diff options
Diffstat (limited to 'arch/tile/kernel/process.c')
| -rw-r--r-- | arch/tile/kernel/process.c | 671 |
1 files changed, 671 insertions, 0 deletions
diff --git a/arch/tile/kernel/process.c b/arch/tile/kernel/process.c new file mode 100644 index 000000000000..ed590ad0acdc --- /dev/null +++ b/arch/tile/kernel/process.c | |||
| @@ -0,0 +1,671 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | #include <linux/sched.h> | ||
| 16 | #include <linux/preempt.h> | ||
| 17 | #include <linux/module.h> | ||
| 18 | #include <linux/fs.h> | ||
| 19 | #include <linux/kprobes.h> | ||
| 20 | #include <linux/elfcore.h> | ||
| 21 | #include <linux/tick.h> | ||
| 22 | #include <linux/init.h> | ||
| 23 | #include <linux/mm.h> | ||
| 24 | #include <linux/compat.h> | ||
| 25 | #include <linux/hardirq.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/kernel.h> | ||
| 28 | #include <asm/system.h> | ||
| 29 | #include <asm/stack.h> | ||
| 30 | #include <asm/homecache.h> | ||
| 31 | #include <asm/syscalls.h> | ||
| 32 | #ifdef CONFIG_HARDWALL | ||
| 33 | #include <asm/hardwall.h> | ||
| 34 | #endif | ||
| 35 | #include <arch/chip.h> | ||
| 36 | #include <arch/abi.h> | ||
| 37 | |||
| 38 | |||
| 39 | /* | ||
| 40 | * Use the (x86) "idle=poll" option to prefer low latency when leaving the | ||
| 41 | * idle loop over low power while in the idle loop, e.g. if we have | ||
| 42 | * one thread per core and we want to get threads out of futex waits fast. | ||
| 43 | */ | ||
| 44 | static int no_idle_nap; | ||
| 45 | static int __init idle_setup(char *str) | ||
| 46 | { | ||
| 47 | if (!str) | ||
| 48 | return -EINVAL; | ||
| 49 | |||
| 50 | if (!strcmp(str, "poll")) { | ||
| 51 | pr_info("using polling idle threads.\n"); | ||
| 52 | no_idle_nap = 1; | ||
| 53 | } else if (!strcmp(str, "halt")) | ||
| 54 | no_idle_nap = 0; | ||
| 55 | else | ||
| 56 | return -1; | ||
| 57 | |||
| 58 | return 0; | ||
| 59 | } | ||
| 60 | early_param("idle", idle_setup); | ||
| 61 | |||
| 62 | /* | ||
| 63 | * The idle thread. There's no useful work to be | ||
| 64 | * done, so just try to conserve power and have a | ||
| 65 | * low exit latency (ie sit in a loop waiting for | ||
| 66 | * somebody to say that they'd like to reschedule) | ||
| 67 | */ | ||
| 68 | void cpu_idle(void) | ||
| 69 | { | ||
| 70 | int cpu = smp_processor_id(); | ||
| 71 | |||
| 72 | |||
| 73 | current_thread_info()->status |= TS_POLLING; | ||
| 74 | |||
| 75 | if (no_idle_nap) { | ||
| 76 | while (1) { | ||
| 77 | while (!need_resched()) | ||
| 78 | cpu_relax(); | ||
| 79 | schedule(); | ||
| 80 | } | ||
| 81 | } | ||
| 82 | |||
| 83 | /* endless idle loop with no priority at all */ | ||
| 84 | while (1) { | ||
| 85 | tick_nohz_stop_sched_tick(1); | ||
| 86 | while (!need_resched()) { | ||
| 87 | if (cpu_is_offline(cpu)) | ||
| 88 | BUG(); /* no HOTPLUG_CPU */ | ||
| 89 | |||
| 90 | local_irq_disable(); | ||
| 91 | __get_cpu_var(irq_stat).idle_timestamp = jiffies; | ||
| 92 | current_thread_info()->status &= ~TS_POLLING; | ||
| 93 | /* | ||
| 94 | * TS_POLLING-cleared state must be visible before we | ||
| 95 | * test NEED_RESCHED: | ||
| 96 | */ | ||
| 97 | smp_mb(); | ||
| 98 | |||
| 99 | if (!need_resched()) | ||
| 100 | _cpu_idle(); | ||
| 101 | else | ||
| 102 | local_irq_enable(); | ||
| 103 | current_thread_info()->status |= TS_POLLING; | ||
| 104 | } | ||
| 105 | tick_nohz_restart_sched_tick(); | ||
| 106 | preempt_enable_no_resched(); | ||
| 107 | schedule(); | ||
| 108 | preempt_disable(); | ||
| 109 | } | ||
| 110 | } | ||
| 111 | |||
| 112 | struct thread_info *alloc_thread_info(struct task_struct *task) | ||
| 113 | { | ||
| 114 | struct page *page; | ||
| 115 | gfp_t flags = GFP_KERNEL; | ||
| 116 | |||
| 117 | #ifdef CONFIG_DEBUG_STACK_USAGE | ||
| 118 | flags |= __GFP_ZERO; | ||
| 119 | #endif | ||
| 120 | |||
| 121 | page = alloc_pages(flags, THREAD_SIZE_ORDER); | ||
