aboutsummaryrefslogtreecommitdiffstats
path: root/arch/tile/lib/memcpy_tile64.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/lib/memcpy_tile64.c')
-rw-r--r--arch/tile/lib/memcpy_tile64.c271
1 files changed, 271 insertions, 0 deletions
diff --git a/arch/tile/lib/memcpy_tile64.c b/arch/tile/lib/memcpy_tile64.c
new file mode 100644
index 000000000000..dfedea7b266b
--- /dev/null
+++ b/arch/tile/lib/memcpy_tile64.c
@@ -0,0 +1,271 @@
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/string.h>
16#include <linux/smp.h>
17#include <linux/module.h>
18#include <linux/uaccess.h>
19#include <asm/fixmap.h>
20#include <asm/kmap_types.h>
21#include <asm/tlbflush.h>
22#include <hv/hypervisor.h>
23#include <arch/chip.h>
24
25
26#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
27
28/* Defined in memcpy.S */
29extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n);
30extern unsigned long __copy_to_user_inatomic_asm(
31 void __user *to, const void *from, unsigned long n);
32extern unsigned long __copy_from_user_inatomic_asm(
33 void *to, const void __user *from, unsigned long n);
34extern unsigned long __copy_from_user_zeroing_asm(
35 void *to, const void __user *from, unsigned long n);
36
37typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long);
38
39/* Size above which to consider TLB games for performance */
40#define LARGE_COPY_CUTOFF 2048
41
42/* Communicate to the simulator what we are trying to do. */
43#define sim_allow_multiple_caching(b) \
44 __insn_mtspr(SPR_SIM_CONTROL, \
45 SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS))
46
47/*
48 * Copy memory by briefly enabling incoherent cacheline-at-a-time mode.
49 *
50 * We set up our own source and destination PTEs that we fully control.
51 * This is the only way to guarantee that we don't race with another
52 * thread that is modifying the PTE; we can't afford to try the
53 * copy_{to,from}_user() technique of catching the interrupt, since
54 * we must run with interrupts disabled to avoid the risk of some
55 * other code seeing the incoherent data in our cache. (Recall that
56 * our cache is indexed by PA, so even if the other code doesn't use
57 * our KM_MEMCPY virtual addresses, they'll still hit in cache using
58 * the normal VAs that aren't supposed to hit in cache.)
59 */
60static void memcpy_multicache(void *dest, const void *source,
61 pte_t dst_pte, pte_t src_pte, int len)
62{
63 int idx;
64 unsigned long flags, newsrc, newdst;
65 pmd_t *pmdp;
66 pte_t *ptep;
67 int cpu = get_cpu();
68
69 /*
70 * Disable interrupts so that we don't recurse into memcpy()
71 * in an interrupt handler, nor accidentally reference
72 * the PA of the source from an interrupt routine. Also
73 * notify the simulator that we're playing games so we don't
74 * generate spurious coherency warnings.
75 */
76 local_irq_save(flags);
77 sim_allow_multiple_caching(1);
78
79 /* Set up the new dest mapping */
80 idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + KM_MEMCPY0;
81 newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1));
82 pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst);
83 ptep = pte_offset_kernel(pmdp, newdst);
84 if (pte_val(*ptep) != pte_val(dst_pte)) {
85 set_pte(ptep, dst_pte);
86 local_flush_tlb_page(NULL, newdst, PAGE_SIZE);
87 }
88
89 /* Set up the new source mapping */
90 idx += (KM_MEMCPY0 - KM_MEMCPY1);
91 src_pte = hv_pte_set_nc(src_pte);
92 src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */
93 newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1));
94 pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc);
95 ptep = pte_offset_kernel(pmdp, newsrc);
96 *ptep = src_pte; /* set_pte() would be confused by this */
97 local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
98
99 /* Actually move the data. */
100 __memcpy_asm((void *)newdst, (const void *)newsrc, len);
101
102 /*
103 * Remap the source as locally-cached and not OLOC'ed so that
104 * we can inval without also invaling the remote cpu's cache.
105 * This also avoids known errata with inv'ing cacheable oloc data.
106 */
107 src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3);
108 src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */
109 *ptep = src_pte; /* set_pte() would be confused by this */
110 local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
111
112 /*
113 * Do the actual invalidation, covering the full L2 cache line
114 * at the end since __memcpy_asm() is somewhat aggressive.
115 */
116 __inv_buffer((void *)newsrc, len);
117
118 /*
119 * We're done: notify the simulator that all is back to normal,
120 * and re-enable interrupts and pre-emption.
121 */
122 sim_allow_multiple_caching(0);
123 local_irq_restore(flags);
124 put_cpu();
125}
126
127/*
128 * Identify large copies from remotely-cached memory, and copy them
129 * via memcpy_multicache() if they look good, otherwise fall back
130 * to the particular kind of copying passed as the memcpy_t function.
