diff options
Diffstat (limited to 'arch/tile/kernel/single_step.c')
-rw-r--r-- | arch/tile/kernel/single_step.c | 656 |
1 files changed, 656 insertions, 0 deletions
diff --git a/arch/tile/kernel/single_step.c b/arch/tile/kernel/single_step.c new file mode 100644 index 000000000000..266aae123632 --- /dev/null +++ b/arch/tile/kernel/single_step.c | |||
@@ -0,0 +1,656 @@ | |||
1 | /* | ||
2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * A code-rewriter that enables instruction single-stepping. | ||
15 | * Derived from iLib's single-stepping code. | ||
16 | */ | ||
17 | |||
18 | #ifndef __tilegx__ /* No support for single-step yet. */ | ||
19 | |||
20 | /* These functions are only used on the TILE platform */ | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/thread_info.h> | ||
23 | #include <linux/uaccess.h> | ||
24 | #include <linux/mman.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <asm/cacheflush.h> | ||
27 | #include <asm/opcode-tile.h> | ||
28 | #include <asm/opcode_constants.h> | ||
29 | #include <arch/abi.h> | ||
30 | |||
31 | #define signExtend17(val) sign_extend((val), 17) | ||
32 | #define TILE_X1_MASK (0xffffffffULL << 31) | ||
33 | |||
34 | int unaligned_printk; | ||
35 | |||
36 | static int __init setup_unaligned_printk(char *str) | ||
37 | { | ||
38 | long val; | ||
39 | if (strict_strtol(str, 0, &val) != 0) | ||
40 | return 0; | ||
41 | unaligned_printk = val; | ||
42 | printk("Printk for each unaligned data accesses is %s\n", | ||
43 | unaligned_printk ? "enabled" : "disabled"); | ||
44 | return 1; | ||
45 | } | ||
46 | __setup("unaligned_printk=", setup_unaligned_printk); | ||
47 | |||
48 | unsigned int unaligned_fixup_count; | ||
49 | |||
50 | enum mem_op { | ||
51 | MEMOP_NONE, | ||
52 | MEMOP_LOAD, | ||
53 | MEMOP_STORE, | ||
54 | MEMOP_LOAD_POSTINCR, | ||
55 | MEMOP_STORE_POSTINCR | ||
56 | }; | ||
57 | |||
58 | static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset) | ||
59 | { | ||
60 | tile_bundle_bits result; | ||
61 | |||
62 | /* mask out the old offset */ | ||
63 | tile_bundle_bits mask = create_BrOff_X1(-1); | ||
64 | result = n & (~mask); | ||
65 | |||
66 | /* or in the new offset */ | ||
67 | result |= create_BrOff_X1(offset); | ||
68 | |||
69 | return result; | ||
70 | } | ||
71 | |||
72 | static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) | ||
73 | { | ||
74 | tile_bundle_bits result; | ||
75 | tile_bundle_bits op; | ||
76 | |||
77 | result = n & (~TILE_X1_MASK); | ||
78 | |||
79 | op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | | ||
80 | create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | | ||
81 | create_Dest_X1(dest) | | ||
82 | create_SrcB_X1(TREG_ZERO) | | ||
83 | create_SrcA_X1(src) ; | ||
84 | |||
85 | result |= op; | ||
86 | return result; | ||
87 | } | ||
88 | |||
89 | static inline tile_bundle_bits nop_X1(tile_bundle_bits n) | ||
90 | { | ||
91 | return move_X1(n, TREG_ZERO, TREG_ZERO); | ||
92 | } | ||
93 | |||
94 | static inline tile_bundle_bits addi_X1( | ||
95 | tile_bundle_bits n, int dest, int src, int imm) | ||
96 | { | ||
97 | n &= ~TILE_X1_MASK; | ||
98 | |||
99 | n |= (create_SrcA_X1(src) | | ||
100 | create_Dest_X1(dest) | | ||
101 | create_Imm8_X1(imm) | | ||
102 | create_S_X1(0) | | ||
103 | create_Opcode_X1(IMM_0_OPCODE_X1) | | ||
104 | create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); | ||
