diff options
Diffstat (limited to 'arch/tile/mm/init.c')
-rw-r--r-- | arch/tile/mm/init.c | 1082 |
1 files changed, 1082 insertions, 0 deletions
diff --git a/arch/tile/mm/init.c b/arch/tile/mm/init.c new file mode 100644 index 000000000000..125ac53b60fc --- /dev/null +++ b/arch/tile/mm/init.c | |||
@@ -0,0 +1,1082 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1995 Linus Torvalds | ||
3 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License | ||
7 | * as published by the Free Software Foundation, version 2. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, but | ||
10 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
12 | * NON INFRINGEMENT. See the GNU General Public License for | ||
13 | * more details. | ||
14 | */ | ||
15 | |||
16 | #include <linux/module.h> | ||
17 | #include <linux/signal.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/errno.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/ptrace.h> | ||
24 | #include <linux/mman.h> | ||
25 | #include <linux/mm.h> | ||
26 | #include <linux/hugetlb.h> | ||
27 | #include <linux/swap.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <linux/highmem.h> | ||
31 | #include <linux/pagemap.h> | ||
32 | #include <linux/poison.h> | ||
33 | #include <linux/bootmem.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/proc_fs.h> | ||
36 | #include <linux/efi.h> | ||
37 | #include <linux/memory_hotplug.h> | ||
38 | #include <linux/uaccess.h> | ||
39 | #include <asm/mmu_context.h> | ||
40 | #include <asm/processor.h> | ||
41 | #include <asm/system.h> | ||
42 | #include <asm/pgtable.h> | ||
43 | #include <asm/pgalloc.h> | ||
44 | #include <asm/dma.h> | ||
45 | #include <asm/fixmap.h> | ||
46 | #include <asm/tlb.h> | ||
47 | #include <asm/tlbflush.h> | ||
48 | #include <asm/sections.h> | ||
49 | #include <asm/setup.h> | ||
50 | #include <asm/homecache.h> | ||
51 | #include <hv/hypervisor.h> | ||
52 | #include <arch/chip.h> | ||
53 | |||
54 | #include "migrate.h" | ||
55 | |||
56 | /* | ||
57 | * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)" | ||
58 | * in the Tile Kconfig, but this generates configure warnings. | ||
59 | * Do it here and force people to get it right to compile this file. | ||
60 | * The problem is that with 4KB small pages and 16MB huge pages, | ||
61 | * the default value doesn't allow us to group enough small pages | ||
62 | * together to make up a huge page. | ||
63 | */ | ||
64 | #if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1 | ||
65 | # error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size" | ||
66 | #endif | ||
67 | |||
68 | #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) | ||
69 | |||
70 | unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; | ||
71 | |||
72 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | ||
73 | |||
74 | /* Create an L2 page table */ | ||
75 | static pte_t * __init alloc_pte(void) | ||
76 | { | ||
77 | return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * L2 page tables per controller. We allocate these all at once from | ||
82 | * the bootmem allocator and store them here. This saves on kernel L2 | ||
83 | * page table memory, compared to allocating a full 64K page per L2 | ||
84 | * page table, and also means that in cases where we use huge pages, | ||
85 | * we are guaranteed to later be able to shatter those huge pages and | ||
86 | * switch to using these page tables instead, without requiring | ||
87 | * further allocation. Each l2_ptes[] entry points to the first page | ||
88 | * table for the first hugepage-size piece of memory on the | ||
89 | * controller; other page tables are just indexed directly, i.e. the | ||
90 | * L2 page tables are contiguous in memory for each controller. | ||
91 | */ | ||
92 | static pte_t *l2_ptes[MAX_NUMNODES]; | ||
93 | static int num_l2_ptes[MAX_NUMNODES]; | ||
94 | |||
95 | static void init_prealloc_ptes(int node, int pages) | ||
96 | { | ||
97 | BUG_ON(pages & (HV_L2_ENTRIES-1)); | ||
98 | if (pages) { | ||
99 | num_l2_ptes[node] = pages; | ||
100 | l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), | ||
101 | HV_PAGE_TABLE_ALIGN, 0); | ||
102 | } | ||
103 | } | ||
104 | |||
105 | pte_t *get_prealloc_pte(unsigned long pfn) | ||
106 | { | ||
107 | int node = pfn_to_nid(pfn); | ||
108 | pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)); | ||
109 | BUG_ON(node >= MAX_NUMNODES); | ||
110 | BUG_ON(pfn >= num_l2_ptes[node]); | ||
111 | return &l2_ptes[node][pfn]; | ||
112 | } | ||
113 | |||
114 | /* | ||
115 | * What caching do we expect pages from the heap to have when | ||
116 | * they are allocated during bootup? (Once we've installed the | ||
117 | * "real" swapper_pg_dir.) | ||
118 | */ | ||
119 | static int initial_heap_home(void) | ||
120 | { | ||
121 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
122 | if (hash_default) | ||
123 | return PAGE_HOME_HASH; | ||
124 | #endif | ||
125 | return smp_processor_id(); | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Place a pointer to an L2 page table in a middle page | ||
130 | * directory entry. | ||
131 | */ | ||
132 | static void __init assign_pte(pmd_t *pmd, pte_t *page_table) | ||
133 | { | ||
134 | phys_addr_t pa = __pa(page_table); | ||
