diff options
Diffstat (limited to 'arch/tile/kernel/single_step.c')
-rw-r--r-- | arch/tile/kernel/single_step.c | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/arch/tile/kernel/single_step.c b/arch/tile/kernel/single_step.c new file mode 100644 index 000000000000..5ec4b9c651f2 --- /dev/null +++ b/arch/tile/kernel/single_step.c | |||
@@ -0,0 +1,663 @@ | |||
1 | /* | ||
2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * A code-rewriter that enables instruction single-stepping. | ||
15 | * Derived from iLib's single-stepping code. | ||
16 | */ | ||
17 | |||
18 | #ifndef __tilegx__ /* No support for single-step yet. */ | ||
19 | |||
20 | /* These functions are only used on the TILE platform */ | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/thread_info.h> | ||
23 | #include <linux/uaccess.h> | ||
24 | #include <linux/mman.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/err.h> | ||
27 | #include <asm/cacheflush.h> | ||
28 | #include <asm/opcode-tile.h> | ||
29 | #include <asm/opcode_constants.h> | ||
30 | #include <arch/abi.h> | ||
31 | |||
32 | #define signExtend17(val) sign_extend((val), 17) | ||
33 | #define TILE_X1_MASK (0xffffffffULL << 31) | ||
34 | |||
35 | int unaligned_printk; | ||
36 | |||
37 | static int __init setup_unaligned_printk(char *str) | ||
38 | { | ||
39 | long val; | ||
40 | if (strict_strtol(str, 0, &val) != 0) | ||
41 | return 0; | ||
42 | unaligned_printk = val; | ||
43 | pr_info("Printk for each unaligned data accesses is %s\n", | ||
44 | unaligned_printk ? "enabled" : "disabled"); | ||
45 | return 1; | ||
46 | } | ||
47 | __setup("unaligned_printk=", setup_unaligned_printk); | ||
48 | |||
49 | unsigned int unaligned_fixup_count; | ||
50 | |||
51 | enum mem_op { | ||
52 | MEMOP_NONE, | ||
53 | MEMOP_LOAD, | ||
54 | MEMOP_STORE, | ||
55 | MEMOP_LOAD_POSTINCR, | ||
56 | MEMOP_STORE_POSTINCR | ||
57 | }; | ||
58 | |||
59 | static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset) | ||
60 | { | ||
61 | tile_bundle_bits result; | ||
62 | |||
63 | /* mask out the old offset */ | ||
64 | tile_bundle_bits mask = create_BrOff_X1(-1); | ||
65 | result = n & (~mask); | ||
66 | |||
67 | /* or in the new offset */ | ||
68 | result |= create_BrOff_X1(offset); | ||
69 | |||
70 | return result; | ||
71 | } | ||
72 | |||
73 | static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) | ||
74 | { | ||
75 | tile_bundle_bits result; | ||
76 | tile_bundle_bits op; | ||
77 | |||
78 | result = n & (~TILE_X1_MASK); | ||
79 | |||
80 | op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | | ||
81 | create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | | ||
82 | create_Dest_X1(dest) | | ||
83 | create_SrcB_X1(TREG_ZERO) | | ||
84 | create_SrcA_X1(src) ; | ||
85 | |||
86 | result |= op; | ||
87 | return result; | ||
88 | } | ||
89 | |||
90 | static inline tile_bundle_bits nop_X1(tile_bundle_bits n) | ||
91 | { | ||
92 | return move_X1(n, TREG_ZERO, TREG_ZERO); | ||
93 | } | ||
94 | |||
95 | static inline tile_bundle_bits addi_X1( | ||
96 | tile_bundle_bits n, int dest, int src, int imm) | ||
97 | { | ||
98 | n &= ~TILE_X1_MASK; | ||
99 | |||
100 | n |= (create_SrcA_X1(src) | | ||
101 | create_Dest_X1(dest) | | ||
102 | create_Imm8_X1(imm) | | ||
103 | create_S_X1(0) | | ||
104 | create_Opcode_X1(IMM_0_OPCODE_X1) | | ||
105 | create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); | ||
106 | |||