105 | |||
106 | return n; | ||
107 | } | ||
108 | |||
109 | static tile_bundle_bits rewrite_load_store_unaligned( | ||
110 | struct single_step_state *state, | ||
111 | tile_bundle_bits bundle, | ||
112 | struct pt_regs *regs, | ||
113 | enum mem_op mem_op, | ||
114 | int size, int sign_ext) | ||
115 | { | ||
116 | unsigned char *addr; | ||
117 | int val_reg, addr_reg, err, val; | ||
118 | |||
119 | /* Get address and value registers */ | ||
120 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | ||
121 | addr_reg = get_SrcA_Y2(bundle); | ||
122 | val_reg = get_SrcBDest_Y2(bundle); | ||
123 | } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | ||
124 | addr_reg = get_SrcA_X1(bundle); | ||
125 | val_reg = get_Dest_X1(bundle); | ||
126 | } else { | ||
127 | addr_reg = get_SrcA_X1(bundle); | ||
128 | val_reg = get_SrcB_X1(bundle); | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * If registers are not GPRs, don't try to handle it. | ||
133 | * | ||
134 | * FIXME: we could handle non-GPR loads by getting the real value | ||
135 | * from memory, writing it to the single step buffer, using a | ||
136 | * temp_reg to hold a pointer to that memory, then executing that | ||
137 | * instruction and resetting temp_reg. For non-GPR stores, it's a | ||
138 | * little trickier; we could use the single step buffer for that | ||
139 | * too, but we'd have to add some more state bits so that we could | ||
140 | * call back in here to copy that value to the real target. For | ||
141 | * now, we just handle the simple case. | ||
142 | */ | ||
143 | if ((val_reg >= PTREGS_NR_GPRS && | ||
144 | (val_reg != TREG_ZERO || | ||
145 | mem_op == MEMOP_LOAD || | ||
146 | mem_op == MEMOP_LOAD_POSTINCR)) || | ||
147 | addr_reg >= PTREGS_NR_GPRS) | ||
148 | return bundle; | ||
149 | |||
150 | /* If it's aligned, don't handle it specially */ | ||
151 | addr = (void *)regs->regs[addr_reg]; | ||
152 | if (((unsigned long)addr % size) == 0) | ||
153 | return bundle; | ||
154 | |||
155 | #ifndef __LITTLE_ENDIAN | ||
156 | # error We assume little-endian representation with copy_xx_user size 2 here | ||
157 | #endif | ||
158 | /* Handle unaligned load/store */ | ||
159 | if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | ||
160 | unsigned short val_16; | ||
161 | switch (size) { | ||
162 | case 2: | ||
163 | err = copy_from_user(&val_16, addr, sizeof(val_16)); | ||
164 | val = sign_ext ? ((short)val_16) : val_16; | ||
165 | break; | ||
166 | case 4: | ||
167 | err = copy_from_user(&val, addr, sizeof(val)); | ||
168 | break; | ||
169 | default: | ||
170 | BUG(); | ||
171 | } | ||
172 | if (err == 0) { | ||
173 | state->update_reg = val_reg; | ||
174 | state->update_value = val; | ||
175 | state->update = 1; | ||
176 | } | ||
177 | } else { | ||
178 | val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; | ||
179 | err = copy_to_user(addr, &val, size); | ||
180 | } | ||
181 | |||
182 | if (err) { | ||
183 | siginfo_t info = { | ||
184 | .si_signo = SIGSEGV, | ||
185 | .si_code = SEGV_MAPERR, | ||
186 | .si_addr = (void __user *)addr | ||
187 | }; | ||
188 | force_sig_info(info.si_signo, &info, current); | ||
189 | return (tile_bundle_bits) 0; | ||
190 | } | ||
191 | |||
192 | if (unaligned_fixup == 0) { | ||
193 | siginfo_t info = { | ||
194 | .si_signo = SIGBUS, | ||
195 | .si_code = BUS_ADRALN, | ||
196 | .si_addr = (void __user *)addr | ||