135 | unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN; | ||
136 | pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn); | ||
137 | BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0); | ||
138 | pteval = pte_set_home(pteval, initial_heap_home()); | ||
139 | *(pte_t *)pmd = pteval; | ||
140 | if (page_table != (pte_t *)pmd_page_vaddr(*pmd)) | ||
141 | BUG(); | ||
142 | } | ||
143 | |||
144 | #ifdef __tilegx__ | ||
145 | |||
146 | #if HV_L1_SIZE != HV_L2_SIZE | ||
147 | # error Rework assumption that L1 and L2 page tables are same size. | ||
148 | #endif | ||
149 | |||
150 | /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */ | ||
151 | static inline pmd_t *alloc_pmd(void) | ||
152 | { | ||
153 | return (pmd_t *)alloc_pte(); | ||
154 | } | ||
155 | |||
156 | static inline void assign_pmd(pud_t *pud, pmd_t *pmd) | ||
157 | { | ||
158 | assign_pte((pmd_t *)pud, (pte_t *)pmd); | ||
159 | } | ||
160 | |||
161 | #endif /* __tilegx__ */ | ||
162 | |||
163 | /* Replace the given pmd with a full PTE table. */ | ||
164 | void __init shatter_pmd(pmd_t *pmd) | ||
165 | { | ||
166 | pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd)); | ||
167 | assign_pte(pmd, pte); | ||
168 | } | ||
169 | |||
170 | #ifdef CONFIG_HIGHMEM | ||
171 | /* | ||
172 | * This function initializes a certain range of kernel virtual memory | ||
173 | * with new bootmem page tables, everywhere page tables are missing in | ||
174 | * the given range. | ||
175 | */ | ||
176 | |||
177 | /* | ||
178 | * NOTE: The pagetables are allocated contiguous on the physical space | ||
179 | * so we can cache the place of the first one and move around without | ||
180 | * checking the pgd every time. | ||
181 | */ | ||
182 | static void __init page_table_range_init(unsigned long start, | ||
183 | unsigned long end, pgd_t *pgd_base) | ||
184 | { | ||
185 | pgd_t *pgd; | ||
186 | int pgd_idx; | ||
187 | unsigned long vaddr; | ||
188 | |||
189 | vaddr = start; | ||
190 | pgd_idx = pgd_index(vaddr); | ||
191 | pgd = pgd_base + pgd_idx; | ||
192 | |||
193 | for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) { | ||
194 | pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr); | ||
195 | if (pmd_none(*pmd)) | ||
196 | assign_pte(pmd, alloc_pte()); | ||
197 | vaddr += PMD_SIZE; | ||
198 | } | ||
199 | } | ||
200 | #endif /* CONFIG_HIGHMEM */ | ||
201 | |||
202 | |||
203 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
204 | |||
205 | static int __initdata ktext_hash = 1; /* .text pages */ | ||
206 | static int __initdata kdata_hash = 1; /* .data and .bss pages */ | ||
207 | int __write_once hash_default = 1; /* kernel allocator pages */ | ||
208 | EXPORT_SYMBOL(hash_default); | ||
209 | int __write_once kstack_hash = 1; /* if no homecaching, use h4h */ | ||
210 | #endif /* CHIP_HAS_CBOX_HOME_MAP */ | ||
211 | |||
212 | /* | ||
213 | * CPUs to use to for striping the pages of kernel data. If hash-for-home | ||
214 | * is available, this is only relevant if kcache_hash sets up the | ||
215 | * .data and .bss to be page-homed, and we don't want the default mode | ||
216 | * of using the full set of kernel cpus for the striping. | ||
217 | */ | ||
218 | static __initdata struct cpumask kdata_mask; | ||
219 | static __initdata int kdata_arg_seen; | ||
220 | |||
221 | int __write_once kdata_huge; /* if no homecaching, small pages */ | ||
222 | |||
223 | |||
224 | /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */ | ||
225 | static pgprot_t __init construct_pgprot(pgprot_t prot, int home) | ||
226 | { | ||
227 | prot = pte_set_home(prot, home); | ||
228 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
229 | if (home == PAGE_HOME_IMMUTABLE) { | ||
230 | if (ktext_hash) | ||
231 | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); | ||
232 | else | ||
233 | prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); | ||
234 | } | ||
235 | #endif | ||
236 | return prot; | ||
237 | } | ||
238 | |||
239 | /* | ||
240 | * For a given kernel data VA, how should it be cached? | ||
241 | * We return the complete pgprot_t with caching bits set. | ||
242 | */ | ||
243 | static pgprot_t __init init_pgprot(ulong address) | ||
244 | { | ||
245 | int cpu; | ||
246 | unsigned long page; | ||
247 | enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; | ||
248 | |||
249 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
250 | /* For kdata=huge, everything is just hash-for-home. */ | ||
251 | if (kdata_huge) | ||
252 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | ||
253 | #endif | ||
254 | |||
255 | /* We map the aliased pages of permanent text inaccessible. */ | ||
256 | if (address < (ulong) _sinittext - CODE_DELTA) | ||
257 | return PAGE_NONE; | ||
258 | |||
259 | /* | ||
260 | * We map read-only data non-coherent for performance. We could | ||
261 | * use neighborhood caching on TILE64, but it's not clear it's a win. | ||
262 | */ | ||
263 | if ((address >= (ulong) __start_rodata && | ||
264 | address < (ulong) __end_rodata) || | ||
265 | address == (ulong) empty_zero_page) { | ||
266 | return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); | ||
267 | } | ||
268 | |||
