diff options
Diffstat (limited to 'arch/tile/lib/atomic_32.c')
| -rw-r--r-- | arch/tile/lib/atomic_32.c | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/arch/tile/lib/atomic_32.c b/arch/tile/lib/atomic_32.c new file mode 100644 index 000000000000..8040b42a8eea --- /dev/null +++ b/arch/tile/lib/atomic_32.c | |||
| @@ -0,0 +1,330 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | #include <linux/cache.h> | ||
| 16 | #include <linux/delay.h> | ||
| 17 | #include <linux/uaccess.h> | ||
| 18 | #include <linux/module.h> | ||
| 19 | #include <linux/mm.h> | ||
| 20 | #include <asm/atomic.h> | ||
| 21 | #include <asm/futex.h> | ||
| 22 | #include <arch/chip.h> | ||
| 23 | |||
| 24 | /* See <asm/atomic_32.h> */ | ||
| 25 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
| 26 | |||
| 27 | /* | ||
| 28 | * A block of memory containing locks for atomic ops. Each instance of this | ||
| 29 | * struct will be homed on a different CPU. | ||
| 30 | */ | ||
| 31 | struct atomic_locks_on_cpu { | ||
| 32 | int lock[ATOMIC_HASH_L2_SIZE]; | ||
| 33 | } __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4))); | ||
| 34 | |||
| 35 | static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool); | ||
| 36 | |||
| 37 | /* The locks we'll use until __init_atomic_per_cpu is called. */ | ||
| 38 | static struct atomic_locks_on_cpu __initdata initial_atomic_locks; | ||
| 39 | |||
| 40 | /* Hash into this vector to get a pointer to lock for the given atomic. */ | ||
| 41 | struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE] | ||
| 42 | __write_once = { | ||
| 43 | [0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks) | ||
| 44 | }; | ||
| 45 | |||
| 46 | #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | ||
| 47 | |||
| 48 | /* This page is remapped on startup to be hash-for-home. */ | ||
| 49 | int atomic_locks[PAGE_SIZE / sizeof(int) /* Only ATOMIC_HASH_SIZE is used */] | ||
| 50 | __attribute__((aligned(PAGE_SIZE), section(".bss.page_aligned"))); | ||
| 51 | |||
| 52 | #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | ||
| 53 | |||
| 54 | static inline int *__atomic_hashed_lock(volatile void *v) | ||
| 55 | { | ||
| 56 | /* NOTE: this code must match "sys_cmpxchg" in kernel/intvec.S */ | ||
| 57 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
| 58 | unsigned long i = | ||
| 59 | (unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long)); | ||
| 60 | unsigned long n = __insn_crc32_32(0, i); | ||
| 61 | |||
| 62 | /* Grab high bits for L1 index. */ | ||
| 63 | unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT); | ||
| 64 | /* Grab low bits for L2 index. */ | ||
| 65 | unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1); | ||
| 66 | |||
| 67 | return &atomic_lock_ptr[l1_index]->lock[l2_index]; | ||
| 68 | #else | ||
| 69 | /* | ||
| 70 | * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index. | ||
| 71 | * Using mm works here because atomic_locks is page aligned. | ||
| 72 | */ | ||
| 73 | unsigned long ptr = __insn_mm((unsigned long)v >> 1, | ||
| 74 | (unsigned long)atomic_locks, | ||
| 75 | 2, (ATOMIC_HASH_SHIFT + 2) - 1); | ||
| 76 | return (int *)ptr; | ||
| 77 | #endif | ||
| 78 | } | ||
| 79 | |||
| 80 | #ifdef CONFIG_SMP | ||
| 81 | /* Return whether the passed pointer is a valid atomic lock pointer. */ | ||
| 82 | static int is_atomic_lock(int *p) | ||
| 83 | { | ||
| 84 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
| 85 | int i; | ||
| 86 | for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { | ||
| 87 | |||
| 88 | if (p >= &atomic_lock_ptr[i]->lock[0] && | ||
| 89 | p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) { | ||
| 90 | return 1; | ||
| 91 | } | ||
| 92 | } | ||
| 93 | return 0; | ||
| 94 | #else | ||
| 95 | return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE]; | ||
| 96 | #endif | ||
| 97 | } | ||
| 98 | |||
| 99 | void __atomic_fault_unlock(int *irqlock_word) | ||
| 100 | { | ||
| 101 | BUG_ON(!is_atomic_lock(irqlock_word)); | ||
| 102 | BUG_ON(*irqlock_word != 1); | ||
| 103 | *irqlock_word = 0; | ||
| 104 | } | ||
| 105 | |||
| 106 | #endif /* CONFIG_SMP */ | ||
| 107 | |||
| 108 | static inline int *__atomic_setup(volatile void *v) | ||
| 109 | { | ||
| 110 | /* Issue a load to the target to bring it into cache. */ | ||
| 111 | *(volatile int *)v; | ||
| 112 | return __atomic_hashed_lock(v); | ||
| 113 | } | ||
| 114 | |||
| 115 | int _atomic_xchg(atomic_t *v, int n) | ||
| 116 | { | ||