197 | }; | ||
198 | force_sig_info(info.si_signo, &info, current); | ||
199 | return (tile_bundle_bits) 0; | ||
200 | } | ||
201 | |||
202 | if (unaligned_printk || unaligned_fixup_count == 0) { | ||
203 | printk("Process %d/%s: PC %#lx: Fixup of" | ||
204 | " unaligned %s at %#lx.\n", | ||
205 | current->pid, current->comm, regs->pc, | ||
206 | (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) ? | ||
207 | "load" : "store", | ||
208 | (unsigned long)addr); | ||
209 | if (!unaligned_printk) { | ||
210 | printk("\n" | ||
211 | "Unaligned fixups in the kernel will slow your application considerably.\n" | ||
212 | "You can find them by writing \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n" | ||
213 | "which requests the kernel show all unaligned fixups, or writing a \"0\"\n" | ||
214 | "to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n" | ||
215 | "access will become a SIGBUS you can debug. No further warnings will be\n" | ||
216 | "shown so as to avoid additional slowdown, but you can track the number\n" | ||
217 | "of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n" | ||
218 | "Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n" | ||
219 | "\n"); | ||
220 | } | ||
221 | } | ||
222 | ++unaligned_fixup_count; | ||
223 | |||
224 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | ||
225 | /* Convert the Y2 instruction to a prefetch. */ | ||
226 | bundle &= ~(create_SrcBDest_Y2(-1) | | ||
227 | create_Opcode_Y2(-1)); | ||
228 | bundle |= (create_SrcBDest_Y2(TREG_ZERO) | | ||
229 | create_Opcode_Y2(LW_OPCODE_Y2)); | ||
230 | /* Replace the load postincr with an addi */ | ||
231 | } else if (mem_op == MEMOP_LOAD_POSTINCR) { | ||
232 | bundle = addi_X1(bundle, addr_reg, addr_reg, | ||
233 | get_Imm8_X1(bundle)); | ||
234 | /* Replace the store postincr with an addi */ | ||
235 | } else if (mem_op == MEMOP_STORE_POSTINCR) { | ||
236 | bundle = addi_X1(bundle, addr_reg, addr_reg, | ||
237 | get_Dest_Imm8_X1(bundle)); | ||
238 | } else { | ||
239 | /* Convert the X1 instruction to a nop. */ | ||
240 | bundle &= ~(create_Opcode_X1(-1) | | ||
241 | create_UnShOpcodeExtension_X1(-1) | | ||
242 | create_UnOpcodeExtension_X1(-1)); | ||
243 | bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | | ||
244 | create_UnShOpcodeExtension_X1( | ||
245 | UN_0_SHUN_0_OPCODE_X1) | | ||
246 | create_UnOpcodeExtension_X1( | ||
247 | NOP_UN_0_SHUN_0_OPCODE_X1)); | ||
248 | } | ||
249 | |||
250 | return bundle; | ||
251 | } | ||
252 | |||
253 | /** | ||
254 | * single_step_once() - entry point when single stepping has been triggered. | ||
255 | * @regs: The machine register state | ||
256 | * | ||
257 | * When we arrive at this routine via a trampoline, the single step | ||
258 | * engine copies the executing bundle to the single step buffer. | ||
259 | * If the instruction is a condition branch, then the target is | ||
260 | * reset to one past the next instruction. If the instruction | ||
261 | * sets the lr, then that is noted. If the instruction is a jump | ||
262 | * or call, then the new target pc is preserved and the current | ||
263 | * bundle instruction set to null. | ||
264 | * | ||
265 | * The necessary post-single-step rewriting information is stored in | ||
266 | * single_step_state-> We use data segment values because the | ||
267 | * stack will be rewound when we run the rewritten single-stepped | ||
