
388 CAMELLIA_BLOCK_SIZE,
389 .ivsize = CAMELLIA_BLOCK_SIZE,
390 .setkey = lrw_camellia_setkey,
391 .encrypt = lrw_encrypt,
392 .decrypt = lrw_decrypt,
393 },
394 },
395}, {
396 .cra_name = "__xts-camellia-aesni",
397 .cra_driver_name = "__driver-xts-camellia-aesni",
398 .cra_priority = 0,
399 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
400 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
401 .cra_ctxsize = sizeof(struct camellia_xts_ctx),
402 .cra_alignmask = 0,
403 .cra_type = &crypto_blkcipher_type,
404 .cra_module = THIS_MODULE,
405 .cra_u = {
406 .blkcipher = {
407 .min_keysize = CAMELLIA_MIN_KEY_SIZE * 2,
408 .max_keysize = CAMELLIA_MAX_KEY_SIZE * 2,
409 .ivsize = CAMELLIA_BLOCK_SIZE,
410 .setkey = xts_camellia_setkey,
411 .encrypt = xts_encrypt,
412 .decrypt = xts_decrypt,
413 },
414 },
415}, {
416 .cra_name = "ecb(camellia)",
417 .cra_driver_name = "ecb-camellia-aesni",
418 .cra_priority = 400,
419 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
420 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
421 .cra_ctxsize = sizeof(struct async_helper_ctx),
422 .cra_alignmask = 0,
423 .cra_type = &crypto_ablkcipher_type,
424 .cra_module = THIS_MODULE,
425 .cra_init = ablk_init,
426 .cra_exit = ablk_exit,
427 .cra_u = {
428 .ablkcipher = {
429 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
430 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
431 .setkey = ablk_set_key,
432 .encrypt = ablk_encrypt,
433 .decrypt = ablk_decrypt,
434 },
435 },
436}, {
437 .cra_name = "cbc(camellia)",
438 .cra_driver_name = "cbc-camellia-aesni",
439 .cra_priority = 400,
440 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
441 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
442 .cra_ctxsize = sizeof(struct async_helper_ctx),
443 .cra_alignmask = 0,
444 .cra_type = &crypto_ablkcipher_type,
445 .cra_module = THIS_MODULE,
446 .cra_init = ablk_init,
447 .cra_exit = ablk_exit,
448 .cra_u = {
449 .ablkcipher = {
450 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
451 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
452 .ivsize = CAMELLIA_BLOCK_SIZE,
453 .setkey = ablk_set_key,
454 .encrypt = __ablk_encrypt,
455 .decrypt = ablk_decrypt,
456 },
457 },
458}, {
459 .cra_name = "ctr(camellia)",
460 .cra_driver_name = "ctr-camellia-aesni",
461 .cra_priority = 400,
462 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
463 .cra_blocksize = 1,
464 .cra_ctxsize = sizeof(struct async_helper_ctx),
465 .cra_alignmask = 0,
466 .cra_type = &crypto_ablkcipher_type,
467 .cra_module = THIS_MODULE,
468 .cra_init = ablk_init,
469 .cra_exit = ablk_exit,
470 .cra_u = {
471 .ablkcipher = {
472 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
473 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
474 .ivsize = CAMELLIA_BLOCK_SIZE,
475 .setkey = ablk_set_key,
476 .encrypt = ablk_encrypt,
477 .decrypt = ablk_encrypt,
478 .geniv = "chainiv",
479 },
480 },
481}, {
482 .cra_name = "lrw(camellia)",
483 .cra_driver_name = "lrw-camellia-aesni",
484 .cra_priority = 400,
485 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
486 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
487 .cra_ctxsize = sizeof(struct async_helper_ctx),
488 .cra_alignmask = 0,
489 .cra_type = &crypto_ablkcipher_type,
490 .cra_module = THIS_MODULE,
491 .cra_init = ablk_init,
492 .cra_exit = ablk_exit,
493 .cra_u = {
494 .ablkcipher = {
495 .min_keysize = CAMELLIA_MIN_KEY_SIZE +
496 CAMELLIA_BLOCK_SIZE,
497 .max_keysize = CAMELLIA_MAX_KEY_SIZE +
498 CAMELLIA_BLOCK_SIZE,
499 .ivsize = CAMELLIA_BLOCK_SIZE,
500 .setkey = ablk_set_key,
501 .encrypt = ablk_encrypt,
502 .decrypt = ablk_decrypt,
503 },
504 },
505}, {
506 .cra_name = "xts(camellia)",
507 .cra_driver_name = "xts-camellia-aesni",
508 .cra_priority = 400,
509 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
510 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
511 .cra_ctxsize = sizeof(struct async_helper_ctx),
512 .cra_alignmask = 0,
513 .cra_type = &crypto_ablkcipher_type,
514 .cra_module = THIS_MODULE,
515 .cra_init = ablk_init,
516 .cra_exit = ablk_exit,
517 .cra_u = {
518 .ablkcipher = {
519 .min_keysize = CAMELLIA_MIN_KEY_SIZE * 2,
520 .max_keysize = CAMELLIA_MAX_KEY_SIZE * 2,
521 .ivsize = CAMELLIA_BLOCK_SIZE,
522 .setkey = ablk_set_key,
523 .encrypt = ablk_encrypt,
524 .decrypt = ablk_decrypt,
525 },
526 },
527} };
528
529static int __init camellia_aesni_init(void)
530{
531 u64 xcr0;
532
533 if (!cpu_has_avx || !cpu_has_aes || !cpu_has_osxsave) {
534 pr_info("AVX or AES-NI instructions are not detected.\n");
535 return -ENODEV;
536 }
537
538 xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
539 if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
540 pr_info("AVX detected but unusable.\n");
541 return -ENODEV;
542 }
543
544 return crypto_register_algs(cmll_algs, ARRAY_SIZE(cmll_algs));
545}
546
547static void __exit camellia_aesni_fini(void)
548{
549 crypto_unregister_algs(cmll_algs, ARRAY_SIZE(cmll_algs));
550}
551
552module_init(camellia_aesni_init);
553module_exit(camellia_aesni_fini);
554
555MODULE_LICENSE("GPL");
556MODULE_DESCRIPTION("Camellia Cipher Algorithm, AES-NI/AVX optimized");
557MODULE_ALIAS("camellia");
558MODULE_ALIAS("camellia-asm");