| 117 | return __atomic_xchg(&v->counter, __atomic_setup(v), n).val; | ||
| 118 | } | ||
| 119 | EXPORT_SYMBOL(_atomic_xchg); | ||
| 120 | |||
| 121 | int _atomic_xchg_add(atomic_t *v, int i) | ||
| 122 | { | ||
| 123 | return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val; | ||
| 124 | } | ||
| 125 | EXPORT_SYMBOL(_atomic_xchg_add); | ||
| 126 | |||
| 127 | int _atomic_xchg_add_unless(atomic_t *v, int a, int u) | ||
| 128 | { | ||
| 129 | /* | ||
| 130 | * Note: argument order is switched here since it is easier | ||
| 131 | * to use the first argument consistently as the "old value" | ||
| 132 | * in the assembly, as is done for _atomic_cmpxchg(). | ||
| 133 | */ | ||
| 134 | return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a) | ||
| 135 | .val; | ||
| 136 | } | ||
| 137 | EXPORT_SYMBOL(_atomic_xchg_add_unless); | ||
| 138 | |||
| 139 | int _atomic_cmpxchg(atomic_t *v, int o, int n) | ||
| 140 | { | ||
| 141 | return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val; | ||
| 142 | } | ||
| 143 | EXPORT_SYMBOL(_atomic_cmpxchg); | ||
| 144 | |||
| 145 | unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask) | ||
| 146 | { | ||
| 147 | return __atomic_or((int *)p, __atomic_setup(p), mask).val; | ||
| 148 | } | ||
| 149 | EXPORT_SYMBOL(_atomic_or); | ||
| 150 | |||
| 151 | unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask) | ||
| 152 | { | ||
| 153 | return __atomic_andn((int *)p, __atomic_setup(p), mask).val; | ||
| 154 | } | ||
| 155 | EXPORT_SYMBOL(_atomic_andn); | ||
| 156 | |||
| 157 | unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask) | ||
| 158 | { | ||
| 159 | return __atomic_xor((int *)p, __atomic_setup(p), mask).val; | ||
| 160 | } | ||
| 161 | EXPORT_SYMBOL(_atomic_xor); | ||
| 162 | |||
| 163 | |||
| 164 | u64 _atomic64_xchg(atomic64_t *v, u64 n) | ||
| 165 | { | ||
| 166 | return __atomic64_xchg(&v->counter, __atomic_setup(v), n); | ||
| 167 | } | ||
| 168 | EXPORT_SYMBOL(_atomic64_xchg); | ||
| 169 | |||
| 170 | u64 _atomic64_xchg_add(atomic64_t *v, u64 i) | ||
| 171 | { | ||
| 172 | return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i); | ||
| 173 | } | ||
| 174 | EXPORT_SYMBOL(_atomic64_xchg_add); | ||
| 175 | |||
| 176 | u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u) | ||
| 177 | { | ||
| 178 | /* | ||
| 179 | * Note: argument order is switched here since it is easier | ||
| 180 | * to use the first argument consistently as the "old value" | ||
| 181 | * in the assembly, as is done for _atomic_cmpxchg(). | ||
| 182 | */ | ||
| 183 | return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v), | ||
| 184 | u, a); | ||
| 185 | } | ||
| 186 | EXPORT_SYMBOL(_atomic64_xchg_add_unless); | ||
| 187 | |||
| 188 | u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n) | ||
| 189 | { | ||
| 190 | return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n); | ||
| 191 | } | ||
| 192 | EXPORT_SYMBOL(_atomic64_cmpxchg); | ||
| 193 | |||
| 194 | |||
| 195 | static inline int *__futex_setup(int __user *v) | ||
| 196 | { | ||
| 197 | /* | ||
| 198 | * Issue a prefetch to the counter to bring it into cache. | ||
| 199 | * As for __atomic_setup, but we can't do a read into the L1 | ||
| 200 | * since it might fault; instead we do a prefetch into the L2. | ||
| 201 | */ | ||
| 202 | __insn_prefetch(v); | ||
| 203 | return __atomic_hashed_lock((int __force *)v); | ||
| 204 | } | ||
| 205 | |||
| 206 | struct __get_user futex_set(int __user *v, int i) | ||
| 207 | { | ||
| 208 | return __atomic_xchg((int __force *)v, __futex_setup(v), i); | ||
| 209 | } | ||
| 210 | |||
| 211 | struct __get_user futex_add(int __user *v, int n) | ||
| 212 | { | ||
| 213 | return __atomic_xchg_add((int __force *)v, __futex_setup(v), n); | ||
| 214 | } | ||
| 215 | |||
| 216 | struct __get_user futex_or(int __user *v, int n) | ||
| 217 | { | ||
| 218 | return __atomic_or((int __force *)v, __futex_setup(v), n); | ||
| 219 | } | ||
| 220 | |||
| 221 | struct __get_user futex_andn(int __user *v, int n) | ||
| 222 | { | ||
| 223 | return __atomic_andn((int __force *)v, __futex_setup(v), n); | ||
| 224 | } | ||
| 225 | |||
| 226 | struct __get_user futex_xor(int __user *v, int n) | ||
| 227 | { | ||
| 228 | return __atomic_xor((int __force *)v, __futex_setup(v), n); | ||
| 229 | } | ||
| 230 | |||
| 231 | struct __get_user futex_cmpxchg(int __user *v, int o, int n) | ||
| 232 | { | ||
| 233 | return __atomic_cmpxchg((int __force *)v, __futex_setup(v), o, n); | ||