268 | * instruction. | ||
269 | */ | ||
270 | void single_step_once(struct pt_regs *regs) | ||
271 | { | ||
272 | extern tile_bundle_bits __single_step_ill_insn; | ||
273 | extern tile_bundle_bits __single_step_j_insn; | ||
274 | extern tile_bundle_bits __single_step_addli_insn; | ||
275 | extern tile_bundle_bits __single_step_auli_insn; | ||
276 | struct thread_info *info = (void *)current_thread_info(); | ||
277 | struct single_step_state *state = info->step_state; | ||
278 | int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); | ||
279 | tile_bundle_bits *buffer, *pc; | ||
280 | tile_bundle_bits bundle; | ||
281 | int temp_reg; | ||
282 | int target_reg = TREG_LR; | ||
283 | int err; | ||
284 | enum mem_op mem_op = MEMOP_NONE; | ||
285 | int size = 0, sign_ext = 0; /* happy compiler */ | ||
286 | |||
287 | asm( | ||
288 | " .pushsection .rodata.single_step\n" | ||
289 | " .align 8\n" | ||
290 | " .globl __single_step_ill_insn\n" | ||
291 | "__single_step_ill_insn:\n" | ||
292 | " ill\n" | ||
293 | " .globl __single_step_addli_insn\n" | ||
294 | "__single_step_addli_insn:\n" | ||
295 | " { nop; addli r0, zero, 0 }\n" | ||
296 | " .globl __single_step_auli_insn\n" | ||
297 | "__single_step_auli_insn:\n" | ||
298 | " { nop; auli r0, r0, 0 }\n" | ||
299 | " .globl __single_step_j_insn\n" | ||
300 | "__single_step_j_insn:\n" | ||
301 | " j .\n" | ||
302 | " .popsection\n" | ||
303 | ); | ||
304 | |||
305 | if (state == NULL) { | ||
306 | /* allocate a page of writable, executable memory */ | ||
307 | state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); | ||
308 | if (state == NULL) { | ||
309 | printk("Out of kernel memory trying to single-step\n"); | ||
310 | return; | ||
311 | } | ||
312 | |||
313 | /* allocate a cache line of writable, executable memory */ | ||
314 | down_write(¤t->mm->mmap_sem); | ||
315 | buffer = (void *) do_mmap(0, 0, 64, | ||
316 | PROT_EXEC | PROT_READ | PROT_WRITE, | ||
317 | MAP_PRIVATE | MAP_ANONYMOUS, | ||
318 | 0); | ||
319 | up_write(¤t->mm->mmap_sem); | ||
320 | |||
321 | if ((int)buffer < 0 && (int)buffer > -PAGE_SIZE) { | ||
322 | kfree(state); | ||
323 | printk("Out of kernel pages trying to single-step\n"); | ||
324 | return; | ||
325 | } | ||
326 | |||
327 | state->buffer = buffer; | ||
328 | state->is_enabled = 0; | ||
329 | |||
330 | info->step_state = state; | ||
331 | |||
332 | /* Validate our stored instruction patterns */ | ||
333 | BUG_ON(get_Opcode_X1(__single_step_addli_insn) != | ||
334 | ADDLI_OPCODE_X1); | ||
335 | BUG_ON(get_Opcode_X1(__single_step_auli_insn) != | ||
336 | AULI_OPCODE_X1); | ||
337 | BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); | ||
338 | BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); | ||
339 | BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * If we are returning from a syscall, we still haven't hit the | ||
344 | * "ill" for the swint1 instruction. So back the PC up to be | ||
345 | * pointing at the swint1, but we'll actually return directly | ||
346 | * back to the "ill" so we come back in via SIGILL as if we | ||
347 | * had "executed" the swint1 without ever being in kernel space. | ||
348 | */ | ||
349 | if (regs->faultnum == INT_SWINT_1) | ||
350 | regs->pc -= 8; | ||
351 | |||
352 | pc = (tile_bundle_bits *)(regs->pc); | ||
353 | bundle = pc[0]; | ||
354 | |||