107 | return n; | ||
108 | } | ||
109 | |||
110 | static tile_bundle_bits rewrite_load_store_unaligned( | ||
111 | struct single_step_state *state, | ||
112 | tile_bundle_bits bundle, | ||
113 | struct pt_regs *regs, | ||
114 | enum mem_op mem_op, | ||
115 | int size, int sign_ext) | ||
116 | { | ||
117 | unsigned char __user *addr; | ||
118 | int val_reg, addr_reg, err, val; | ||
119 | |||
120 | /* Get address and value registers */ | ||
121 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | ||
122 | addr_reg = get_SrcA_Y2(bundle); | ||
123 | val_reg = get_SrcBDest_Y2(bundle); | ||
124 | } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | ||
125 | addr_reg = get_SrcA_X1(bundle); | ||
126 | val_reg = get_Dest_X1(bundle); | ||
127 | } else { | ||
128 | addr_reg = get_SrcA_X1(bundle); | ||
129 | val_reg = get_SrcB_X1(bundle); | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * If registers are not GPRs, don't try to handle it. | ||
134 | * | ||
135 | * FIXME: we could handle non-GPR loads by getting the real value | ||
136 | * from memory, writing it to the single step buffer, using a | ||
137 | * temp_reg to hold a pointer to that memory, then executing that | ||
138 | * instruction and resetting temp_reg. For non-GPR stores, it's a | ||
139 | * little trickier; we could use the single step buffer for that | ||
140 | * too, but we'd have to add some more state bits so that we could | ||
141 | * call back in here to copy that value to the real target. For | ||
142 | * now, we just handle the simple case. | ||
143 | */ | ||
144 | if ((val_reg >= PTREGS_NR_GPRS && | ||
145 | (val_reg != TREG_ZERO || | ||
146 | mem_op == MEMOP_LOAD || | ||
147 | mem_op == MEMOP_LOAD_POSTINCR)) || | ||
148 | addr_reg >= PTREGS_NR_GPRS) | ||
149 | return bundle; | ||
150 | |||
151 | /* If it's aligned, don't handle it specially */ | ||
152 | addr = (void __user *)regs->regs[addr_reg]; | ||
153 | if (((unsigned long)addr % size) == 0) | ||
154 | return bundle; | ||
155 | |||
156 | #ifndef __LITTLE_ENDIAN | ||
157 | # error We assume little-endian representation with copy_xx_user size 2 here | ||
158 | #endif | ||
159 | /* Handle unaligned load/store */ | ||
160 | if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | ||
161 | unsigned short val_16; | ||
162 | switch (size) { | ||
163 | case 2: | ||
164 | err = copy_from_user(&val_16, addr, sizeof(val_16)); | ||
165 | val = sign_ext ? ((short)val_16) : val_16; | ||
166 | break; | ||
167 | case 4: | ||
168 | err = copy_from_user(&val, addr, sizeof(val)); | ||
169 | break; | ||
170 | default: | ||
171 | BUG(); | ||
172 | } | ||
173 | if (err == 0) { | ||
174 | state->update_reg = val_reg; | ||
175 | state->update_value = val; | ||
176 | state->update = 1; | ||
177 | } | ||
178 | } else { | ||
179 | val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; | ||
180 | err = copy_to_user(addr, &val, size); | ||
181 | } | ||
182 | |||
183 | if (err) { | ||
184 | siginfo_t info = { | ||
185 | .si_signo = SIGSEGV, | ||
186 | .si_code = SEGV_MAPERR, | ||
187 | .si_addr = addr | ||
188 | }; | ||
189 | force_sig_info(info.si_signo, &info, current); | ||
190 | return (tile_bundle_bits) 0; | ||
191 | } | ||
192 | |||
193 | if (unaligned_fixup == 0) { | ||
194 | siginfo_t info = { | ||
195 | .si_signo = SIGBUS, | ||
196 | .si_code = BUS_ADRALN, | ||
197 | .si_addr = addr | ||
198 | }; | ||
199 | force_sig_info(info.si_signo, &info, current); | ||
