aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/crypto/aes_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/crypto/aes_64.c')
-rw-r--r--arch/x86/crypto/aes_64.c282
1 files changed, 3 insertions, 279 deletions
diff --git a/arch/x86/crypto/aes_64.c b/arch/x86/crypto/aes_64.c
index 0b38a4cd2ce1..d7a41a97dd3f 100644
--- a/arch/x86/crypto/aes_64.c
+++ b/arch/x86/crypto/aes_64.c
@@ -1,284 +1,9 @@
1/* 1/*
2 * Cryptographic API. 2 * Glue Code for AES Cipher Algorithm
3 * 3 *
4 * AES Cipher Algorithm.
5 *
6 * Based on Brian Gladman's code.
7 *
8 * Linux developers:
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
13 * Andreas Steinmetz <ast@domdv.de> (adapted to x86_64 assembler)
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * ---------------------------------------------------------------------------
21 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
22 * All rights reserved.
23 *
24 * LICENSE TERMS
25 *
26 * The free distribution and use of this software in both source and binary
27 * form is allowed (with or without changes) provided that:
28 *
29 * 1. distributions of this source code include the above copyright
30 * notice, this list of conditions and the following disclaimer;
31 *
32 * 2. distributions in binary form include the above copyright
33 * notice, this list of conditions and the following disclaimer
34 * in the documentation and/or other associated materials;
35 *
36 * 3. the copyright holder's name is not used to endorse products
37 * built using this software without specific written permission.
38 *
39 * ALTERNATIVELY, provided that this notice is retained in full, this product
40 * may be distributed under the terms of the GNU General Public License (GPL),
41 * in which case the provisions of the GPL apply INSTEAD OF those given above.
42 *
43 * DISCLAIMER
44 *
45 * This software is provided 'as is' with no explicit or implied warranties
46 * in respect of its properties, including, but not limited to, correctness
47 * and/or fitness for purpose.
48 * ---------------------------------------------------------------------------
49 */ 4 */
50 5
51/* Some changes from the Gladman version:
52 s/RIJNDAEL(e_key)/E_KEY/g
53 s/RIJNDAEL(d_key)/D_KEY/g
54*/
55
56#include <asm/byteorder.h>
57#include <crypto/aes.h> 6#include <crypto/aes.h>
58#include <linux/bitops.h>
59#include <linux/crypto.h>
60#include <linux/errno.h>
61#include <linux/init.h>
62#include <linux/module.h>
63#include <linux/types.h>
64
65/*
66 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
67 */
68static inline u8 byte(const u32 x, const unsigned n)
69{
70 return x >> (n << 3);
71}
72
73struct aes_ctx
74{
75 u32 key_length;
76 u32 buf[120];
77};
78
79#define E_KEY (&ctx->buf[0])
80#define D_KEY (&ctx->buf[60])
81
82static u8 pow_tab[256] __initdata;
83static u8 log_tab[256] __initdata;
84static u8 sbx_tab[256] __initdata;
85static u8 isb_tab[256] __initdata;
86static u32 rco_tab[10];
87u32 aes_ft_tab[4][256];
88u32 aes_it_tab[4][256];
89
90u32 aes_fl_tab[4][256];
91u32 aes_il_tab[4][256];
92
93static inline u8 f_mult(u8 a, u8 b)
94{
95 u8 aa = log_tab[a], cc = aa + log_tab[b];
96
97 return pow_tab[cc + (cc < aa ? 1 : 0)];
98}
99
100#define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
101
102#define ls_box(x) \
103 (aes_fl_tab[0][byte(x, 0)] ^ \
104 aes_fl_tab[1][byte(x, 1)] ^ \
105 aes_fl_tab[2][byte(x, 2)] ^ \
106 aes_fl_tab[3][byte(x, 3)])
107
108static void __init gen_tabs(void)
109{
110 u32 i, t;
111 u8 p, q;
112
113 /* log and power tables for GF(2**8) finite field with
114 0x011b as modular polynomial - the simplest primitive
115 root is 0x03, used here to generate the tables */
116
117 for (i = 0, p = 1; i < 256; ++i) {
118 pow_tab[i] = (u8)p;
119 log_tab[p] = (u8)i;
120
121 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
122 }
123
124 log_tab[1] = 0;
125
126 for (i = 0, p = 1; i < 10; ++i) {
127 rco_tab[i] = p;
128
129 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
130 }
131
132 for (i = 0; i < 256; ++i) {
133 p = (i ? pow_tab[255 - log_tab[i]] : 0);
134 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
135 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
136 sbx_tab[i] = p;
137 isb_tab[p] = (u8)i;
138 }
139
140 for (i = 0; i < 256; ++i) {
141 p = sbx_tab[i];
142
143 t = p;
144 aes_fl_tab[0][i] = t;
145 aes_fl_tab[1][i] = rol32(t, 8);
146 aes_fl_tab[2][i] = rol32(t, 16);
147 aes_fl_tab[3][i] = rol32(t, 24);
148
149 t = ((u32)ff_mult(2, p)) |
150 ((u32)p << 8) |
151 ((u32)p << 16) | ((u32)ff_mult(3, p) << 24);
152
153 aes_ft_tab[0][i] = t;
154 aes_ft_tab[1][i] = rol32(t, 8);
155 aes_ft_tab[2][i] = rol32(t, 16);
156 aes_ft_tab[3][i] = rol32(t, 24);
157
158 p = isb_tab[i];
159
160 t = p;
161 aes_il_tab[0][i] = t;
162 aes_il_tab[1][i] = rol32(t, 8);
163 aes_il_tab[2][i] = rol32(t, 16);
164 aes_il_tab[3][i] = rol32(t, 24);
165
166 t = ((u32)ff_mult(14, p)) |
167 ((u32)ff_mult(9, p) << 8) |