355 | /* We'll follow the instruction with 2 ill op bundles */ | ||
356 | state->orig_pc = (unsigned long) pc; | ||
357 | state->next_pc = (unsigned long)(pc + 1); | ||
358 | state->branch_next_pc = 0; | ||
359 | state->update = 0; | ||
360 | |||
361 | if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { | ||
362 | /* two wide, check for control flow */ | ||
363 | int opcode = get_Opcode_X1(bundle); | ||
364 | |||
365 | switch (opcode) { | ||
366 | /* branches */ | ||
367 | case BRANCH_OPCODE_X1: | ||
368 | { | ||
369 | int32_t offset = signExtend17(get_BrOff_X1(bundle)); | ||
370 | |||
371 | /* | ||
372 | * For branches, we use a rewriting trick to let the | ||
373 | * hardware evaluate whether the branch is taken or | ||
374 | * untaken. We record the target offset and then | ||
375 | * rewrite the branch instruction to target 1 insn | ||
376 | * ahead if the branch is taken. We then follow the | ||
377 | * rewritten branch with two bundles, each containing | ||
378 | * an "ill" instruction. The supervisor examines the | ||
379 | * pc after the single step code is executed, and if | ||
380 | * the pc is the first ill instruction, then the | ||
381 | * branch (if any) was not taken. If the pc is the | ||
382 | * second ill instruction, then the branch was | ||
383 | * taken. The new pc is computed for these cases, and | ||
384 | * inserted into the registers for the thread. If | ||
385 | * the pc is the start of the single step code, then | ||
386 | * an exception or interrupt was taken before the | ||
387 | * code started processing, and the same "original" | ||
388 | * pc is restored. This change, different from the | ||
389 | * original implementation, has the advantage of | ||
390 | * executing a single user instruction. | ||
391 | */ | ||
392 | state->branch_next_pc = (unsigned long)(pc + offset); | ||
393 | |||
394 | /* rewrite branch offset to go forward one bundle */ | ||
395 | bundle = set_BrOff_X1(bundle, 2); | ||
396 | } | ||
397 | break; | ||
398 | |||
399 | /* jumps */ | ||
400 | case JALB_OPCODE_X1: | ||
401 | case JALF_OPCODE_X1: | ||
402 | state->update = 1; | ||
403 | state->next_pc = | ||
404 | (unsigned long) (pc + get_JOffLong_X1(bundle)); | ||
405 | break; | ||
406 | |||
407 | case JB_OPCODE_X1: | ||
408 | case JF_OPCODE_X1: | ||
409 | state->next_pc = | ||
410 | (unsigned long) (pc + get_JOffLong_X1(bundle)); | ||
411 | bundle = nop_X1(bundle); | ||
412 | break; | ||
413 | |||
414 | case SPECIAL_0_OPCODE_X1: | ||
415 | switch (get_RRROpcodeExtension_X1(bundle)) { | ||
416 | /* jump-register */ | ||
417 | case JALRP_SPECIAL_0_OPCODE_X1: | ||
418 | case JALR_SPECIAL_0_OPCODE_X1: | ||
419 | state->update = 1; | ||
420 | state->next_pc = | ||
421 | regs->regs[get_SrcA_X1(bundle)]; | ||
422 | break; | ||
423 | |||
424 | case JRP_SPECIAL_0_OPCODE_X1: | ||
425 | case JR_SPECIAL_0_OPCODE_X1: | ||
426 | state->next_pc = | ||
427 | regs->regs[get_SrcA_X1(bundle)]; | ||
428 | bundle = nop_X1(bundle); | ||
429 | break; | ||
430 | |||
431 | case LNK_SPECIAL_0_OPCODE_X1: | ||
432 | state->update = 1; | ||
433 | target_reg = get_Dest_X1(bundle); | ||
434 | break; | ||
435 | |||
436 | /* stores */ | ||
437 | case SH_SPECIAL_0_OPCODE_X1: | ||
438 | mem_op = MEMOP_STORE; | ||
439 | size = 2; | ||
440 | break; | ||
441 | |||
442 | case SW_SPECIAL_0_OPCODE_X1: | ||
443 | mem_op = MEMOP_STORE; | ||
444 | size = 4; | ||