200 | return (tile_bundle_bits) 0; | ||
201 | } | ||
202 | |||
203 | if (unaligned_printk || unaligned_fixup_count == 0) { | ||
204 | pr_info("Process %d/%s: PC %#lx: Fixup of" | ||
205 | " unaligned %s at %#lx.\n", | ||
206 | current->pid, current->comm, regs->pc, | ||
207 | (mem_op == MEMOP_LOAD || | ||
208 | mem_op == MEMOP_LOAD_POSTINCR) ? | ||
209 | "load" : "store", | ||
210 | (unsigned long)addr); | ||
211 | if (!unaligned_printk) { | ||
212 | #define P pr_info | ||
213 | P("\n"); | ||
214 | P("Unaligned fixups in the kernel will slow your application considerably.\n"); | ||
215 | P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"); | ||
216 | P("which requests the kernel show all unaligned fixups, or write a \"0\"\n"); | ||
217 | P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"); | ||
218 | P("access will become a SIGBUS you can debug. No further warnings will be\n"); | ||
219 | P("shown so as to avoid additional slowdown, but you can track the number\n"); | ||
220 | P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"); | ||
221 | P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"); | ||
222 | P("\n"); | ||
223 | #undef P | ||
224 | } | ||
225 | } | ||
226 | ++unaligned_fixup_count; | ||
227 | |||
228 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | ||
229 | /* Convert the Y2 instruction to a prefetch. */ | ||
230 | bundle &= ~(create_SrcBDest_Y2(-1) | | ||
231 | create_Opcode_Y2(-1)); | ||
232 | bundle |= (create_SrcBDest_Y2(TREG_ZERO) | | ||
233 | create_Opcode_Y2(LW_OPCODE_Y2)); | ||
234 | /* Replace the load postincr with an addi */ | ||
235 | } else if (mem_op == MEMOP_LOAD_POSTINCR) { | ||
236 | bundle = addi_X1(bundle, addr_reg, addr_reg, | ||
237 | get_Imm8_X1(bundle)); | ||
238 | /* Replace the store postincr with an addi */ | ||
239 | } else if (mem_op == MEMOP_STORE_POSTINCR) { | ||
240 | bundle = addi_X1(bundle, addr_reg, addr_reg, | ||
241 | get_Dest_Imm8_X1(bundle)); | ||
242 | } else { | ||
243 | /* Convert the X1 instruction to a nop. */ | ||
244 | bundle &= ~(create_Opcode_X1(-1) | | ||
245 | create_UnShOpcodeExtension_X1(-1) | | ||
246 | create_UnOpcodeExtension_X1(-1)); | ||
247 | bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | | ||
248 | create_UnShOpcodeExtension_X1( | ||
249 | UN_0_SHUN_0_OPCODE_X1) | | ||
250 | create_UnOpcodeExtension_X1( | ||
251 | NOP_UN_0_SHUN_0_OPCODE_X1)); | ||
252 | } | ||
253 | |||
254 | return bundle; | ||
255 | } | ||
256 | |||
257 | /** | ||
258 | * single_step_once() - entry point when single stepping has been triggered. | ||
259 | * @regs: The machine register state | ||
260 | * | ||
261 | * When we arrive at this routine via a trampoline, the single step | ||
262 | * engine copies the executing bundle to the single step buffer. | ||
263 | * If the instruction is a condition branch, then the target is | ||
264 | * reset to one past the next instruction. If the instruction | ||
265 | * sets the lr, then that is noted. If the instruction is a jump | ||
266 | * or call, then the new target pc is preserved and the current | ||
267 | * bundle instruction set to null. | ||
268 | * | ||
269 | * The necessary post-single-step rewriting information is stored in | ||
270 | * single_step_state-> We use data segment values because the | ||
271 | * stack will be rewound when we run the rewritten single-stepped | ||
272 | * instruction. | ||