269 | /* As a performance optimization, keep the boot init stack here. */ | ||
270 | if (address >= (ulong)&init_thread_union && | ||
271 | address < (ulong)&init_thread_union + THREAD_SIZE) | ||
272 | return construct_pgprot(PAGE_KERNEL, smp_processor_id()); | ||
273 | |||
274 | #ifndef __tilegx__ | ||
275 | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
276 | /* Force the atomic_locks[] array page to be hash-for-home. */ | ||
277 | if (address == (ulong) atomic_locks) | ||
278 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | ||
279 | #endif | ||
280 | #endif | ||
281 | |||
282 | /* | ||
283 | * Everything else that isn't data or bss is heap, so mark it | ||
284 | * with the initial heap home (hash-for-home, or this cpu). This | ||
285 | * includes any addresses after the loaded image; any address before | ||
286 | * _einittext (since we already captured the case of text before | ||
287 | * _sinittext); and any init-data pages. | ||
288 | * | ||
289 | * All the LOWMEM pages that we mark this way will get their | ||
290 | * struct page homecache properly marked later, in set_page_homes(). | ||
291 | * The HIGHMEM pages we leave with a default zero for their | ||
292 | * homes, but with a zero free_time we don't have to actually | ||
293 | * do a flush action the first time we use them, either. | ||
294 | */ | ||
295 | if (address >= (ulong) _end || address < (ulong) _sdata || | ||
296 | (address >= (ulong) _sinitdata && | ||
297 | address < (ulong) _einitdata)) | ||
298 | return construct_pgprot(PAGE_KERNEL, initial_heap_home()); | ||
299 | |||
300 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
301 | /* Use hash-for-home if requested for data/bss. */ | ||
302 | if (kdata_hash) | ||
303 | return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); | ||
304 | #endif | ||
305 | |||
306 | /* | ||
307 | * Otherwise we just hand out consecutive cpus. To avoid | ||
308 | * requiring this function to hold state, we just walk forward from | ||
309 | * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach | ||
310 | * the requested address, while walking cpu home around kdata_mask. | ||
311 | * This is typically no more than a dozen or so iterations. | ||
312 | */ | ||
313 | BUG_ON(_einitdata != __bss_start); | ||
314 | for (page = (ulong)_sdata, cpu = NR_CPUS; ; ) { | ||
315 | cpu = cpumask_next(cpu, &kdata_mask); | ||
316 | if (cpu == NR_CPUS) | ||
317 | cpu = cpumask_first(&kdata_mask); | ||
318 | if (page >= address) | ||
319 | break; | ||
320 | page += PAGE_SIZE; | ||
321 | if (page == (ulong)__start_rodata) | ||
322 | page = (ulong)__end_rodata; | ||
323 | if (page == (ulong)&init_thread_union) | ||
324 | page += THREAD_SIZE; | ||
325 | if (page == (ulong)_sinitdata) | ||
326 | page = (ulong)_einitdata; | ||
327 | if (page == (ulong)empty_zero_page) | ||
328 | page += PAGE_SIZE; | ||
329 | #ifndef __tilegx__ | ||
330 | #if !ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
331 | if (page == (ulong)atomic_locks) | ||
332 | page += PAGE_SIZE; | ||
333 | #endif | ||
334 | #endif | ||
335 | |||
336 | } | ||
337 | return construct_pgprot(PAGE_KERNEL, cpu); | ||
338 | } | ||
339 | |||
340 | /* | ||
341 | * This function sets up how we cache the kernel text. If we have | ||
342 | * hash-for-home support, normally that is used instead (see the | ||
343 | * kcache_hash boot flag for more information). But if we end up | ||
344 | * using a page-based caching technique, this option sets up the | ||
345 | * details of that. In addition, the "ktext=nocache" option may | ||
346 | * always be used to disable local caching of text pages, if desired. | ||
347 | */ | ||
348 | |||
349 | static int __initdata ktext_arg_seen; | ||
350 | static int __initdata ktext_small; | ||
351 | static int __initdata ktext_local; | ||
352 | static int __initdata ktext_all; | ||
353 | static int __initdata ktext_nondataplane; | ||
354 | static int __initdata ktext_nocache; | ||
355 | static struct cpumask __initdata ktext_mask; | ||
356 | |||
357 | static int __init setup_ktext(char *str) | ||
358 | { | ||
359 | if (str == NULL) | ||
360 | return -EINVAL; | ||
361 | |||
362 | /* If you have a leading "nocache", turn off ktext caching */ | ||
363 | if (strncmp(str, "nocache", 7) == 0) { | ||
364 | ktext_nocache = 1; | ||
365 | printk("ktext: disabling local caching of kernel text\n"); | ||
366 | str += 7; | ||
367 | if (*str == ',') | ||
368 | ++str; | ||
369 | if (*str == '\0') | ||
370 | return 0; | ||
371 | } | ||
372 | |||
373 | ktext_arg_seen = 1; | ||
374 | |||
375 | /* Default setting on Tile64: use a huge page */ | ||
376 | if (strcmp(str, "huge") == 0) | ||
377 | printk("ktext: using one huge locally cached page\n"); | ||
378 | |||
379 | /* Pay TLB cost but get no cache benefit: cache small pages locally */ | ||
380 | else if (strcmp(str, "local") == 0) { | ||
381 | ktext_small = 1; | ||
382 | ktext_local = 1; | ||
383 | printk("ktext: using small pages with local caching\n"); | ||
384 | } | ||
385 | |||
386 | /* Neighborhood cache ktext pages on all cpus. */ | ||
387 | else if (strcmp(str, "all") == 0) { | ||
388 | ktext_small = 1; | ||
389 | ktext_all = 1; | ||
390 | printk("ktext: using maximal caching neighborhood\n"); | ||
391 | } | ||
392 | |||