445 | break; | ||
446 | } | ||
447 | break; | ||
448 | |||
449 | /* loads and iret */ | ||
450 | case SHUN_0_OPCODE_X1: | ||
451 | if (get_UnShOpcodeExtension_X1(bundle) == | ||
452 | UN_0_SHUN_0_OPCODE_X1) { | ||
453 | switch (get_UnOpcodeExtension_X1(bundle)) { | ||
454 | case LH_UN_0_SHUN_0_OPCODE_X1: | ||
455 | mem_op = MEMOP_LOAD; | ||
456 | size = 2; | ||
457 | sign_ext = 1; | ||
458 | break; | ||
459 | |||
460 | case LH_U_UN_0_SHUN_0_OPCODE_X1: | ||
461 | mem_op = MEMOP_LOAD; | ||
462 | size = 2; | ||
463 | sign_ext = 0; | ||
464 | break; | ||
465 | |||
466 | case LW_UN_0_SHUN_0_OPCODE_X1: | ||
467 | mem_op = MEMOP_LOAD; | ||
468 | size = 4; | ||
469 | break; | ||
470 | |||
471 | case IRET_UN_0_SHUN_0_OPCODE_X1: | ||
472 | { | ||
473 | unsigned long ex0_0 = __insn_mfspr( | ||
474 | SPR_EX_CONTEXT_0_0); | ||
475 | unsigned long ex0_1 = __insn_mfspr( | ||
476 | SPR_EX_CONTEXT_0_1); | ||
477 | /* | ||
478 | * Special-case it if we're iret'ing | ||
479 | * to PL0 again. Otherwise just let | ||
480 | * it run and it will generate SIGILL. | ||
481 | */ | ||
482 | if (EX1_PL(ex0_1) == USER_PL) { | ||
483 | state->next_pc = ex0_0; | ||
484 | regs->ex1 = ex0_1; | ||
485 | bundle = nop_X1(bundle); | ||
486 | } | ||
487 | } | ||
488 | } | ||
489 | } | ||
490 | break; | ||
491 | |||
492 | #if CHIP_HAS_WH64() | ||
493 | /* postincrement operations */ | ||
494 | case IMM_0_OPCODE_X1: | ||
495 | switch (get_ImmOpcodeExtension_X1(bundle)) { | ||
496 | case LWADD_IMM_0_OPCODE_X1: | ||
497 | mem_op = MEMOP_LOAD_POSTINCR; | ||
498 | size = 4; | ||
499 | break; | ||
500 | |||
501 | case LHADD_IMM_0_OPCODE_X1: | ||
502 | mem_op = MEMOP_LOAD_POSTINCR; | ||
503 | size = 2; | ||
504 | sign_ext = 1; | ||
505 | break; | ||
506 | |||
507 | case LHADD_U_IMM_0_OPCODE_X1: | ||
508 | mem_op = MEMOP_LOAD_POSTINCR; | ||
509 | size = 2; | ||
510 | sign_ext = 0; | ||
511 | break; | ||
512 | |||
513 | case SWADD_IMM_0_OPCODE_X1: | ||
514 | mem_op = MEMOP_STORE_POSTINCR; | ||
515 | size = 4; | ||
516 | break; | ||
517 | |||
518 | case SHADD_IMM_0_OPCODE_X1: | ||
519 | mem_op = MEMOP_STORE_POSTINCR; | ||
520 | size = 2; | ||
521 | break; | ||
522 | |||
523 | default: | ||
524 | break; | ||
525 | } | ||
526 | break; | ||
527 | #endif /* CHIP_HAS_WH64() */ | ||
528 | } | ||
529 | |||
530 | if (state->update) { | ||
531 | /* | ||
532 | * Get an available register. We start with a | ||
533 | * bitmask with 1's for available registers. | ||
534 | * We truncate to the low 32 registers since | ||
535 | * we are guaranteed to have set bits in the | ||
536 | * low 32 bits, then use ctz to pick the first. | ||
537 | */ | ||
538 | u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | | ||
539 | (1ULL << get_SrcA_X0(bundle)) | | ||
540 | (1ULL << get_SrcB_X0(bundle)) | | ||
541 | (1ULL << target_reg)); | ||
542 | temp_reg = __builtin_ctz(mask); | ||
543 | state->update_reg = temp_reg; | ||
544 | state->update_value = regs->regs[temp_reg]; | ||
545 | regs->regs[temp_reg] = (unsigned long) (pc+1); | ||
546 | regs->flags |= PT_FLAGS_RESTORE_REGS; | ||
547 | bundle = move_X1(bundle, target_reg, temp_reg); | ||
548 | } | ||
549 | } else { | ||
550 | int opcode = get_Opcode_Y2(bundle); | ||
551 | |||
552 | switch (opcode) { | ||
553 | /* loads */ | ||
554 | case LH_OPCODE_Y2: | ||
555 | mem_op = MEMOP_LOAD; | ||
556 | size = 2; | ||
557 | sign_ext = 1; | ||