| 234 | } | ||
| 235 | |||
| 236 | /* | ||
| 237 | * If any of the atomic or futex routines hit a bad address (not in | ||
| 238 | * the page tables at kernel PL) this routine is called. The futex | ||
| 239 | * routines are never used on kernel space, and the normal atomics and | ||
| 240 | * bitops are never used on user space. So a fault on kernel space | ||
| 241 | * must be fatal, but a fault on userspace is a futex fault and we | ||
| 242 | * need to return -EFAULT. Note that the context this routine is | ||
| 243 | * invoked in is the context of the "_atomic_xxx()" routines called | ||
| 244 | * by the functions in this file. | ||
| 245 | */ | ||
| 246 | struct __get_user __atomic_bad_address(int __user *addr) | ||
| 247 | { | ||
| 248 | if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int)))) | ||
| 249 | panic("Bad address used for kernel atomic op: %p\n", addr); | ||
| 250 | return (struct __get_user) { .err = -EFAULT }; | ||
| 251 | } | ||
| 252 | |||
| 253 | |||
| 254 | #if CHIP_HAS_CBOX_HOME_MAP() | ||
| 255 | static int __init noatomichash(char *str) | ||
| 256 | { | ||
| 257 | pr_warning("noatomichash is deprecated.\n"); | ||
| 258 | return 1; | ||
| 259 | } | ||
| 260 | __setup("noatomichash", noatomichash); | ||
| 261 | #endif | ||
| 262 | |||
| 263 | void __init __init_atomic_per_cpu(void) | ||
| 264 | { | ||
| 265 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | ||
| 266 | |||
| 267 | unsigned int i; | ||
| 268 | int actual_cpu; | ||
| 269 | |||
| 270 | /* | ||
| 271 | * Before this is called from setup, we just have one lock for | ||
| 272 | * all atomic objects/operations. Here we replace the | ||
| 273 | * elements of atomic_lock_ptr so that they point at per_cpu | ||
| 274 | * integers. This seemingly over-complex approach stems from | ||
| 275 | * the fact that DEFINE_PER_CPU defines an entry for each cpu | ||
| 276 | * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But | ||
| 277 | * for efficient hashing of atomics to their locks we want a | ||
| 278 | * compile time constant power of 2 for the size of this | ||
| 279 | * table, so we use ATOMIC_HASH_SIZE. | ||
| 280 | * | ||
| 281 | * Here we populate atomic_lock_ptr from the per cpu | ||
| 282 | * atomic_lock_pool, interspersing by actual cpu so that | ||
| 283 | * subsequent elements are homed on consecutive cpus. | ||
| 284 | */ | ||
| 285 | |||
| 286 | actual_cpu = cpumask_first(cpu_possible_mask); | ||
| 287 | |||
| 288 | for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { | ||
| 289 | /* | ||
| 290 | * Preincrement to slightly bias against using cpu 0, | ||
| 291 | * which has plenty of stuff homed on it already. | ||
| 292 | */ | ||
| 293 | actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask); | ||
| 294 | if (actual_cpu >= nr_cpu_ids) | ||
| 295 | actual_cpu = cpumask_first(cpu_possible_mask); | ||
| 296 | |||
| 297 | atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu); | ||
| 298 | } | ||
| 299 | |||
| 300 | #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | ||
| 301 | |||
| 302 | /* Validate power-of-two and "bigger than cpus" assumption */ | ||
| 303 | BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1)); | ||
| 304 | BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids); | ||
| 305 | |||
| 306 | /* | ||
| 307 | * On TILEPro we prefer to use a single hash-for-home | ||
| 308 | * page, since this means atomic operations are less | ||
| 309 | * likely to encounter a TLB fault and thus should | ||
| 310 | * in general perform faster. You may wish to disable | ||
| 311 | * this in situations where few hash-for-home tiles | ||
| 312 | * are configured. | ||
| 313 | */ | ||
| 314 | BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0); | ||
| 315 | |||
| 316 | /* The locks must all fit on one page. */ | ||
| 317 | BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE); | ||
| 318 | |||
| 319 | /* | ||
| 320 | * We use the page offset of the atomic value's address as | ||
| 321 | * an index into atomic_locks, excluding the low 3 bits. | ||
| 322 | * That should not produce more indices than ATOMIC_HASH_SIZE. | ||
| 323 | */ | ||
| 324 | BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE); | ||
| 325 | |||
| 326 | #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | ||
| 327 | |||
| 328 | /* The futex code makes this assumption, so we validate it here. */ | ||
| 329 | BUG_ON(sizeof(atomic_t) != sizeof(int)); | ||
| 330 | } | ||