| 122 | if (!page) | ||
| 123 | return NULL; | ||
| 124 | |||
| 125 | return (struct thread_info *)page_address(page); | ||
| 126 | } | ||
| 127 | |||
| 128 | /* | ||
| 129 | * Free a thread_info node, and all of its derivative | ||
| 130 | * data structures. | ||
| 131 | */ | ||
| 132 | void free_thread_info(struct thread_info *info) | ||
| 133 | { | ||
| 134 | struct single_step_state *step_state = info->step_state; | ||
| 135 | |||
| 136 | #ifdef CONFIG_HARDWALL | ||
| 137 | /* | ||
| 138 | * We free a thread_info from the context of the task that has | ||
| 139 | * been scheduled next, so the original task is already dead. | ||
| 140 | * Calling deactivate here just frees up the data structures. | ||
| 141 | * If the task we're freeing held the last reference to a | ||
| 142 | * hardwall fd, it would have been released prior to this point | ||
| 143 | * anyway via exit_files(), and "hardwall" would be NULL by now. | ||
| 144 | */ | ||
| 145 | if (info->task->thread.hardwall) | ||
| 146 | hardwall_deactivate(info->task); | ||
| 147 | #endif | ||
| 148 | |||
| 149 | if (step_state) { | ||
| 150 | |||
| 151 | /* | ||
| 152 | * FIXME: we don't munmap step_state->buffer | ||
| 153 | * because the mm_struct for this process (info->task->mm) | ||
| 154 | * has already been zeroed in exit_mm(). Keeping a | ||
| 155 | * reference to it here seems like a bad move, so this | ||
| 156 | * means we can't munmap() the buffer, and therefore if we | ||
| 157 | * ptrace multiple threads in a process, we will slowly | ||
| 158 | * leak user memory. (Note that as soon as the last | ||
| 159 | * thread in a process dies, we will reclaim all user | ||
| 160 | * memory including single-step buffers in the usual way.) | ||
| 161 | * We should either assign a kernel VA to this buffer | ||
| 162 | * somehow, or we should associate the buffer(s) with the | ||
| 163 | * mm itself so we can clean them up that way. | ||
| 164 | */ | ||
| 165 | kfree(step_state); | ||
| 166 | } | ||
| 167 | |||
| 168 | free_page((unsigned long)info); | ||
| 169 | } | ||
| 170 | |||
| 171 | static void save_arch_state(struct thread_struct *t); | ||
| 172 | |||
| 173 | int copy_thread(unsigned long clone_flags, unsigned long sp, | ||
| 174 | unsigned long stack_size, | ||
| 175 | struct task_struct *p, struct pt_regs *regs) | ||
| 176 | { | ||
| 177 | struct pt_regs *childregs; | ||
| 178 | unsigned long ksp; | ||
| 179 | |||
| 180 | /* | ||
| 181 | * When creating a new kernel thread we pass sp as zero. | ||
| 182 | * Assign it to a reasonable value now that we have the stack. | ||
| 183 | */ | ||
| 184 | if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0)) | ||
| 185 | sp = KSTK_TOP(p); | ||
| 186 | |||
| 187 | /* | ||
| 188 | * Do not clone step state from the parent; each thread | ||
| 189 | * must make its own lazily. | ||
| 190 | */ | ||
| 191 | task_thread_info(p)->step_state = NULL; | ||
| 192 | |||
| 193 | /* | ||
| 194 | * Start new thread in ret_from_fork so it schedules properly | ||
| 195 | * and then return from interrupt like the parent. | ||
| 196 | */ | ||
| 197 | p->thread.pc = (unsigned long) ret_from_fork; | ||
| 198 | |||
| 199 | /* Save user stack top pointer so we can ID the stack vm area later. */ | ||
| 200 | p->thread.usp0 = sp; | ||
| 201 | |||
| 202 | /* Record the pid of the process that created this one. */ | ||
| 203 | p->thread.creator_pid = current->pid; | ||
| 204 | |||
| 205 | /* | ||
| 206 | * Copy the registers onto the kernel stack so the | ||
| 207 | * return-from-interrupt code will reload it into registers. | ||
| 208 | */ | ||
| 209 | childregs = task_pt_regs(p); | ||
| 210 | *childregs = *regs; | ||
| 211 | childregs->regs[0] = 0; /* return value is zero */ | ||
| 212 | childregs->sp = sp; /* override with new user stack pointer */ | ||
| 213 | |||
| 214 | /* | ||
| 215 | * Copy the callee-saved registers from the passed pt_regs struct | ||