558 | break; | ||
559 | |||
560 | case LH_U_OPCODE_Y2: | ||
561 | mem_op = MEMOP_LOAD; | ||
562 | size = 2; | ||
563 | sign_ext = 0; | ||
564 | break; | ||
565 | |||
566 | case LW_OPCODE_Y2: | ||
567 | mem_op = MEMOP_LOAD; | ||
568 | size = 4; | ||
569 | break; | ||
570 | |||
571 | /* stores */ | ||
572 | case SH_OPCODE_Y2: | ||
573 | mem_op = MEMOP_STORE; | ||
574 | size = 2; | ||
575 | break; | ||
576 | |||
577 | case SW_OPCODE_Y2: | ||
578 | mem_op = MEMOP_STORE; | ||
579 | size = 4; | ||
580 | break; | ||
581 | } | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | * Check if we need to rewrite an unaligned load/store. | ||
586 | * Returning zero is a special value meaning we need to SIGSEGV. | ||
587 | */ | ||
588 | if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { | ||
589 | bundle = rewrite_load_store_unaligned(state, bundle, regs, | ||
590 | mem_op, size, sign_ext); | ||
591 | if (bundle == 0) | ||
592 | return; | ||
593 | } | ||
594 | |||
595 | /* write the bundle to our execution area */ | ||
596 | buffer = state->buffer; | ||
597 | err = __put_user(bundle, buffer++); | ||
598 | |||
599 | /* | ||
600 | * If we're really single-stepping, we take an INT_ILL after. | ||
601 | * If we're just handling an unaligned access, we can just | ||
602 | * jump directly back to where we were in user code. | ||
603 | */ | ||
604 | if (is_single_step) { | ||
605 | err |= __put_user(__single_step_ill_insn, buffer++); | ||
606 | err |= __put_user(__single_step_ill_insn, buffer++); | ||
607 | } else { | ||
608 | long delta; | ||
609 | |||
610 | if (state->update) { | ||
611 | /* We have some state to update; do it inline */ | ||
612 | int ha16; | ||
613 | bundle = __single_step_addli_insn; | ||
614 | bundle |= create_Dest_X1(state->update_reg); | ||
615 | bundle |= create_Imm16_X1(state->update_value); | ||
616 | err |= __put_user(bundle, buffer++); | ||
617 | bundle = __single_step_auli_insn; | ||
618 | bundle |= create_Dest_X1(state->update_reg); | ||
619 | bundle |= create_SrcA_X1(state->update_reg); | ||
620 | ha16 = (state->update_value + 0x8000) >> 16; | ||
621 | bundle |= create_Imm16_X1(ha16); | ||
622 | err |= __put_user(bundle, buffer++); | ||
623 | state->update = 0; | ||
624 | } | ||
625 | |||
626 | /* End with a jump back to the next instruction */ | ||
627 | delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - | ||
628 | (unsigned long)buffer) >> | ||
629 | TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; | ||
630 | bundle = __single_step_j_insn; | ||
631 | bundle |= create_JOffLong_X1(delta); | ||
632 | err |= __put_user(bundle, buffer++); | ||
633 | } | ||
634 | |||
635 | if (err) { | ||
636 | printk("Fault when writing to single-step buffer\n"); | ||
637 | return; | ||
638 | } | ||
639 | |||
640 | /* | ||
641 | * Flush the buffer. | ||
642 | * We do a local flush only, since this is a thread-specific buffer. | ||
643 | */ | ||
644 | __flush_icache_range((unsigned long) state->buffer, | ||
645 | (unsigned long) buffer); | ||
646 | |||
647 | /* Indicate enabled */ | ||
648 | state->is_enabled = is_single_step; | ||
649 | regs->pc = (unsigned long) state->buffer; | ||
650 | |||
651 | /* Fault immediately if we are coming back from a syscall. */ | ||
652 | if (regs->faultnum == INT_SWINT_1) | ||
653 | regs->pc += 8; | ||
654 | } | ||
655 | |||
656 | #endif /* !__tilegx__ */ | ||