273 | */ | ||
274 | void single_step_once(struct pt_regs *regs) | ||
275 | { | ||
276 | extern tile_bundle_bits __single_step_ill_insn; | ||
277 | extern tile_bundle_bits __single_step_j_insn; | ||
278 | extern tile_bundle_bits __single_step_addli_insn; | ||
279 | extern tile_bundle_bits __single_step_auli_insn; | ||
280 | struct thread_info *info = (void *)current_thread_info(); | ||
281 | struct single_step_state *state = info->step_state; | ||
282 | int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); | ||
283 | tile_bundle_bits __user *buffer, *pc; | ||
284 | tile_bundle_bits bundle; | ||
285 | int temp_reg; | ||
286 | int target_reg = TREG_LR; | ||
287 | int err; | ||
288 | enum mem_op mem_op = MEMOP_NONE; | ||
289 | int size = 0, sign_ext = 0; /* happy compiler */ | ||
290 | |||
291 | asm( | ||
292 | " .pushsection .rodata.single_step\n" | ||
293 | " .align 8\n" | ||
294 | " .globl __single_step_ill_insn\n" | ||
295 | "__single_step_ill_insn:\n" | ||
296 | " ill\n" | ||
297 | " .globl __single_step_addli_insn\n" | ||
298 | "__single_step_addli_insn:\n" | ||
299 | " { nop; addli r0, zero, 0 }\n" | ||
300 | " .globl __single_step_auli_insn\n" | ||
301 | "__single_step_auli_insn:\n" | ||
302 | " { nop; auli r0, r0, 0 }\n" | ||
303 | " .globl __single_step_j_insn\n" | ||
304 | "__single_step_j_insn:\n" | ||
305 | " j .\n" | ||
306 | " .popsection\n" | ||
307 | ); | ||
308 | |||
309 | if (state == NULL) { | ||
310 | /* allocate a page of writable, executable memory */ | ||
311 | state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); | ||
312 | if (state == NULL) { | ||
313 | pr_err("Out of kernel memory trying to single-step\n"); | ||
314 | return; | ||
315 | } | ||
316 | |||
317 | /* allocate a cache line of writable, executable memory */ | ||
318 | down_write(¤t->mm->mmap_sem); | ||
319 | buffer = (void __user *) do_mmap(NULL, 0, 64, | ||
320 | PROT_EXEC | PROT_READ | PROT_WRITE, | ||
321 | MAP_PRIVATE | MAP_ANONYMOUS, | ||
322 | 0); | ||
323 | up_write(¤t->mm->mmap_sem); | ||
324 | |||
325 | if (IS_ERR((void __force *)buffer)) { | ||
326 | kfree(state); | ||
327 | pr_err("Out of kernel pages trying to single-step\n"); | ||
328 | return; | ||
329 | } | ||
330 | |||
331 | state->buffer = buffer; | ||
332 | state->is_enabled = 0; | ||
333 | |||
334 | info->step_state = state; | ||
335 | |||
336 | /* Validate our stored instruction patterns */ | ||
337 | BUG_ON(get_Opcode_X1(__single_step_addli_insn) != | ||
338 | ADDLI_OPCODE_X1); | ||
339 | BUG_ON(get_Opcode_X1(__single_step_auli_insn) != | ||
340 | AULI_OPCODE_X1); | ||
341 | BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); | ||
342 | BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); | ||
343 | BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); | ||
344 | } | ||
345 | |||
346 | /* | ||
347 | * If we are returning from a syscall, we still haven't hit the | ||
348 | * "ill" for the swint1 instruction. So back the PC up to be | ||
349 | * pointing at the swint1, but we'll actually return directly | ||
350 | * back to the "ill" so we come back in via SIGILL as if we | ||
351 | * had "executed" the swint1 without ever being in kernel space. | ||
352 | */ | ||
353 | if (regs->faultnum == INT_SWINT_1) | ||
354 | regs->pc -= 8; | ||
355 | |||
356 | pc = (tile_bundle_bits __user *)(regs->pc); | ||
357 | if (get_user(bundle, pc) != 0) { | ||