| 216 | * into the context-switch callee-saved registers area. | ||
| 217 | * We have to restore the callee-saved registers since we may | ||
| 218 | * be cloning a userspace task with userspace register state, | ||
| 219 | * and we won't be unwinding the same kernel frames to restore them. | ||
| 220 | * Zero out the C ABI save area to mark the top of the stack. | ||
| 221 | */ | ||
| 222 | ksp = (unsigned long) childregs; | ||
| 223 | ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */ | ||
| 224 | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; | ||
| 225 | ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); | ||
| 226 | memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG], | ||
| 227 | CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); | ||
| 228 | ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */ | ||
| 229 | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; | ||
| 230 | p->thread.ksp = ksp; | ||
| 231 | |||
| 232 | #if CHIP_HAS_TILE_DMA() | ||
| 233 | /* | ||
| 234 | * No DMA in the new thread. We model this on the fact that | ||
| 235 | * fork() clears the pending signals, alarms, and aio for the child. | ||
| 236 | */ | ||
| 237 | memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); | ||
| 238 | memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); | ||
| 239 | #endif | ||
| 240 | |||
| 241 | #if CHIP_HAS_SN_PROC() | ||
| 242 | /* Likewise, the new thread is not running static processor code. */ | ||
| 243 | p->thread.sn_proc_running = 0; | ||
| 244 | memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); | ||
| 245 | #endif | ||
| 246 | |||
| 247 | #if CHIP_HAS_PROC_STATUS_SPR() | ||
| 248 | /* New thread has its miscellaneous processor state bits clear. */ | ||
| 249 | p->thread.proc_status = 0; | ||
| 250 | #endif | ||
| 251 | |||
| 252 | #ifdef CONFIG_HARDWALL | ||
| 253 | /* New thread does not own any networks. */ | ||
| 254 | p->thread.hardwall = NULL; | ||
| 255 | #endif | ||
| 256 | |||
| 257 | |||
| 258 | /* | ||
| 259 | * Start the new thread with the current architecture state | ||
| 260 | * (user interrupt masks, etc.). | ||
| 261 | */ | ||
| 262 | save_arch_state(&p->thread); | ||
| 263 | |||
| 264 | return 0; | ||
| 265 | } | ||
| 266 | |||
| 267 | /* | ||
| 268 | * Return "current" if it looks plausible, or else a pointer to a dummy. | ||
| 269 | * This can be helpful if we are just trying to emit a clean panic. | ||
| 270 | */ | ||
| 271 | struct task_struct *validate_current(void) | ||
| 272 | { | ||
| 273 | static struct task_struct corrupt = { .comm = "<corrupt>" }; | ||
| 274 | struct task_struct *tsk = current; | ||
| 275 | if (unlikely((unsigned long)tsk < PAGE_OFFSET || | ||
| 276 | (void *)tsk > high_memory || | ||
| 277 | ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { | ||
| 278 | pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); | ||
| 279 | tsk = &corrupt; | ||
| 280 | } | ||
| 281 | return tsk; | ||
| 282 | } | ||
| 283 | |||
| 284 | /* Take and return the pointer to the previous task, for schedule_tail(). */ | ||
| 285 | struct task_struct *sim_notify_fork(struct task_struct *prev) | ||
| 286 | { | ||
| 287 | struct task_struct *tsk = current; | ||
| 288 | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | | ||
| 289 | (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); | ||
| 290 | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | | ||
| 291 | (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); | ||
| 292 | return prev; | ||
| 293 | } | ||
| 294 | |||
| 295 | int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) | ||
| 296 | { | ||
| 297 | struct pt_regs *ptregs = task_pt_regs(tsk); | ||
| 298 | elf_core_copy_regs(regs, ptregs); | ||
| 299 | return 1; | ||
| 300 | } | ||
| 301 | |||
| 302 | #if CHIP_HAS_TILE_DMA() | ||
| 303 | |||
| 304 | /* Allow user processes to access the DMA SPRs */ | ||