131 */
132static unsigned long fast_copy(void *dest, const void *source, int len,
133 memcpy_t func)
134{
135 /*
136 * Check if it's big enough to bother with. We may end up doing a
137 * small copy via TLB manipulation if we're near a page boundary,
138 * but presumably we'll make it up when we hit the second page.
139 */
140 while (len >= LARGE_COPY_CUTOFF) {
141 int copy_size, bytes_left_on_page;
142 pte_t *src_ptep, *dst_ptep;
143 pte_t src_pte, dst_pte;
144 struct page *src_page, *dst_page;
145
146 /* Is the source page oloc'ed to a remote cpu? */
147retry_source:
148 src_ptep = virt_to_pte(current->mm, (unsigned long)source);
149 if (src_ptep == NULL)
150 break;
151 src_pte = *src_ptep;
152 if (!hv_pte_get_present(src_pte) ||
153 !hv_pte_get_readable(src_pte) ||
154 hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
155 break;
156 if (get_remote_cache_cpu(src_pte) == smp_processor_id())
157 break;
158 src_page = pfn_to_page(hv_pte_get_pfn(src_pte));
159 get_page(src_page);
160 if (pte_val(src_pte) != pte_val(*src_ptep)) {
161 put_page(src_page);
162 goto retry_source;
163 }
164 if (pte_huge(src_pte)) {
165 /* Adjust the PTE to correspond to a small page */
166 int pfn = hv_pte_get_pfn(src_pte);
167 pfn += (((unsigned long)source & (HPAGE_SIZE-1))
168 >> PAGE_SHIFT);
169 src_pte = pfn_pte(pfn, src_pte);
170 src_pte = pte_mksmall(src_pte);
171 }
172
173 /* Is the destination page writable? */
174retry_dest:
175 dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
176 if (dst_ptep == NULL) {
177 put_page(src_page);
178 break;
179 }
180 dst_pte = *dst_ptep;
181 if (!hv_pte_get_present(dst_pte) ||
182 !hv_pte_get_writable(dst_pte)) {
183 put_page(src_page);
184 break;
185 }
186 dst_page = pfn_to_page(hv_pte_get_pfn(dst_pte));
187 if (dst_page == src_page) {
188 /*
189 * Source and dest are on the same page; this
190 * potentially exposes us to incoherence if any
191 * part of src and dest overlap on a cache line.
192 * Just give up rather than trying to be precise.
193 */
194 put_page(src_page);
195 break;
196 }
197 get_page(dst_page);
198 if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
199 put_page(dst_page);
200 goto retry_dest;
201 }
202 if (pte_huge(dst_pte)) {
203 /* Adjust the PTE to correspond to a small page */
204 int pfn = hv_pte_get_pfn(dst_pte);
205 pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
206 >> PAGE_SHIFT);
207 dst_pte = pfn_pte(pfn, dst_pte);
208 dst_pte = pte_mksmall(dst_pte);
209 }
210
211 /* All looks good: create a cachable PTE and copy from it */
212 copy_size = len;
213 bytes_left_on_page =
214 PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
215 if (copy_size > bytes_left_on_page)
216 copy_size = bytes_left_on_page;
217 bytes_left_on_page =
218 PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
219 if (copy_size > bytes_left_on_page)
220 copy_size = bytes_left_on_page;
221 memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);
222
223 /* Release the pages */
224 put_page(dst_page);
225 put_page(src_page);
226
227 /* Continue on the next page */
228 dest += copy_size;
229 source += copy_size;
230 len -= copy_size;
231 }
232
233 return func(dest, source, len);
234}
235
236void *memcpy(void *to, const void *from, __kernel_size_t n)
237{
238 if (n < LARGE_COPY_CUTOFF)
239 return (void *)__memcpy_asm(to, from, n);
240 else
241 return (void *)fast_copy(to, from, n, __memcpy_asm);
242}
243
244unsigned long __copy_to_user_inatomic(void __user *to, const void *from,
245 unsigned long n)
246{
247 if (n < LARGE_COPY_CUTOFF)
248 return __copy_to_user_inatomic_asm(to, from, n);
249 else
250 return fast_copy(to, from, n, __copy_to_user_inatomic_asm);
251}
252
253unsigned long __copy_from_user_inatomic(void *to, const void __user *from,
254 unsigned long n)
255{
256 if (n < LARGE_COPY_CUTOFF)
257 return __copy_from_user_inatomic_asm(to, from, n);
258 else
259 return fast_copy(to, from, n, __copy_from_user_inatomic_asm);
260}
261
262unsigned long __copy_from_user_zeroing(void *to, const void __user *from,
263 unsigned long n)
264{
265 if (n < LARGE_COPY_CUTOFF)
266 return __copy_from_user_zeroing_asm(to, from, n);
267 else
268 return fast_copy(to, from, n, __copy_from_user_zeroing_asm);
269}
270
271#endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */