aboutsummaryrefslogtreecommitdiffstats
path: root/arch/tile/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/mm/fault.c')
-rw-r--r--arch/tile/mm/fault.c905
1 files changed, 905 insertions, 0 deletions
diff --git a/arch/tile/mm/fault.c b/arch/tile/mm/fault.c
new file mode 100644
index 000000000000..9b6b92f07def
--- /dev/null
+++ b/arch/tile/mm/fault.c
@@ -0,0 +1,905 @@
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/smp_lock.h>
28#include <linux/interrupt.h>
29#include <linux/init.h>
30#include <linux/tty.h>
31#include <linux/vt_kern.h> /* For unblank_screen() */
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/kprobes.h>
35#include <linux/hugetlb.h>
36#include <linux/syscalls.h>
37#include <linux/uaccess.h>
38
39#include <asm/system.h>
40#include <asm/pgalloc.h>
41#include <asm/sections.h>
42
43#include <arch/interrupts.h>
44
45/*
46 * Unlock any spinlocks which will prevent us from getting the
47 * message out
48 */
49void bust_spinlocks(int yes)
50{
51 int loglevel_save = console_loglevel;
52
53 if (yes) {
54 oops_in_progress = 1;
55 return;
56 }
57 oops_in_progress = 0;
58 /*
59 * OK, the message is on the console. Now we call printk()
60 * without oops_in_progress set so that printk will give klogd
61 * a poke. Hold onto your hats...
62 */
63 console_loglevel = 15; /* NMI oopser may have shut the console up */
64 printk(" ");
65 console_loglevel = loglevel_save;
66}
67
68static noinline void force_sig_info_fault(int si_signo, int si_code,
69 unsigned long address, int fault_num, struct task_struct *tsk)
70{
71 siginfo_t info;
72
73 if (unlikely(tsk->pid < 2)) {
74 panic("Signal %d (code %d) at %#lx sent to %s!",
75 si_signo, si_code & 0xffff, address,
76 tsk->pid ? "init" : "the idle task");
77 }
78
79 info.si_signo = si_signo;
80 info.si_errno = 0;
81 info.si_code = si_code;
82 info.si_addr = (void __user *)address;
83 info.si_trapno = fault_num;
84 force_sig_info(si_signo, &info, tsk);
85}
86
87#ifndef __tilegx__
88/*
89 * Synthesize the fault a PL0 process would get by doing a word-load of
90 * an unaligned address or a high kernel address. Called indirectly
91 * from sys_cmpxchg() in kernel/intvec.S.
92 */
93int _sys_cmpxchg_badaddr(unsigned long address, struct pt_regs *regs)
94{
95 if (address >= PAGE_OFFSET)
96 force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address,
97 INT_DTLB_MISS, current);
98 else
99 force_sig_info_fault(SIGBUS, BUS_ADRALN, address,
100 INT_UNALIGN_DATA, current);
101
102 /*
103 * Adjust pc to point at the actual instruction, which is unusual
104 * for syscalls normally, but is appropriate when we are claiming
105 * that a syscall swint1 caused a page fault or bus error.
106 */
107 regs->pc -= 8;
108
109 /*
110 * Mark this as a caller-save interrupt, like a normal page fault,
111 * so that when we go through the signal handler path we will
112 * properly restore r0, r1, and r2 for the signal handler arguments.
113 */
114 regs->flags |= PT_FLAGS_CALLER_SAVES;
115
116 return 0;
117}
118#endif
119
120static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
121{
122 unsigned index = pgd_index(address);
123 pgd_t *pgd_k;
124 pud_t *pud, *pud_k;
125 pmd_t *pmd, *pmd_k;
126
127 pgd += index;
128 pgd_k = init_mm.pgd + index;
129
130 if (!pgd_present(*pgd_k))
131 return NULL;
132
133 pud = pud_offset(pgd, address);
134 pud_k = pud_offset(pgd_k, address);
135 if (!pud_present(*pud_k))
136 return NULL;
137
138 pmd = pmd_offset(pud, address);
139 pmd_k = pmd_offset(pud_k, address);
140 if (!pmd_present(*pmd_k))
141 return NULL;
142 if (!pmd_present(*pmd)) {
143 set_pmd(pmd, *pmd_k);
144 arch_flush_lazy_mmu_mode();
145 } else
146 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
147 return pmd_k;
148}
149
150/*
151 * Handle a fault on the vmalloc or module mapping area
152 */
153static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
154{
155 pmd_t *pmd_k;
156 pte_t *pte_k;
157
158 /* Make sure we are in vmalloc area */
159 if (!(address >= VMALLOC_START && address < VMALLOC_END))
160 return -1;
161
162 /*
163 * Synchronize this task's top level page-table
164 * with the 'reference' page table.
165 */
166 pmd_k = vmalloc_sync_one(pgd, address);
167 if (!pmd_k)
168 return -1;
169 if (pmd_huge(*pmd_k))
170 return 0; /* support TILE huge_vmap() API */
171 pte_k = pte_offset_kernel(pmd_k, address);
172 if (!pte_present(*pte_k))
173 return -1;
174 return 0;
175}
176
177/* Wait until this PTE has completed migration. */
178static void wait_for_migration(pte_t *pte)
179{
180 if (pte_migrating(*pte)) {
181 /*
182 * Wait until the migrater fixes up this pte.
183 * We scale the loop count by the clock rate so we'll wait for
184 * a few seconds here.
185 */
186 int retries = 0;
187 int bound = get_clock_rate();
188 while (pte_migrating(*pte)) {
189 barrier();
190 if (++retries > bound)
191 panic("Hit migrating PTE (%#llx) and"
192 " page PFN %#lx still migrating",
193 pte->val, pte_pfn(*pte));
194 }
195 }
196}
197
198/*
199 * It's not generally safe to use "current" to get the page table pointer,
200 * since we might be running an oprofile interrupt in the middle of a
201 * task switch.
202 */
203static pgd_t *get_current_pgd(void)
204{
205 HV_Context ctx = hv_inquire_context();
206 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
207 struct page *pgd_page = pfn_to_page(pgd_pfn);
208 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
209 return (pgd_t *) __va(ctx.page_table);
210}
211
212/*
213 * We can receive a page fault from a migrating PTE at any time.
214 * Handle it by just waiting until the fault resolves.
215 *
216 * It's also possible to get a migrating kernel PTE that resolves
217 * itself during the downcall from hypervisor to Linux. We just check
218 * here to see if the PTE seems valid, and if so we retry it.
219 *
220 * NOTE! We MUST NOT take any locks for this case. We may be in an
221 * interrupt or a critical region, and must do as little as possible.
222 * Similarly, we can't use atomic ops here, since we may be handling a
223 * fault caused by an atomic op access.
224 */
225static int handle_migrating_pte(pgd_t *pgd, int fault_num,
226 unsigned long address,
227 int is_kernel_mode, int write)
228{
229 pud_t *pud;
230 pmd_t *pmd;
231 pte_t *pte;
232 pte_t pteval;
233
234 if (pgd_addr_invalid(address))
235 return 0;
236
237 pgd += pgd_index(address);
238 pud = pud_offset(pgd, address);
239 if (!pud || !pud_present(*pud))
240 return 0;
241 pmd = pmd_offset(pud, address);
242 if (!pmd || !pmd_present(*pmd))
243 return 0;
244 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
245 pte_offset_kernel(pmd, address);
246 pteval = *pte;
247 if (pte_migrating(pteval)) {
248 wait_for_migration(pte);
249 return 1;
250 }
251
252 if (!is_kernel_mode || !pte_present(pteval))
253 return 0;
254 if (fault_num == INT_ITLB_MISS) {
255 if (pte_exec(pteval))
256 return 1;
257 } else if (write) {
258 if (pte_write(pteval))
259 return 1;
260 } else {
261 if (pte_read(pteval))
262 return 1;
263 }
264
265 return 0;
266}
267
268/*
269 * This routine is responsible for faulting in user pages.
270 * It passes the work off to one of the appropriate routines.
271 * It returns true if the fault was successfully handled.