358 | pr_err("Couldn't read instruction at %p trying to step\n", pc); | ||
359 | return; | ||
360 | } | ||
361 | |||
362 | /* We'll follow the instruction with 2 ill op bundles */ | ||
363 | state->orig_pc = (unsigned long)pc; | ||
364 | state->next_pc = (unsigned long)(pc + 1); | ||
365 | state->branch_next_pc = 0; | ||
366 | state->update = 0; | ||
367 | |||
368 | if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { | ||
369 | /* two wide, check for control flow */ | ||
370 | int opcode = get_Opcode_X1(bundle); | ||
371 | |||
372 | switch (opcode) { | ||
373 | /* branches */ | ||
374 | case BRANCH_OPCODE_X1: | ||
375 | { | ||
376 | int32_t offset = signExtend17(get_BrOff_X1(bundle)); | ||
377 | |||
378 | /* | ||
379 | * For branches, we use a rewriting trick to let the | ||
380 | * hardware evaluate whether the branch is taken or | ||
381 | * untaken. We record the target offset and then | ||
382 | * rewrite the branch instruction to target 1 insn | ||
383 | * ahead if the branch is taken. We then follow the | ||
384 | * rewritten branch with two bundles, each containing | ||
385 | * an "ill" instruction. The supervisor examines the | ||
386 | * pc after the single step code is executed, and if | ||
387 | * the pc is the first ill instruction, then the | ||
388 | * branch (if any) was not taken. If the pc is the | ||
389 | * second ill instruction, then the branch was | ||
390 | * taken. The new pc is computed for these cases, and | ||
391 | * inserted into the registers for the thread. If | ||
392 | * the pc is the start of the single step code, then | ||
393 | * an exception or interrupt was taken before the | ||
394 | * code started processing, and the same "original" | ||
395 | * pc is restored. This change, different from the | ||
396 | * original implementation, has the advantage of | ||
397 | * executing a single user instruction. | ||
398 | */ | ||
399 | state->branch_next_pc = (unsigned long)(pc + offset); | ||
400 | |||
401 | /* rewrite branch offset to go forward one bundle */ | ||
402 | bundle = set_BrOff_X1(bundle, 2); | ||
403 | } | ||
404 | break; | ||
405 | |||
406 | /* jumps */ | ||
407 | case JALB_OPCODE_X1: | ||
408 | case JALF_OPCODE_X1: | ||
409 | state->update = 1; | ||
410 | state->next_pc = | ||
411 | (unsigned long) (pc + get_JOffLong_X1(bundle)); | ||
412 | break; | ||
413 | |||
414 | case JB_OPCODE_X1: | ||
415 | case JF_OPCODE_X1: | ||
416 | state->next_pc = | ||
417 | (unsigned long) (pc + get_JOffLong_X1(bundle)); | ||
418 | bundle = nop_X1(bundle); | ||
419 | break; | ||
420 | |||
421 | case SPECIAL_0_OPCODE_X1: | ||
422 | switch (get_RRROpcodeExtension_X1(bundle)) { | ||
423 | /* jump-register */ | ||
424 | case JALRP_SPECIAL_0_OPCODE_X1: | ||
425 | case JALR_SPECIAL_0_OPCODE_X1: | ||
426 | state->update = 1; | ||
427 | state->next_pc = | ||
428 | regs->regs[get_SrcA_X1(bundle)]; | ||
429 | break; | ||
430 | |||
431 | case JRP_SPECIAL_0_OPCODE_X1: | ||
432 | case JR_SPECIAL_0_OPCODE_X1: | ||
433 | state->next_pc = | ||
434 | regs->regs[get_SrcA_X1(bundle)]; | ||
435 | bundle = nop_X1(bundle); | ||
436 | break; | ||
437 | |||
438 | case LNK_SPECIAL_0_OPCODE_X1: | ||
439 | state->update = 1; | ||
440 | target_reg = get_Dest_X1(bundle); | ||
441 | break; | ||
442 | |||
443 | /* stores */ | ||
444 | case SH_SPECIAL_0_OPCODE_X1: | ||
445 | mem_op = MEMOP_STORE; | ||
446 | size = 2; | ||
447 | break; | ||
448 | |||