| 305 | void grant_dma_mpls(void) | ||
| 306 | { | ||
| 307 | __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); | ||
| 308 | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); | ||
| 309 | } | ||
| 310 | |||
| 311 | /* Forbid user processes from accessing the DMA SPRs */ | ||
| 312 | void restrict_dma_mpls(void) | ||
| 313 | { | ||
| 314 | __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); | ||
| 315 | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); | ||
| 316 | } | ||
| 317 | |||
| 318 | /* Pause the DMA engine, then save off its state registers. */ | ||
| 319 | static void save_tile_dma_state(struct tile_dma_state *dma) | ||
| 320 | { | ||
| 321 | unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); | ||
| 322 | unsigned long post_suspend_state; | ||
| 323 | |||
| 324 | /* If we're running, suspend the engine. */ | ||
| 325 | if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) | ||
| 326 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); | ||
| 327 | |||
| 328 | /* | ||
| 329 | * Wait for the engine to idle, then save regs. Note that we | ||
| 330 | * want to record the "running" bit from before suspension, | ||
| 331 | * and the "done" bit from after, so that we can properly | ||
| 332 | * distinguish a case where the user suspended the engine from | ||
| 333 | * the case where the kernel suspended as part of the context | ||
| 334 | * swap. | ||
| 335 | */ | ||
| 336 | do { | ||
| 337 | post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); | ||
| 338 | } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); | ||
| 339 | |||
| 340 | dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); | ||
| 341 | dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); | ||
| 342 | dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); | ||
| 343 | dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); | ||
| 344 | dma->strides = __insn_mfspr(SPR_DMA_STRIDE); | ||
| 345 | dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); | ||
| 346 | dma->byte = __insn_mfspr(SPR_DMA_BYTE); | ||
| 347 | dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | | ||
| 348 | (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); | ||
| 349 | } | ||
| 350 | |||
| 351 | /* Restart a DMA that was running before we were context-switched out. */ | ||
| 352 | static void restore_tile_dma_state(struct thread_struct *t) | ||
| 353 | { | ||
| 354 | const struct tile_dma_state *dma = &t->tile_dma_state; | ||
| 355 | |||
| 356 | /* | ||
| 357 | * The only way to restore the done bit is to run a zero | ||
| 358 | * length transaction. | ||
| 359 | */ | ||
| 360 | if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && | ||
| 361 | !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { | ||
| 362 | __insn_mtspr(SPR_DMA_BYTE, 0); | ||
| 363 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | ||
| 364 | while (__insn_mfspr(SPR_DMA_USER_STATUS) & | ||
| 365 | SPR_DMA_STATUS__BUSY_MASK) | ||
| 366 | ; | ||
| 367 | } | ||
| 368 | |||
| 369 | __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); | ||
| 370 | __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); | ||
| 371 | __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); | ||
| 372 | __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); | ||
| 373 | __insn_mtspr(SPR_DMA_STRIDE, dma->strides); | ||
| 374 | __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); | ||
| 375 | __insn_mtspr(SPR_DMA_BYTE, dma->byte); | ||
| 376 | |||
| 377 | /* | ||
| 378 | * Restart the engine if we were running and not done. | ||
| 379 | * Clear a pending async DMA fault that we were waiting on return | ||
| 380 | * to user space to execute, since we expect the DMA engine | ||
| 381 | * to regenerate those faults for us now. Note that we don't | ||
| 382 | * try to clear the TIF_ASYNC_TLB flag, since it's relatively | ||