272 */
273static int handle_page_fault(struct pt_regs *regs,
274 int fault_num,
275 int is_page_fault,
276 unsigned long address,
277 int write)
278{
279 struct task_struct *tsk;
280 struct mm_struct *mm;
281 struct vm_area_struct *vma;
282 unsigned long stack_offset;
283 int fault;
284 int si_code;
285 int is_kernel_mode;
286 pgd_t *pgd;
287
288 /* on TILE, protection faults are always writes */
289 if (!is_page_fault)
290 write = 1;
291
292 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
293
294 tsk = validate_current();
295
296 /*
297 * Check to see if we might be overwriting the stack, and bail
298 * out if so. The page fault code is a relatively likely
299 * place to get trapped in an infinite regress, and once we
300 * overwrite the whole stack, it becomes very hard to recover.
301 */
302 stack_offset = stack_pointer & (THREAD_SIZE-1);
303 if (stack_offset < THREAD_SIZE / 8) {
304 printk(KERN_ALERT "Potential stack overrun: sp %#lx\n",
305 stack_pointer);
306 show_regs(regs);
307 printk(KERN_ALERT "Killing current process %d/%s\n",
308 tsk->pid, tsk->comm);
309 do_group_exit(SIGKILL);
310 }
311
312 /*
313 * Early on, we need to check for migrating PTE entries;
314 * see homecache.c. If we find a migrating PTE, we wait until
315 * the backing page claims to be done migrating, then we procede.
316 * For kernel PTEs, we rewrite the PTE and return and retry.
317 * Otherwise, we treat the fault like a normal "no PTE" fault,
318 * rather than trying to patch up the existing PTE.
319 */
320 pgd = get_current_pgd();
321 if (handle_migrating_pte(pgd, fault_num, address,
322 is_kernel_mode, write))
323 return 1;
324
325 si_code = SEGV_MAPERR;
326
327 /*
328 * We fault-in kernel-space virtual memory on-demand. The
329 * 'reference' page table is init_mm.pgd.
330 *
331 * NOTE! We MUST NOT take any locks for this case. We may
332 * be in an interrupt or a critical region, and should
333 * only copy the information from the master page table,
334 * nothing more.
335 *
336 * This verifies that the fault happens in kernel space
337 * and that the fault was not a protection fault.
338 */
339 if (unlikely(address >= TASK_SIZE &&
340 !is_arch_mappable_range(address, 0))) {
341 if (is_kernel_mode && is_page_fault &&
342 vmalloc_fault(pgd, address) >= 0)
343 return 1;
344 /*
345 * Don't take the mm semaphore here. If we fixup a prefetch
346 * fault we could otherwise deadlock.
347 */
348 mm = NULL; /* happy compiler */
349 vma = NULL;
350 goto bad_area_nosemaphore;
351 }
352
353 /*
354 * If we're trying to touch user-space addresses, we must
355 * be either at PL0, or else with interrupts enabled in the
356 * kernel, so either way we can re-enable interrupts here.
357 */
358 local_irq_enable();
359
360 mm = tsk->mm;
361
362 /*
363 * If we're in an interrupt, have no user context or are running in an
364 * atomic region then we must not take the fault.
365 */
366 if (in_atomic() || !mm) {
367 vma = NULL; /* happy compiler */
368 goto bad_area_nosemaphore;
369 }
370
371 /*
372 * When running in the kernel we expect faults to occur only to
373 * addresses in user space. All other faults represent errors in the
374 * kernel and should generate an OOPS. Unfortunately, in the case of an
375 * erroneous fault occurring in a code path which already holds mmap_sem
376 * we will deadlock attempting to validate the fault against the
377 * address space. Luckily the kernel only validly references user
378 * space from well defined areas of code, which are listed in the
379 * exceptions table.
380 *
381 * As the vast majority of faults will be valid we will only perform
382 * the source reference check when there is a possibility of a deadlock.
383 * Attempt to lock the address space, if we cannot we then validate the
384 * source. If this is invalid we can skip the address space check,
385 * thus avoiding the deadlock.