393 | |||
394 | /* Neighborhood ktext pages on specified mask */ | ||
395 | else if (cpulist_parse(str, &ktext_mask) == 0) { | ||
396 | char buf[NR_CPUS * 5]; | ||
397 | cpulist_scnprintf(buf, sizeof(buf), &ktext_mask); | ||
398 | if (cpumask_weight(&ktext_mask) > 1) { | ||
399 | ktext_small = 1; | ||
400 | printk("ktext: using caching neighborhood %s " | ||
401 | "with small pages\n", buf); | ||
402 | } else { | ||
403 | printk("ktext: caching on cpu %s with one huge page\n", | ||
404 | buf); | ||
405 | } | ||
406 | } | ||
407 | |||
408 | else if (*str) | ||
409 | return -EINVAL; | ||
410 | |||
411 | return 0; | ||
412 | } | ||
413 | |||
414 | early_param("ktext", setup_ktext); | ||
415 | |||
416 | |||
417 | static inline pgprot_t ktext_set_nocache(pgprot_t prot) | ||
418 | { | ||
419 | if (!ktext_nocache) | ||
420 | prot = hv_pte_set_nc(prot); | ||
421 | #if CHIP_HAS_NC_AND_NOALLOC_BITS() | ||
422 | else | ||
423 | prot = hv_pte_set_no_alloc_l2(prot); | ||
424 | #endif | ||
425 | return prot; | ||
426 | } | ||
427 | |||
428 | #ifndef __tilegx__ | ||
429 | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) | ||
430 | { | ||
431 | return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); | ||
432 | } | ||
433 | #else | ||
434 | static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) | ||
435 | { | ||
436 | pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); | ||
437 | if (pud_none(*pud)) | ||
438 | assign_pmd(pud, alloc_pmd()); | ||
439 | return pmd_offset(pud, va); | ||
440 | } | ||
441 | #endif | ||
442 | |||
443 | /* Temporary page table we use for staging. */ | ||
444 | static pgd_t pgtables[PTRS_PER_PGD] | ||
445 | __attribute__((section(".init.page"))); | ||
446 | |||
447 | /* | ||
448 | * This maps the physical memory to kernel virtual address space, a total | ||
449 | * of max_low_pfn pages, by creating page tables starting from address | ||
450 | * PAGE_OFFSET. | ||
451 | * | ||
452 | * This routine transitions us from using a set of compiled-in large | ||
453 | * pages to using some more precise caching, including removing access | ||
454 | * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START) | ||
455 | * marking read-only data as locally cacheable, striping the remaining | ||
456 | * .data and .bss across all the available tiles, and removing access | ||
457 | * to pages above the top of RAM (thus ensuring a page fault from a bad | ||
458 | * virtual address rather than a hypervisor shoot down for accessing | ||
459 | * memory outside the assigned limits). | ||
460 | */ | ||
461 | static void __init kernel_physical_mapping_init(pgd_t *pgd_base) | ||
462 | { | ||
463 | unsigned long address, pfn; | ||
464 | pmd_t *pmd; | ||
465 | pte_t *pte; | ||
466 | int pte_ofs; | ||
467 | const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id()); | ||
468 | struct cpumask kstripe_mask; | ||
469 | int rc, i; | ||
470 | |||
471 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
472 | if (ktext_arg_seen && ktext_hash) { | ||
473 | printk("warning: \"ktext\" boot argument ignored" | ||
474 | " if \"kcache_hash\" sets up text hash-for-home\n"); | ||
475 | ktext_small = 0; | ||
476 | } | ||
477 | |||
478 | if (kdata_arg_seen && kdata_hash) { | ||
479 | printk("warning: \"kdata\" boot argument ignored" | ||
480 | " if \"kcache_hash\" sets up data hash-for-home\n"); | ||
481 | } | ||
482 | |||
483 | if (kdata_huge && !hash_default) { | ||
484 | printk("warning: disabling \"kdata=huge\"; requires" | ||
485 | " kcache_hash=all or =allbutstack\n"); | ||
486 | kdata_huge = 0; | ||
487 | } | ||
488 | #endif | ||
489 | |||
490 | /* | ||
491 | * Set up a mask for cpus to use for kernel striping. | ||
492 | * This is normally all cpus, but minus dataplane cpus if any. | ||
493 | * If the dataplane covers the whole chip, we stripe over | ||
494 | * the whole chip too. | ||
495 | */ | ||
496 | cpumask_copy(&kstripe_mask, cpu_possible_mask); | ||
497 | if (!kdata_arg_seen) | ||
498 | kdata_mask = kstripe_mask; | ||
499 | |||
500 | /* Allocate and fill in L2 page tables */ | ||
501 | for (i = 0; i < MAX_NUMNODES; ++i) { | ||
502 | #ifdef CONFIG_HIGHMEM | ||
503 | unsigned long end_pfn = node_lowmem_end_pfn[i]; | ||
504 | #else | ||
505 | unsigned long end_pfn = node_end_pfn[i]; | ||
506 | #endif | ||
507 | unsigned long end_huge_pfn = 0; | ||
508 | |||
509 | /* Pre-shatter the last huge page to allow per-cpu pages. */ | ||
510 | if (kdata_huge) | ||
511 | end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT); | ||
512 | |||
513 | pfn = node_start_pfn[i]; | ||
514 | |||
515 | /* Allocate enough memory to hold L2 page tables for node. */ | ||
516 | init_prealloc_ptes(i, end_pfn - pfn); | ||
517 | |||
518 | address = (unsigned long) pfn_to_kaddr(pfn); | ||
519 | while (pfn < end_pfn) { | ||
520 | BUG_ON(address & (HPAGE_SIZE-1)); | ||
521 | pmd = get_pmd(pgtables, address); | ||
522 | pte = get_prealloc_pte(pfn); | ||
523 | if (pfn < end_huge_pfn) { | ||
524 | pgprot_t prot = init_pgprot(address); | ||
525 | *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot)); | ||
526 | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; | ||
527 | pfn++, pte_ofs++, address += PAGE_SIZE) | ||