| 383 | * harmless if set, and it covers both DMA and the SN processor. | ||
| 384 | */ | ||
| 385 | if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { | ||
| 386 | t->dma_async_tlb.fault_num = 0; | ||
| 387 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | ||
| 388 | } | ||
| 389 | } | ||
| 390 | |||
| 391 | #endif | ||
| 392 | |||
| 393 | static void save_arch_state(struct thread_struct *t) | ||
| 394 | { | ||
| 395 | #if CHIP_HAS_SPLIT_INTR_MASK() | ||
| 396 | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | | ||
| 397 | ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); | ||
| 398 | #else | ||
| 399 | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); | ||
| 400 | #endif | ||
| 401 | t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); | ||
| 402 | t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); | ||
| 403 | t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); | ||
| 404 | t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); | ||
| 405 | t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); | ||
| 406 | t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); | ||
| 407 | t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); | ||
| 408 | #if CHIP_HAS_PROC_STATUS_SPR() | ||
| 409 | t->proc_status = __insn_mfspr(SPR_PROC_STATUS); | ||
| 410 | #endif | ||
| 411 | } | ||
| 412 | |||
| 413 | static void restore_arch_state(const struct thread_struct *t) | ||
| 414 | { | ||
| 415 | #if CHIP_HAS_SPLIT_INTR_MASK() | ||
| 416 | __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); | ||
| 417 | __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); | ||
| 418 | #else | ||
| 419 | __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); | ||
| 420 | #endif | ||
| 421 | __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); | ||
| 422 | __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); | ||
| 423 | __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); | ||
| 424 | __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); | ||
| 425 | __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); | ||
| 426 | __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); | ||
| 427 | __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); | ||
| 428 | #if CHIP_HAS_PROC_STATUS_SPR() | ||
| 429 | __insn_mtspr(SPR_PROC_STATUS, t->proc_status); | ||
| 430 | #endif | ||
| 431 | #if CHIP_HAS_TILE_RTF_HWM() | ||
| 432 | /* | ||
| 433 | * Clear this whenever we switch back to a process in case | ||
| 434 | * the previous process was monkeying with it. Even if enabled | ||
| 435 | * in CBOX_MSR1 via TILE_RTF_HWM_MIN, it's still just a | ||
| 436 | * performance hint, so isn't worth a full save/restore. | ||
| 437 | */ | ||
| 438 | __insn_mtspr(SPR_TILE_RTF_HWM, 0); | ||
| 439 | #endif | ||
| 440 | } | ||
| 441 | |||
| 442 | |||
| 443 | void _prepare_arch_switch(struct task_struct *next) | ||
| 444 | { | ||
| 445 | #if CHIP_HAS_SN_PROC() | ||
| 446 | int snctl; | ||
| 447 | #endif | ||
| 448 | #if CHIP_HAS_TILE_DMA() | ||
| 449 | struct tile_dma_state *dma = ¤t->thread.tile_dma_state; | ||
| 450 | if (dma->enabled) | ||
| 451 | save_tile_dma_state(dma); | ||
| 452 | #endif | ||
| 453 | #if CHIP_HAS_SN_PROC() | ||
| 454 | /* | ||
| 455 | * Suspend the static network processor if it was running. | ||
| 456 | * We do not suspend the fabric itself, just like we don't | ||
| 457 | * try to suspend the UDN. | ||
| 458 | */ | ||
| 459 | snctl = __insn_mfspr(SPR_SNCTL); | ||
| 460 | current->thread.sn_proc_running = | ||
| 461 | (snctl & SPR_SNCTL__FRZPROC_MASK) == 0; | ||
| 462 | if (current->thread.sn_proc_running) | ||
| 463 | __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); | ||
| 464 | #endif | ||
| 465 | } | ||
| 466 | |||
| 467 | |||
| 468 | struct task_struct *__sched _switch_to(struct task_struct *prev, | ||
| 469 | struct task_struct *next) | ||
| 470 | { | ||