386 */
387 if (!down_read_trylock(&mm->mmap_sem)) {
388 if (is_kernel_mode &&
389 !search_exception_tables(regs->pc)) {
390 vma = NULL; /* happy compiler */
391 goto bad_area_nosemaphore;
392 }
393 down_read(&mm->mmap_sem);
394 }
395
396 vma = find_vma(mm, address);
397 if (!vma)
398 goto bad_area;
399 if (vma->vm_start <= address)
400 goto good_area;
401 if (!(vma->vm_flags & VM_GROWSDOWN))
402 goto bad_area;
403 if (regs->sp < PAGE_OFFSET) {
404 /*
405 * accessing the stack below sp is always a bug.
406 */
407 if (address < regs->sp)
408 goto bad_area;
409 }
410 if (expand_stack(vma, address))
411 goto bad_area;
412
413/*
414 * Ok, we have a good vm_area for this memory access, so
415 * we can handle it..
416 */
417good_area:
418 si_code = SEGV_ACCERR;
419 if (fault_num == INT_ITLB_MISS) {
420 if (!(vma->vm_flags & VM_EXEC))
421 goto bad_area;
422 } else if (write) {
423#ifdef TEST_VERIFY_AREA
424 if (!is_page_fault && regs->cs == KERNEL_CS)
425 printk("WP fault at "REGFMT"\n", regs->eip);
426#endif
427 if (!(vma->vm_flags & VM_WRITE))
428 goto bad_area;
429 } else {
430 if (!is_page_fault || !(vma->vm_flags & VM_READ))
431 goto bad_area;
432 }
433
434 survive:
435 /*
436 * If for any reason at all we couldn't handle the fault,
437 * make sure we exit gracefully rather than endlessly redo
438 * the fault.
439 */
440 fault = handle_mm_fault(mm, vma, address, write);
441 if (unlikely(fault & VM_FAULT_ERROR)) {
442 if (fault & VM_FAULT_OOM)
443 goto out_of_memory;
444 else if (fault & VM_FAULT_SIGBUS)
445 goto do_sigbus;
446 BUG();
447 }
448 if (fault & VM_FAULT_MAJOR)
449 tsk->maj_flt++;
450 else
451 tsk->min_flt++;
452
453 /*
454 * If this was an asynchronous fault,
455 * restart the appropriate engine.
456 */
457 switch (fault_num) {
458#if CHIP_HAS_TILE_DMA()
459 case INT_DMATLB_MISS:
460 case INT_DMATLB_MISS_DWNCL:
461 case INT_DMATLB_ACCESS:
462 case INT_DMATLB_ACCESS_DWNCL:
463 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
464 break;
465#endif
466#if CHIP_HAS_SN_PROC()
467 case INT_SNITLB_MISS:
468 case INT_SNITLB_MISS_DWNCL:
469 __insn_mtspr(SPR_SNCTL,
470 __insn_mfspr(SPR_SNCTL) &
471 ~SPR_SNCTL__FRZPROC_MASK);
472 break;
473#endif
474 }
475
476 up_read(&mm->mmap_sem);
477 return 1;
478
479/*
480 * Something tried to access memory that isn't in our memory map..
481 * Fix it, but check if it's kernel or user first..
482 */
483bad_area:
484 up_read(&mm->mmap_sem);
485
486bad_area_nosemaphore:
487 /* User mode accesses just cause a SIGSEGV */
488 if (!is_kernel_mode) {
489 /*
490 * It's possible to have interrupts off here.
491 */
492 local_irq_enable();
493
494 force_sig_info_fault(SIGSEGV, si_code, address,
495 fault_num, tsk);
496 return 0;
497 }
498
499no_context:
500 /* Are we prepared to handle this kernel fault? */
501 if (fixup_exception(regs))
502 return 0;
503
504/*
505 * Oops. The kernel tried to access some bad page. We'll have to
506 * terminate things with extreme prejudice.
507 */
508
509 bust_spinlocks(1);
510
511 /* FIXME: no lookup_address() yet */
512#ifdef SUPPORT_LOOKUP_ADDRESS
513 if (fault_num == INT_ITLB_MISS) {
514 pte_t *pte = lookup_address(address);
515
516 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
517 printk(KERN_CRIT "kernel tried to execute"
518 " non-executable page - exploit attempt?"