528 | pte[pte_ofs] = pfn_pte(pfn, prot); | ||
529 | } else { | ||
530 | if (kdata_huge) | ||
531 | printk(KERN_DEBUG "pre-shattered huge" | ||
532 | " page at %#lx\n", address); | ||
533 | for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; | ||
534 | pfn++, pte_ofs++, address += PAGE_SIZE) { | ||
535 | pgprot_t prot = init_pgprot(address); | ||
536 | pte[pte_ofs] = pfn_pte(pfn, prot); | ||
537 | } | ||
538 | assign_pte(pmd, pte); | ||
539 | } | ||
540 | } | ||
541 | } | ||
542 | |||
543 | /* | ||
544 | * Set or check ktext_map now that we have cpu_possible_mask | ||
545 | * and kstripe_mask to work with. | ||
546 | */ | ||
547 | if (ktext_all) | ||
548 | cpumask_copy(&ktext_mask, cpu_possible_mask); | ||
549 | else if (ktext_nondataplane) | ||
550 | ktext_mask = kstripe_mask; | ||
551 | else if (!cpumask_empty(&ktext_mask)) { | ||
552 | /* Sanity-check any mask that was requested */ | ||
553 | struct cpumask bad; | ||
554 | cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask); | ||
555 | cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask); | ||
556 | if (!cpumask_empty(&bad)) { | ||
557 | char buf[NR_CPUS * 5]; | ||
558 | cpulist_scnprintf(buf, sizeof(buf), &bad); | ||
559 | printk("ktext: not using unavailable cpus %s\n", buf); | ||
560 | } | ||
561 | if (cpumask_empty(&ktext_mask)) { | ||
562 | printk("ktext: no valid cpus; caching on %d.\n", | ||
563 | smp_processor_id()); | ||
564 | cpumask_copy(&ktext_mask, | ||
565 | cpumask_of(smp_processor_id())); | ||
566 | } | ||
567 | } | ||
568 | |||
569 | address = MEM_SV_INTRPT; | ||
570 | pmd = get_pmd(pgtables, address); | ||
571 | if (ktext_small) { | ||
572 | /* Allocate an L2 PTE for the kernel text */ | ||
573 | int cpu = 0; | ||
574 | pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC, | ||
575 | PAGE_HOME_IMMUTABLE); | ||
576 | |||
577 | if (ktext_local) { | ||
578 | if (ktext_nocache) | ||
579 | prot = hv_pte_set_mode(prot, | ||
580 | HV_PTE_MODE_UNCACHED); | ||
581 | else | ||
582 | prot = hv_pte_set_mode(prot, | ||
583 | HV_PTE_MODE_CACHE_NO_L3); | ||
584 | } else { | ||
585 | prot = hv_pte_set_mode(prot, | ||
586 | HV_PTE_MODE_CACHE_TILE_L3); | ||
587 | cpu = cpumask_first(&ktext_mask); | ||
588 | |||
589 | prot = ktext_set_nocache(prot); | ||
590 | } | ||
591 | |||
592 | BUG_ON(address != (unsigned long)_stext); | ||
593 | pfn = 0; /* code starts at PA 0 */ | ||
594 | pte = alloc_pte(); | ||
595 | for (pte_ofs = 0; address < (unsigned long)_einittext; | ||
596 | pfn++, pte_ofs++, address += PAGE_SIZE) { | ||
597 | if (!ktext_local) { | ||
598 | prot = set_remote_cache_cpu(prot, cpu); | ||
599 | cpu = cpumask_next(cpu, &ktext_mask); | ||
600 | if (cpu == NR_CPUS) | ||
601 | cpu = cpumask_first(&ktext_mask); | ||
602 | } | ||
603 | pte[pte_ofs] = pfn_pte(pfn, prot); | ||
604 | } | ||
605 | assign_pte(pmd, pte); | ||
606 | } else { | ||
607 | pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); | ||
608 | pteval = pte_mkhuge(pteval); | ||
609 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
610 | if (ktext_hash) { | ||
611 | pteval = hv_pte_set_mode(pteval, | ||
612 | HV_PTE_MODE_CACHE_HASH_L3); | ||
613 | pteval = ktext_set_nocache(pteval); | ||
614 | } else | ||
615 | #endif /* CHIP_HAS_CBOX_HOME_MAP() */ | ||
616 | if (cpumask_weight(&ktext_mask) == 1) { | ||
617 | pteval = set_remote_cache_cpu(pteval, | ||
618 | cpumask_first(&ktext_mask)); | ||
619 | pteval = hv_pte_set_mode(pteval, | ||
620 | HV_PTE_MODE_CACHE_TILE_L3); | ||
621 | pteval = ktext_set_nocache(pteval); | ||
622 | } else if (ktext_nocache) | ||
623 | pteval = hv_pte_set_mode(pteval, | ||
624 | HV_PTE_MODE_UNCACHED); | ||
625 | else | ||
626 | pteval = hv_pte_set_mode(pteval, | ||
627 | HV_PTE_MODE_CACHE_NO_L3); | ||
628 | *(pte_t *)pmd = pteval; | ||
629 | } | ||
630 | |||
631 | /* Set swapper_pgprot here so it is flushed to memory right away. */ | ||
632 | swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir); | ||
633 | |||
634 | /* | ||
635 | * Since we may be changing the caching of the stack and page | ||
636 | * table itself, we invoke an assembly helper to do the | ||
637 | * following steps: | ||
638 | * | ||
639 | * - flush the cache so we start with an empty slate | ||
640 | * - install pgtables[] as the real page table | ||
641 | * - flush the TLB so the new page table takes effect | ||
642 | */ | ||
643 | rc = flush_and_install_context(__pa(pgtables), | ||
644 | init_pgprot((unsigned long)pgtables), | ||
645 | __get_cpu_var(current_asid), | ||
646 | cpumask_bits(my_cpu_mask)); | ||
647 | BUG_ON(rc != 0); | ||
648 | |||
649 | /* Copy the page table back to the normal swapper_pg_dir. */ | ||
650 | memcpy(pgd_base, pgtables, sizeof(pgtables)); | ||
651 | __install_page_table(pgd_base, __get_cpu_var(current_asid), | ||
652 | swapper_pgprot); | ||
653 | } | ||
654 | |||
655 | /* | ||
656 | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | ||
657 | * is valid. The argument is a physical page number. | ||
658 | * | ||
659 | * On Tile, the only valid things for which we can just hand out unchecked | ||
660 | * PTEs are the kernel code and data. Anything else might change its | ||
661 | * homing with time, and we wouldn't know to adjust the /dev/mem PTEs. | ||