449 | case SW_SPECIAL_0_OPCODE_X1: | ||
450 | mem_op = MEMOP_STORE; | ||
451 | size = 4; | ||
452 | break; | ||
453 | } | ||
454 | break; | ||
455 | |||
456 | /* loads and iret */ | ||
457 | case SHUN_0_OPCODE_X1: | ||
458 | if (get_UnShOpcodeExtension_X1(bundle) == | ||
459 | UN_0_SHUN_0_OPCODE_X1) { | ||
460 | switch (get_UnOpcodeExtension_X1(bundle)) { | ||
461 | case LH_UN_0_SHUN_0_OPCODE_X1: | ||
462 | mem_op = MEMOP_LOAD; | ||
463 | size = 2; | ||
464 | sign_ext = 1; | ||
465 | break; | ||
466 | |||
467 | case LH_U_UN_0_SHUN_0_OPCODE_X1: | ||
468 | mem_op = MEMOP_LOAD; | ||
469 | size = 2; | ||
470 | sign_ext = 0; | ||
471 | break; | ||
472 | |||
473 | case LW_UN_0_SHUN_0_OPCODE_X1: | ||
474 | mem_op = MEMOP_LOAD; | ||
475 | size = 4; | ||
476 | break; | ||
477 | |||
478 | case IRET_UN_0_SHUN_0_OPCODE_X1: | ||
479 | { | ||
480 | unsigned long ex0_0 = __insn_mfspr( | ||
481 | SPR_EX_CONTEXT_0_0); | ||
482 | unsigned long ex0_1 = __insn_mfspr( | ||
483 | SPR_EX_CONTEXT_0_1); | ||
484 | /* | ||
485 | * Special-case it if we're iret'ing | ||
486 | * to PL0 again. Otherwise just let | ||
487 | * it run and it will generate SIGILL. | ||
488 | */ | ||
489 | if (EX1_PL(ex0_1) == USER_PL) { | ||
490 | state->next_pc = ex0_0; | ||
491 | regs->ex1 = ex0_1; | ||
492 | bundle = nop_X1(bundle); | ||
493 | } | ||
494 | } | ||
495 | } | ||
496 | } | ||
497 | break; | ||
498 | |||
499 | #if CHIP_HAS_WH64() | ||
500 | /* postincrement operations */ | ||
501 | case IMM_0_OPCODE_X1: | ||
502 | switch (get_ImmOpcodeExtension_X1(bundle)) { | ||
503 | case LWADD_IMM_0_OPCODE_X1: | ||
504 | mem_op = MEMOP_LOAD_POSTINCR; | ||
505 | size = 4; | ||
506 | break; | ||
507 | |||
508 | case LHADD_IMM_0_OPCODE_X1: | ||
509 | mem_op = MEMOP_LOAD_POSTINCR; | ||
510 | size = 2; | ||
511 | sign_ext = 1; | ||
512 | break; | ||
513 | |||
514 | case LHADD_U_IMM_0_OPCODE_X1: | ||
515 | mem_op = MEMOP_LOAD_POSTINCR; | ||
516 | size = 2; | ||
517 | sign_ext = 0; | ||
518 | break; | ||
519 | |||
520 | case SWADD_IMM_0_OPCODE_X1: | ||
521 | mem_op = MEMOP_STORE_POSTINCR; | ||
522 | size = 4; | ||
523 | break; | ||
524 | |||
525 | case SHADD_IMM_0_OPCODE_X1: | ||
526 | mem_op = MEMOP_STORE_POSTINCR; | ||
527 | size = 2; | ||
528 | break; | ||
529 | |||
530 | default: | ||
531 | break; | ||
532 | } | ||
533 | break; | ||
534 | #endif /* CHIP_HAS_WH64() */ | ||
535 | } | ||
536 | |||
537 | if (state->update) { | ||
538 | /* | ||
539 | * Get an available register. We start with a | ||
540 | * bitmask with 1's for available registers. | ||
541 | * We truncate to the low 32 registers since | ||
542 | * we are guaranteed to have set bits in the | ||
543 | * low 32 bits, then use ctz to pick the first. | ||
544 | */ | ||
545 | u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | | ||
546 | (1ULL << get_SrcA_X0(bundle)) | | ||
547 | (1ULL << get_SrcB_X0(bundle)) | | ||
548 | (1ULL << target_reg)); | ||
549 | temp_reg = __builtin_ctz(mask); | ||
550 | state->update_reg = temp_reg; | ||
551 | state->update_value = regs->regs[temp_reg]; | ||
552 | regs->regs[temp_reg] = (unsigned long) (pc+1); | ||
553 | regs->flags |= PT_FLAGS_RESTORE_REGS; | ||
554 | bundle = move_X1(bundle, target_reg, temp_reg); | ||
555 | } | ||
556 | } else { | ||
557 | int opcode = get_Opcode_Y2(bundle); | ||
558 | |||
559 | switch (opcode) { | ||
560 | /* loads */ | ||
561 | case LH_OPCODE_Y2: | ||
562 | mem_op = MEMOP_LOAD; | ||