519 " (uid: %d)\n", current->uid);
520 }
521#endif
522 if (address < PAGE_SIZE)
523 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference\n");
524 else
525 printk(KERN_ALERT "Unable to handle kernel paging request\n");
526 printk(" at virtual address "REGFMT", pc "REGFMT"\n",
527 address, regs->pc);
528
529 show_regs(regs);
530
531 if (unlikely(tsk->pid < 2)) {
532 panic("Kernel page fault running %s!",
533 tsk->pid ? "init" : "the idle task");
534 }
535
536 /*
537 * More FIXME: we should probably copy the i386 here and
538 * implement a generic die() routine. Not today.
539 */
540#ifdef SUPPORT_DIE
541 die("Oops", regs);
542#endif
543 bust_spinlocks(1);
544
545 do_group_exit(SIGKILL);
546
547/*
548 * We ran out of memory, or some other thing happened to us that made
549 * us unable to handle the page fault gracefully.
550 */
551out_of_memory:
552 up_read(&mm->mmap_sem);
553 if (is_global_init(tsk)) {
554 yield();
555 down_read(&mm->mmap_sem);
556 goto survive;
557 }
558 printk("VM: killing process %s\n", tsk->comm);
559 if (!is_kernel_mode)
560 do_group_exit(SIGKILL);
561 goto no_context;
562
563do_sigbus:
564 up_read(&mm->mmap_sem);
565
566 /* Kernel mode? Handle exceptions or die */
567 if (is_kernel_mode)
568 goto no_context;
569
570 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk);
571 return 0;
572}
573
574#ifndef __tilegx__
575
576extern char sys_cmpxchg[], __sys_cmpxchg_end[];
577extern char __sys_cmpxchg_grab_lock[];
578extern char __start_atomic_asm_code[], __end_atomic_asm_code[];
579
580/*
581 * We return this structure in registers to avoid having to write
582 * additional save/restore code in the intvec.S caller.
583 */
584struct intvec_state {
585 void *handler;
586 unsigned long vecnum;
587 unsigned long fault_num;
588 unsigned long info;
589 unsigned long retval;
590};
591
592/* We must release ICS before panicking or we won't get anywhere. */
593#define ics_panic(fmt, ...) do { \
594 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
595 panic(fmt, __VA_ARGS__); \
596} while (0)
597
598void do_page_fault(struct pt_regs *regs, int fault_num,
599 unsigned long address, unsigned long write);
600
601/*
602 * When we take an ITLB or DTLB fault or access violation in the
603 * supervisor while the critical section bit is set, the hypervisor is
604 * reluctant to write new values into the EX_CONTEXT_1_x registers,
605 * since that might indicate we have not yet squirreled the SPR
606 * contents away and can thus safely take a recursive interrupt.
607 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_1_2.
608 */
609struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
610 unsigned long address,
611 unsigned long info)
612{
613 unsigned long pc = info & ~1;
614 int write = info & 1;
615 pgd_t *pgd = get_current_pgd();
616
617 /* Retval is 1 at first since we will handle the fault fully. */
618 struct intvec_state state = {
619 do_page_fault, fault_num, address, write, 1
620 };
621
622 /* Validate that we are plausibly in the right routine. */
623 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
624 (fault_num != INT_DTLB_MISS &&
625 fault_num != INT_DTLB_ACCESS)) {
626 unsigned long old_pc = regs->pc;
627 regs->pc = pc;
628 ics_panic("Bad ICS page fault args:"
629 " old PC %#lx, fault %d/%d at %#lx\n",
630 old_pc, fault_num, write, address);
631 }
632
633 /* We might be faulting on a vmalloc page, so check that first. */
634 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
635 return state;
636
637 /*
638 * If we faulted with ICS set in sys_cmpxchg, we are providing
639 * a user syscall service that should generate a signal on
640 * fault. We didn't set up a kernel stack on initial entry to
641 * sys_cmpxchg, but instead had one set up by the fault, which
642 * (because sys_cmpxchg never releases ICS) came to us via the
643 * SYSTEM_SAVE_1_2 mechanism, and thus EX_CONTEXT_1_[01] are
644 * still referencing the original user code. We release the
645 * atomic lock and rewrite pt_regs so that it appears that we
646 * came from user-space directly, and after we finish the
647 * fault we'll go back to user space and re-issue the swint.