662 | * Note that init_thread_union is released to heap soon after boot, | ||
663 | * so we include it in the init data. | ||
664 | * | ||
665 | * For TILE-Gx, we might want to consider allowing access to PA | ||
666 | * regions corresponding to PCI space, etc. | ||
667 | */ | ||
668 | int devmem_is_allowed(unsigned long pagenr) | ||
669 | { | ||
670 | return pagenr < kaddr_to_pfn(_end) && | ||
671 | !(pagenr >= kaddr_to_pfn(&init_thread_union) || | ||
672 | pagenr < kaddr_to_pfn(_einitdata)) && | ||
673 | !(pagenr >= kaddr_to_pfn(_sinittext) || | ||
674 | pagenr <= kaddr_to_pfn(_einittext-1)); | ||
675 | } | ||
676 | |||
677 | #ifdef CONFIG_HIGHMEM | ||
678 | static void __init permanent_kmaps_init(pgd_t *pgd_base) | ||
679 | { | ||
680 | pgd_t *pgd; | ||
681 | pud_t *pud; | ||
682 | pmd_t *pmd; | ||
683 | pte_t *pte; | ||
684 | unsigned long vaddr; | ||
685 | |||
686 | vaddr = PKMAP_BASE; | ||
687 | page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); | ||
688 | |||
689 | pgd = swapper_pg_dir + pgd_index(vaddr); | ||
690 | pud = pud_offset(pgd, vaddr); | ||
691 | pmd = pmd_offset(pud, vaddr); | ||
692 | pte = pte_offset_kernel(pmd, vaddr); | ||
693 | pkmap_page_table = pte; | ||
694 | } | ||
695 | #endif /* CONFIG_HIGHMEM */ | ||
696 | |||
697 | |||
698 | static void __init init_free_pfn_range(unsigned long start, unsigned long end) | ||
699 | { | ||
700 | unsigned long pfn; | ||
701 | struct page *page = pfn_to_page(start); | ||
702 | |||
703 | for (pfn = start; pfn < end; ) { | ||
704 | /* Optimize by freeing pages in large batches */ | ||
705 | int order = __ffs(pfn); | ||
706 | int count, i; | ||
707 | struct page *p; | ||
708 | |||
709 | if (order >= MAX_ORDER) | ||
710 | order = MAX_ORDER-1; | ||
711 | count = 1 << order; | ||
712 | while (pfn + count > end) { | ||
713 | count >>= 1; | ||
714 | --order; | ||
715 | } | ||
716 | for (p = page, i = 0; i < count; ++i, ++p) { | ||
717 | __ClearPageReserved(p); | ||
718 | /* | ||
719 | * Hacky direct set to avoid unnecessary | ||
720 | * lock take/release for EVERY page here. | ||
721 | */ | ||
722 | p->_count.counter = 0; | ||
723 | p->_mapcount.counter = -1; | ||
724 | } | ||
725 | init_page_count(page); | ||
726 | __free_pages(page, order); | ||
727 | totalram_pages += count; | ||
728 | |||
729 | page += count; | ||
730 | pfn += count; | ||
731 | } | ||
732 | } | ||
733 | |||
734 | static void __init set_non_bootmem_pages_init(void) | ||
735 | { | ||
736 | struct zone *z; | ||
737 | for_each_zone(z) { | ||
738 | unsigned long start, end; | ||
739 | int nid = z->zone_pgdat->node_id; | ||
740 | |||
741 | start = z->zone_start_pfn; | ||
742 | if (start == 0) | ||
743 | continue; /* bootmem */ | ||
744 | end = start + z->spanned_pages; | ||
745 | if (zone_idx(z) == ZONE_NORMAL) { | ||
746 | BUG_ON(start != node_start_pfn[nid]); | ||
747 | start = node_free_pfn[nid]; | ||
748 | } | ||
749 | #ifdef CONFIG_HIGHMEM | ||
750 | if (zone_idx(z) == ZONE_HIGHMEM) | ||
751 | totalhigh_pages += z->spanned_pages; | ||
752 | #endif | ||
753 | if (kdata_huge) { | ||
754 | unsigned long percpu_pfn = node_percpu_pfn[nid]; | ||
755 | if (start < percpu_pfn && end > percpu_pfn) | ||
756 | end = percpu_pfn; | ||
757 | } | ||
758 | #ifdef CONFIG_PCI | ||
759 | if (start <= pci_reserve_start_pfn && | ||
760 | end > pci_reserve_start_pfn) { | ||
761 | if (end > pci_reserve_end_pfn) | ||
762 | init_free_pfn_range(pci_reserve_end_pfn, end); | ||
763 | end = pci_reserve_start_pfn; | ||
764 | } | ||
765 | #endif | ||
766 | init_free_pfn_range(start, end); | ||
767 | } | ||
768 | } | ||
769 | |||
770 | /* | ||
771 | * paging_init() sets up the page tables - note that all of lowmem is | ||
772 | * already mapped by head.S. | ||
773 | */ | ||
774 | void __init paging_init(void) | ||
775 | { | ||
776 | #ifdef CONFIG_HIGHMEM | ||
777 | unsigned long vaddr, end; | ||
778 | #endif | ||
779 | #ifdef __tilegx__ | ||
780 | pud_t *pud; | ||
781 | #endif | ||
782 | pgd_t *pgd_base = swapper_pg_dir; | ||
783 | |||
784 | kernel_physical_mapping_init(pgd_base); | ||
785 | |||
786 | #ifdef CONFIG_HIGHMEM | ||
787 | /* | ||
788 | * Fixed mappings, only the page table structure has to be | ||
789 | * created - mappings will be set by set_fixmap(): | ||
790 | */ | ||
791 | vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; | ||
792 | end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK; | ||
793 | page_table_range_init(vaddr, end, pgd_base); | ||
794 | permanent_kmaps_init(pgd_base); | ||
795 | #endif | ||
796 | |||
797 | #ifdef __tilegx__ | ||
798 | /* | ||
799 | * Since GX allocates just one pmd_t array worth of vmalloc space, | ||
800 | * we go ahead and allocate it statically here, then share it | ||
801 | * globally. As a result we don't have to worry about any task | ||
802 | * changing init_mm once we get up and running, and there's no | ||
803 | * need for e.g. vmalloc_sync_all(). | ||
804 | */ | ||
805 | BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END)); | ||
806 | pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); | ||
807 | assign_pmd(pud, alloc_pmd()); | ||
808 | #endif | ||
809 | } | ||
810 | |||
811 | |||
812 | /* | ||