168 ((u32)ff_mult(13, p) << 16) |
169 ((u32)ff_mult(11, p) << 24);
170
171 aes_it_tab[0][i] = t;
172 aes_it_tab[1][i] = rol32(t, 8);
173 aes_it_tab[2][i] = rol32(t, 16);
174 aes_it_tab[3][i] = rol32(t, 24);
175 }
176}
177
178#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
179
180#define imix_col(y, x) \
181 u = star_x(x); \
182 v = star_x(u); \
183 w = star_x(v); \
184 t = w ^ (x); \
185 (y) = u ^ v ^ w; \
186 (y) ^= ror32(u ^ t, 8) ^ \
187 ror32(v ^ t, 16) ^ \
188 ror32(t, 24)
189
190/* initialise the key schedule from the user supplied key */
191
192#define loop4(i) \
193{ \
194 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
195 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
196 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
197 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
198 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
199}
200
201#define loop6(i) \
202{ \
203 t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
204 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
205 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
206 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
207 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
208 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
209 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
210}
211
212#define loop8(i) \
213{ \
214 t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
215 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
216 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
217 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
218 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
219 t = E_KEY[8 * i + 4] ^ ls_box(t); \
220 E_KEY[8 * i + 12] = t; \
221 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
222 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
223 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
224}
225
226static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
227 unsigned int key_len)
228{
229 struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
230 const __le32 *key = (const __le32 *)in_key;
231 u32 *flags = &tfm->crt_flags;
232 u32 i, j, t, u, v, w;
233
234 if (key_len % 8) {
235 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
236 return -EINVAL;
237 }
238
239 ctx->key_length = key_len;
240
241 D_KEY[key_len + 24] = E_KEY[0] = le32_to_cpu(key[0]);
242 D_KEY[key_len + 25] = E_KEY[1] = le32_to_cpu(key[1]);
243 D_KEY[key_len + 26] = E_KEY[2] = le32_to_cpu(key[2]);
244 D_KEY[key_len + 27] = E_KEY[3] = le32_to_cpu(key[3]);
245
246 switch (key_len) {
247 case 16:
248 t = E_KEY[3];
249 for (i = 0; i < 10; ++i)
250 loop4(i);
251 break;
252
253 case 24:
254 E_KEY[4] = le32_to_cpu(key[4]);
255 t = E_KEY[5] = le32_to_cpu(key[5]);
256 for (i = 0; i < 8; ++i)
257 loop6 (i);
258 break;
259
260 case 32:
261 E_KEY[4] = le32_to_cpu(key[4]);
262 E_KEY[5] = le32_to_cpu(key[5]);
263 E_KEY[6] = le32_to_cpu(key[6]);
264 t = E_KEY[7] = le32_to_cpu(key[7]);
265 for (i = 0; i < 7; ++i)
266 loop8(i);
267 break;
268 }
269
270 D_KEY[0] = E_KEY[key_len + 24];
271 D_KEY[1] = E_KEY[key_len + 25];
272 D_KEY[2] = E_KEY[key_len + 26];
273 D_KEY[3] = E_KEY[key_len + 27];
274
275 for (i = 4; i < key_len + 24; ++i) {
276 j = key_len + 24 - (i & ~3) + (i & 3);
277 imix_col(D_KEY[j], E_KEY[i]);
278 }
279
280 return 0;
281}
282 7
283asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *out, const u8 *in); 8asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *out, const u8 *in);
284asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *out, const u8 *in); 9asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *out, const u8 *in);
@@ -299,14 +24,14 @@ static struct crypto_alg aes_alg = {
299 .cra_priority = 200, 24 .cra_priority = 200,
300 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 25 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
301 .cra_blocksize = AES_BLOCK_SIZE, 26 .cra_blocksize = AES_BLOCK_SIZE,
302 .cra_ctxsize = sizeof(struct aes_ctx), 27 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
303 .cra_module = THIS_MODULE, 28 .cra_module = THIS_MODULE,
304 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), 29 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
305 .cra_u = { 30 .cra_u = {
306 .cipher = { 31 .cipher = {
307 .cia_min_keysize = AES_MIN_KEY_SIZE, 32 .cia_min_keysize = AES_MIN_KEY_SIZE,
308 .cia_max_keysize = AES_MAX_KEY_SIZE, 33 .cia_max_keysize = AES_MAX_KEY_SIZE,
309 .cia_setkey = aes_set_key, 34 .cia_setkey = crypto_aes_set_key,
310 .cia_encrypt = aes_encrypt, 35 .cia_encrypt = aes_encrypt,
311 .cia_decrypt = aes_decrypt 36 .cia_decrypt = aes_decrypt
312 } 37 }
@@ -315,7 +40,6 @@ static struct crypto_alg aes_alg = {
315 40
316static int __init aes_init(void) 41static int __init aes_init(void)
317{ 42{
318 gen_tabs();
319 return crypto_register_alg(&aes_alg); 43 return crypto_register_alg(&aes_alg);
320} 44}
321 45