648 * This way the backtrace information is correct if we need to
649 * emit a stack dump at any point while handling this.
650 *
651 * Must match register use in sys_cmpxchg().
652 */
653 if (pc >= (unsigned long) sys_cmpxchg &&
654 pc < (unsigned long) __sys_cmpxchg_end) {
655#ifdef CONFIG_SMP
656 /* Don't unlock before we could have locked. */
657 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
658 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
659 __atomic_fault_unlock(lock_ptr);
660 }
661#endif
662 regs->sp = regs->regs[27];
663 }
664
665 /*
666 * We can also fault in the atomic assembly, in which
667 * case we use the exception table to do the first-level fixup.
668 * We may re-fixup again in the real fault handler if it
669 * turns out the faulting address is just bad, and not,
670 * for example, migrating.
671 */
672 else if (pc >= (unsigned long) __start_atomic_asm_code &&
673 pc < (unsigned long) __end_atomic_asm_code) {
674 const struct exception_table_entry *fixup;
675#ifdef CONFIG_SMP
676 /* Unlock the atomic lock. */
677 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
678 __atomic_fault_unlock(lock_ptr);
679#endif
680 fixup = search_exception_tables(pc);
681 if (!fixup)
682 ics_panic("ICS atomic fault not in table:"
683 " PC %#lx, fault %d", pc, fault_num);
684 regs->pc = fixup->fixup;
685 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
686 }
687
688 /*
689 * NOTE: the one other type of access that might bring us here
690 * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
691 * but we don't have to check specially for them since we can
692 * always safely return to the address of the fault and retry,
693 * since no separate atomic locks are involved.
694 */
695
696 /*
697 * Now that we have released the atomic lock (if necessary),
698 * it's safe to spin if the PTE that caused the fault was migrating.
699 */
700 if (fault_num == INT_DTLB_ACCESS)
701 write = 1;
702 if (handle_migrating_pte(pgd, fault_num, address, 1, write))
703 return state;
704
705 /* Return zero so that we continue on with normal fault handling. */
706 state.retval = 0;
707 return state;
708}
709
710#endif /* !__tilegx__ */
711
712/*
713 * This routine handles page faults. It determines the address, and the
714 * problem, and then passes it handle_page_fault() for normal DTLB and
715 * ITLB issues, and for DMA or SN processor faults when we are in user
716 * space. For the latter, if we're in kernel mode, we just save the
717 * interrupt away appropriately and return immediately. We can't do
718 * page faults for user code while in kernel mode.
719 */
720void do_page_fault(struct pt_regs *regs, int fault_num,
721 unsigned long address, unsigned long write)
722{
723 int is_page_fault;
724
725 /* This case should have been handled by do_page_fault_ics(). */
726 BUG_ON(write & ~1);
727
728#if CHIP_HAS_TILE_DMA()
729 /*
730 * If it's a DMA fault, suspend the transfer while we're
731 * handling the miss; we'll restart after it's handled. If we
732 * don't suspend, it's possible that this process could swap
733 * out and back in, and restart the engine since the DMA is
734 * still 'running'.
735 */
736 if (fault_num == INT_DMATLB_MISS ||
737 fault_num == INT_DMATLB_ACCESS ||
738 fault_num == INT_DMATLB_MISS_DWNCL ||
739 fault_num == INT_DMATLB_ACCESS_DWNCL) {
740 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
741 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
742 SPR_DMA_STATUS__BUSY_MASK)
743 ;
744 }
745#endif
746
747 /* Validate fault num and decide if this is a first-time page fault. */
748 switch (fault_num) {
749 case INT_ITLB_MISS:
750 case INT_DTLB_MISS:
751#if CHIP_HAS_TILE_DMA()
752 case INT_DMATLB_MISS:
753 case INT_DMATLB_MISS_DWNCL:
754#endif
755#if CHIP_HAS_SN_PROC()
756 case INT_SNITLB_MISS:
757 case INT_SNITLB_MISS_DWNCL:
758#endif
759 is_page_fault = 1;
760 break;
761
762 case INT_DTLB_ACCESS:
763#if CHIP_HAS_TILE_DMA()
764 case INT_DMATLB_ACCESS:
765 case INT_DMATLB_ACCESS_DWNCL:
766#endif
767 is_page_fault = 0;
768 break;
769
770 default:
771 panic("Bad fault number %d in do_page_fault", fault_num);
772 }
773
774 if (EX1_PL(regs->ex1) != USER_PL) {
775 struct async_tlb *async;
776 switch (fault_num) {
777#if CHIP_HAS_TILE_DMA()
778 case INT_DMATLB_MISS:
779 case INT_DMATLB_ACCESS:
780 case INT_DMATLB_MISS_DWNCL:
781 case INT_DMATLB_ACCESS_DWNCL:
782 async = &current->thread.dma_async_tlb;
783 break;
784#endif
785#if CHIP_HAS_SN_PROC()
786 case INT_SNITLB_MISS:
787 case INT_SNITLB_MISS_DWNCL:
788 async = &current->thread.sn_async_tlb;
789 break;
790#endif
791 default:
792 async = NULL;
793 }
794 if (async) {
795
796 /*
797 * No vmalloc check required, so we can allow
798 * interrupts immediately at this point.