813 | * Walk the kernel page tables and derive the page_home() from | ||
814 | * the PTEs, so that set_pte() can properly validate the caching | ||
815 | * of all PTEs it sees. | ||
816 | */ | ||
817 | void __init set_page_homes(void) | ||
818 | { | ||
819 | } | ||
820 | |||
821 | static void __init set_max_mapnr_init(void) | ||
822 | { | ||
823 | #ifdef CONFIG_FLATMEM | ||
824 | max_mapnr = max_low_pfn; | ||
825 | #endif | ||
826 | } | ||
827 | |||
828 | void __init mem_init(void) | ||
829 | { | ||
830 | int codesize, datasize, initsize; | ||
831 | int i; | ||
832 | #ifndef __tilegx__ | ||
833 | void *last; | ||
834 | #endif | ||
835 | |||
836 | #ifdef CONFIG_FLATMEM | ||
837 | if (!mem_map) | ||
838 | BUG(); | ||
839 | #endif | ||
840 | |||
841 | #ifdef CONFIG_HIGHMEM | ||
842 | /* check that fixmap and pkmap do not overlap */ | ||
843 | if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) { | ||
844 | printk(KERN_ERR "fixmap and kmap areas overlap" | ||
845 | " - this will crash\n"); | ||
846 | printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n", | ||
847 | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), | ||
848 | FIXADDR_START); | ||
849 | BUG(); | ||
850 | } | ||
851 | #endif | ||
852 | |||
853 | set_max_mapnr_init(); | ||
854 | |||
855 | /* this will put all bootmem onto the freelists */ | ||
856 | totalram_pages += free_all_bootmem(); | ||
857 | |||
858 | /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ | ||
859 | set_non_bootmem_pages_init(); | ||
860 | |||
861 | codesize = (unsigned long)&_etext - (unsigned long)&_text; | ||
862 | datasize = (unsigned long)&_end - (unsigned long)&_sdata; | ||
863 | initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext; | ||
864 | initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata; | ||
865 | |||
866 | printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", | ||
867 | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | ||
868 | num_physpages << (PAGE_SHIFT-10), | ||
869 | codesize >> 10, | ||
870 | datasize >> 10, | ||
871 | initsize >> 10, | ||
872 | (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) | ||
873 | ); | ||
874 | |||
875 | /* | ||
876 | * In debug mode, dump some interesting memory mappings. | ||
877 | */ | ||
878 | #ifdef CONFIG_HIGHMEM | ||
879 | printk(KERN_DEBUG " KMAP %#lx - %#lx\n", | ||
880 | FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1); | ||
881 | printk(KERN_DEBUG " PKMAP %#lx - %#lx\n", | ||
882 | PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); | ||
883 | #endif | ||
884 | #ifdef CONFIG_HUGEVMAP | ||
885 | printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n", | ||
886 | HUGE_VMAP_BASE, HUGE_VMAP_END - 1); | ||
887 | #endif | ||
888 | printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n", | ||
889 | _VMALLOC_START, _VMALLOC_END - 1); | ||
890 | #ifdef __tilegx__ | ||
891 | for (i = MAX_NUMNODES-1; i >= 0; --i) { | ||
892 | struct pglist_data *node = &node_data[i]; | ||
893 | if (node->node_present_pages) { | ||
894 | unsigned long start = (unsigned long) | ||
895 | pfn_to_kaddr(node->node_start_pfn); | ||
896 | unsigned long end = start + | ||
897 | (node->node_present_pages << PAGE_SHIFT); | ||
898 | printk(KERN_DEBUG " MEM%d %#lx - %#lx\n", | ||
899 | i, start, end - 1); | ||
900 | } | ||
901 | } | ||
902 | #else | ||
903 | last = high_memory; | ||
904 | for (i = MAX_NUMNODES-1; i >= 0; --i) { | ||
905 | if ((unsigned long)vbase_map[i] != -1UL) { | ||
906 | printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n", | ||
907 | i, (unsigned long) (vbase_map[i]), | ||
908 | (unsigned long) (last-1)); | ||
909 | last = vbase_map[i]; | ||
910 | } | ||
911 | } | ||
912 | #endif | ||
913 | |||
914 | #ifndef __tilegx__ | ||
915 | /* | ||
916 | * Convert from using one lock for all atomic operations to | ||
917 | * one per cpu. | ||
918 | */ | ||
919 | __init_atomic_per_cpu(); | ||
920 | #endif | ||
921 | } | ||
922 | |||
923 | /* | ||
924 | * this is for the non-NUMA, single node SMP system case. | ||
925 | * Specifically, in the case of x86, we will always add | ||
926 | * memory to the highmem for now. | ||
927 | */ | ||
928 | #ifndef CONFIG_NEED_MULTIPLE_NODES | ||
929 | int arch_add_memory(u64 start, u64 size) | ||
930 | { | ||
931 | struct pglist_data *pgdata = &contig_page_data; | ||
932 | struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1; | ||
933 | unsigned long start_pfn = start >> PAGE_SHIFT; | ||
934 | unsigned long nr_pages = size >> PAGE_SHIFT; | ||
935 | |||
936 | return __add_pages(zone, start_pfn, nr_pages); | ||
937 | } | ||
938 | |||
939 | int remove_memory(u64 start, u64 size) | ||
940 | { | ||
941 | return -EINVAL; | ||
942 | } | ||
943 | #endif | ||
944 | |||
945 | struct kmem_cache *pgd_cache; | ||
946 | |||
947 | void __init pgtable_cache_init(void) | ||
948 | { | ||
949 | pgd_cache = kmem_cache_create("pgd", | ||
950 | PTRS_PER_PGD*sizeof(pgd_t), | ||
951 | PTRS_PER_PGD*sizeof(pgd_t), | ||
952 | 0, | ||
953 | NULL); | ||
954 | if (!pgd_cache) | ||
955 | panic("pgtable_cache_init(): Cannot create pgd cache"); | ||
956 | } | ||
957 | |||
958 | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() | ||
959 | /* | ||
960 | * The __w1data area holds data that is only written during initialization, | ||