563 | size = 2; | ||
564 | sign_ext = 1; | ||
565 | break; | ||
566 | |||
567 | case LH_U_OPCODE_Y2: | ||
568 | mem_op = MEMOP_LOAD; | ||
569 | size = 2; | ||
570 | sign_ext = 0; | ||
571 | break; | ||
572 | |||
573 | case LW_OPCODE_Y2: | ||
574 | mem_op = MEMOP_LOAD; | ||
575 | size = 4; | ||
576 | break; | ||
577 | |||
578 | /* stores */ | ||
579 | case SH_OPCODE_Y2: | ||
580 | mem_op = MEMOP_STORE; | ||
581 | size = 2; | ||
582 | break; | ||
583 | |||
584 | case SW_OPCODE_Y2: | ||
585 | mem_op = MEMOP_STORE; | ||
586 | size = 4; | ||
587 | break; | ||
588 | } | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * Check if we need to rewrite an unaligned load/store. | ||
593 | * Returning zero is a special value meaning we need to SIGSEGV. | ||
594 | */ | ||
595 | if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { | ||
596 | bundle = rewrite_load_store_unaligned(state, bundle, regs, | ||
597 | mem_op, size, sign_ext); | ||
598 | if (bundle == 0) | ||
599 | return; | ||
600 | } | ||
601 | |||
602 | /* write the bundle to our execution area */ | ||
603 | buffer = state->buffer; | ||
604 | err = __put_user(bundle, buffer++); | ||
605 | |||
606 | /* | ||
607 | * If we're really single-stepping, we take an INT_ILL after. | ||
608 | * If we're just handling an unaligned access, we can just | ||
609 | * jump directly back to where we were in user code. | ||
610 | */ | ||
611 | if (is_single_step) { | ||
612 | err |= __put_user(__single_step_ill_insn, buffer++); | ||
613 | err |= __put_user(__single_step_ill_insn, buffer++); | ||
614 | } else { | ||
615 | long delta; | ||
616 | |||
617 | if (state->update) { | ||
618 | /* We have some state to update; do it inline */ | ||
619 | int ha16; | ||
620 | bundle = __single_step_addli_insn; | ||
621 | bundle |= create_Dest_X1(state->update_reg); | ||
622 | bundle |= create_Imm16_X1(state->update_value); | ||
623 | err |= __put_user(bundle, buffer++); | ||
624 | bundle = __single_step_auli_insn; | ||
625 | bundle |= create_Dest_X1(state->update_reg); | ||
626 | bundle |= create_SrcA_X1(state->update_reg); | ||
627 | ha16 = (state->update_value + 0x8000) >> 16; | ||
628 | bundle |= create_Imm16_X1(ha16); | ||
629 | err |= __put_user(bundle, buffer++); | ||
630 | state->update = 0; | ||
631 | } | ||
632 | |||
633 | /* End with a jump back to the next instruction */ | ||
634 | delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - | ||
635 | (unsigned long)buffer) >> | ||
636 | TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; | ||
637 | bundle = __single_step_j_insn; | ||
638 | bundle |= create_JOffLong_X1(delta); | ||
639 | err |= __put_user(bundle, buffer++); | ||
640 | } | ||
641 | |||
642 | if (err) { | ||
643 | pr_err("Fault when writing to single-step buffer\n"); | ||
644 | return; | ||
645 | } | ||
646 | |||
647 | /* | ||
648 | * Flush the buffer. | ||
649 | * We do a local flush only, since this is a thread-specific buffer. | ||
650 | */ | ||
651 | __flush_icache_range((unsigned long)state->buffer, | ||
652 | (unsigned long)buffer); | ||
653 | |||
654 | /* Indicate enabled */ | ||
655 | state->is_enabled = is_single_step; | ||
656 | regs->pc = (unsigned long)state->buffer; | ||
657 | |||
658 | /* Fault immediately if we are coming back from a syscall. */ | ||
659 | if (regs->faultnum == INT_SWINT_1) | ||
660 | regs->pc += 8; | ||
661 | } | ||
662 | |||
663 | #endif /* !__tilegx__ */ | ||