799 */
800 local_irq_enable();
801
802 set_thread_flag(TIF_ASYNC_TLB);
803 if (async->fault_num != 0) {
804 panic("Second async fault %d;"
805 " old fault was %d (%#lx/%ld)",
806 fault_num, async->fault_num,
807 address, write);
808 }
809 BUG_ON(fault_num == 0);
810 async->fault_num = fault_num;
811 async->is_fault = is_page_fault;
812 async->is_write = write;
813 async->address = address;
814 return;
815 }
816 }
817
818 handle_page_fault(regs, fault_num, is_page_fault, address, write);
819}
820
821
822#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
823/*
824 * Check an async_tlb structure to see if a deferred fault is waiting,
825 * and if so pass it to the page-fault code.
826 */
827static void handle_async_page_fault(struct pt_regs *regs,
828 struct async_tlb *async)
829{
830 if (async->fault_num) {
831 /*
832 * Clear async->fault_num before calling the page-fault
833 * handler so that if we re-interrupt before returning
834 * from the function we have somewhere to put the
835 * information from the new interrupt.
836 */
837 int fault_num = async->fault_num;
838 async->fault_num = 0;
839 handle_page_fault(regs, fault_num, async->is_fault,
840 async->address, async->is_write);
841 }
842}
843#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
844
845
846/*
847 * This routine effectively re-issues asynchronous page faults
848 * when we are returning to user space.
849 */
850void do_async_page_fault(struct pt_regs *regs)
851{
852 /*
853 * Clear thread flag early. If we re-interrupt while processing
854 * code here, we will reset it and recall this routine before
855 * returning to user space.
856 */
857 clear_thread_flag(TIF_ASYNC_TLB);
858
859#if CHIP_HAS_TILE_DMA()
860 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
861#endif
862#if CHIP_HAS_SN_PROC()
863 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
864#endif
865}
866
867void vmalloc_sync_all(void)
868{
869#ifdef __tilegx__
870 /* Currently all L1 kernel pmd's are static and shared. */
871 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
872#else
873 /*
874 * Note that races in the updates of insync and start aren't
875 * problematic: insync can only get set bits added, and updates to
876 * start are only improving performance (without affecting correctness
877 * if undone).
878 */
879 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
880 static unsigned long start = PAGE_OFFSET;
881 unsigned long address;
882
883 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
884 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
885 if (!test_bit(pgd_index(address), insync)) {
886 unsigned long flags;
887 struct list_head *pos;
888
889 spin_lock_irqsave(&pgd_lock, flags);
890 list_for_each(pos, &pgd_list)
891 if (!vmalloc_sync_one(list_to_pgd(pos),
892 address)) {
893 /* Must be at first entry in list. */
894 BUG_ON(pos != pgd_list.next);
895 break;
896 }
897 spin_unlock_irqrestore(&pgd_lock, flags);
898 if (pos != pgd_list.next)
899 set_bit(pgd_index(address), insync);
900 }
901 if (address == start && test_bit(pgd_index(address), insync))
902 start = address + PGDIR_SIZE;
903 }
904#endif
905}