961 | * and is read-only and thus freely cacheable thereafter. Fix the page | ||
962 | * table entries that cover that region accordingly. | ||
963 | */ | ||
964 | static void mark_w1data_ro(void) | ||
965 | { | ||
966 | /* Loop over page table entries */ | ||
967 | unsigned long addr = (unsigned long)__w1data_begin; | ||
968 | BUG_ON((addr & (PAGE_SIZE-1)) != 0); | ||
969 | for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) { | ||
970 | unsigned long pfn = kaddr_to_pfn((void *)addr); | ||
971 | struct page *page = pfn_to_page(pfn); | ||
972 | pte_t *ptep = virt_to_pte(NULL, addr); | ||
973 | BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */ | ||
974 | set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO)); | ||
975 | } | ||
976 | } | ||
977 | #endif | ||
978 | |||
979 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
980 | static long __write_once initfree; | ||
981 | #else | ||
982 | static long __write_once initfree = 1; | ||
983 | #endif | ||
984 | |||
985 | /* Select whether to free (1) or mark unusable (0) the __init pages. */ | ||
986 | static int __init set_initfree(char *str) | ||
987 | { | ||
988 | strict_strtol(str, 0, &initfree); | ||
989 | printk("initfree: %s free init pages\n", initfree ? "will" : "won't"); | ||
990 | return 1; | ||
991 | } | ||
992 | __setup("initfree=", set_initfree); | ||
993 | |||
994 | static void free_init_pages(char *what, unsigned long begin, unsigned long end) | ||
995 | { | ||
996 | unsigned long addr = (unsigned long) begin; | ||
997 | |||
998 | if (kdata_huge && !initfree) { | ||
999 | printk("Warning: ignoring initfree=0:" | ||
1000 | " incompatible with kdata=huge\n"); | ||
1001 | initfree = 1; | ||
1002 | } | ||
1003 | end = (end + PAGE_SIZE - 1) & PAGE_MASK; | ||
1004 | local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin); | ||
1005 | for (addr = begin; addr < end; addr += PAGE_SIZE) { | ||
1006 | /* | ||
1007 | * Note we just reset the home here directly in the | ||
1008 | * page table. We know this is safe because our caller | ||
1009 | * just flushed the caches on all the other cpus, | ||
1010 | * and they won't be touching any of these pages. | ||
1011 | */ | ||
1012 | int pfn = kaddr_to_pfn((void *)addr); | ||
1013 | struct page *page = pfn_to_page(pfn); | ||
1014 | pte_t *ptep = virt_to_pte(NULL, addr); | ||
1015 | if (!initfree) { | ||
1016 | /* | ||
1017 | * If debugging page accesses then do not free | ||
1018 | * this memory but mark them not present - any | ||
1019 | * buggy init-section access will create a | ||
1020 | * kernel page fault: | ||
1021 | */ | ||
1022 | pte_clear(&init_mm, addr, ptep); | ||
1023 | continue; | ||
1024 | } | ||
1025 | __ClearPageReserved(page); | ||
1026 | init_page_count(page); | ||
1027 | if (pte_huge(*ptep)) | ||
1028 | BUG_ON(!kdata_huge); | ||
1029 | else | ||
1030 | set_pte_at(&init_mm, addr, ptep, | ||
1031 | pfn_pte(pfn, PAGE_KERNEL)); | ||
1032 | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | ||
1033 | free_page(addr); | ||
1034 | totalram_pages++; | ||
1035 | } | ||
1036 | printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); | ||
1037 | } | ||
1038 | |||
1039 | void free_initmem(void) | ||
1040 | { | ||
1041 | const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET; | ||
1042 | |||
1043 | /* | ||
1044 | * Evict the dirty initdata on the boot cpu, evict the w1data | ||
1045 | * wherever it's homed, and evict all the init code everywhere. | ||
1046 | * We are guaranteed that no one will touch the init pages any | ||
1047 | * more, and although other cpus may be touching the w1data, | ||
1048 | * we only actually change the caching on tile64, which won't | ||
1049 | * be keeping local copies in the other tiles' caches anyway. | ||
1050 | */ | ||
1051 | homecache_evict(&cpu_cacheable_map); | ||
1052 | |||
1053 | /* Free the data pages that we won't use again after init. */ | ||
1054 | free_init_pages("unused kernel data", | ||
1055 | (unsigned long)_sinitdata, | ||
1056 | (unsigned long)_einitdata); | ||
1057 | |||
1058 | /* | ||
1059 | * Free the pages mapped from 0xc0000000 that correspond to code | ||
1060 | * pages from 0xfd000000 that we won't use again after init. | ||
1061 | */ | ||
1062 | free_init_pages("unused kernel text", | ||
1063 | (unsigned long)_sinittext - text_delta, | ||
1064 | (unsigned long)_einittext - text_delta); | ||
1065 | |||
1066 | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() | ||
1067 | /* | ||
1068 | * Upgrade the .w1data section to globally cached. | ||
1069 | * We don't do this on tilepro, since the cache architecture | ||
1070 | * pretty much makes it irrelevant, and in any case we end | ||
1071 | * up having racing issues with other tiles that may touch | ||
1072 | * the data after we flush the cache but before we update | ||
1073 | * the PTEs and flush the TLBs, causing sharer shootdowns | ||
1074 | * later. Even though this is to clean data, it seems like | ||
1075 | * an unnecessary complication. | ||
1076 | */ | ||
1077 | mark_w1data_ro(); | ||
1078 | #endif | ||
1079 | |||
1080 | /* Do a global TLB flush so everyone sees the changes. */ | ||
1081 | flush_tlb_all(); | ||
1082 | } | ||