| 471 | /* DMA state is already saved; save off other arch state. */ | ||
| 472 | save_arch_state(&prev->thread); | ||
| 473 | |||
| 474 | #if CHIP_HAS_TILE_DMA() | ||
| 475 | /* | ||
| 476 | * Restore DMA in new task if desired. | ||
| 477 | * Note that it is only safe to restart here since interrupts | ||
| 478 | * are disabled, so we can't take any DMATLB miss or access | ||
| 479 | * interrupts before we have finished switching stacks. | ||
| 480 | */ | ||
| 481 | if (next->thread.tile_dma_state.enabled) { | ||
| 482 | restore_tile_dma_state(&next->thread); | ||
| 483 | grant_dma_mpls(); | ||
| 484 | } else { | ||
| 485 | restrict_dma_mpls(); | ||
| 486 | } | ||
| 487 | #endif | ||
| 488 | |||
| 489 | /* Restore other arch state. */ | ||
| 490 | restore_arch_state(&next->thread); | ||
| 491 | |||
| 492 | #if CHIP_HAS_SN_PROC() | ||
| 493 | /* | ||
| 494 | * Restart static network processor in the new process | ||
| 495 | * if it was running before. | ||
| 496 | */ | ||
| 497 | if (next->thread.sn_proc_running) { | ||
| 498 | int snctl = __insn_mfspr(SPR_SNCTL); | ||
| 499 | __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); | ||
| 500 | } | ||
| 501 | #endif | ||
| 502 | |||
| 503 | #ifdef CONFIG_HARDWALL | ||
| 504 | /* Enable or disable access to the network registers appropriately. */ | ||
| 505 | if (prev->thread.hardwall != NULL) { | ||
| 506 | if (next->thread.hardwall == NULL) | ||
| 507 | restrict_network_mpls(); | ||
| 508 | } else if (next->thread.hardwall != NULL) { | ||
| 509 | grant_network_mpls(); | ||
| 510 | } | ||
| 511 | #endif | ||
| 512 | |||
| 513 | /* | ||
| 514 | * Switch kernel SP, PC, and callee-saved registers. | ||
| 515 | * In the context of the new task, return the old task pointer | ||
| 516 | * (i.e. the task that actually called __switch_to). | ||
| 517 | * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp. | ||
| 518 | */ | ||
| 519 | return __switch_to(prev, next, next_current_ksp0(next)); | ||
| 520 | } | ||
| 521 | |||
| 522 | long _sys_fork(struct pt_regs *regs) | ||
| 523 | { | ||
| 524 | return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); | ||
| 525 | } | ||
| 526 | |||
| 527 | long _sys_clone(unsigned long clone_flags, unsigned long newsp, | ||
| 528 | void __user *parent_tidptr, void __user *child_tidptr, | ||
| 529 | struct pt_regs *regs) | ||
| 530 | { | ||
| 531 | if (!newsp) | ||
| 532 | newsp = regs->sp; | ||
| 533 | return do_fork(clone_flags, newsp, regs, 0, | ||
| 534 | parent_tidptr, child_tidptr); | ||
| 535 | } | ||
| 536 | |||
| 537 | long _sys_vfork(struct pt_regs *regs) | ||
| 538 | { | ||
| 539 | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, | ||
| 540 | regs, 0, NULL, NULL); | ||
| 541 | } | ||
| 542 | |||
| 543 | /* | ||
| 544 | * sys_execve() executes a new program. | ||
| 545 | */ | ||
| 546 | long _sys_execve(char __user *path, char __user *__user *argv, | ||
| 547 | char __user *__user *envp, struct pt_regs *regs) | ||
| 548 | { | ||
| 549 | long error; | ||
| 550 | char *filename; | ||
| 551 | |||
| 552 | filename = getname(path); | ||
| 553 | error = PTR_ERR(filename); | ||
| 554 | if (IS_ERR(filename)) | ||
| 555 | goto out; | ||
| 556 | error = do_execve(filename, argv, envp, regs); | ||
| 557 | putname(filename); | ||
| 558 | out: | ||
| 559 | return error; | ||
| 560 | } | ||
| 561 | |||
| 562 | #ifdef CONFIG_COMPAT | ||
| 563 | long _compat_sys_execve(char __user *path, compat_uptr_t __user *argv, | ||
| 564 | compat_uptr_t __user *envp, struct pt_regs *regs) | ||
| 565 | { | ||
| 566 | long error; | ||
| 567 | char *filename; | ||
| 568 | |||
| 569 | filename = getname(path); | ||
| 570 | error = PTR_ERR(filename); | ||
| 571 | if (IS_ERR(filename)) | ||
| 572 | goto out; | ||
| 573 | error = compat_do_execve(filename, argv, envp, regs); | ||
| 574 | putname(filename); | ||
| 575 | out: | ||
| 576 | return error; | ||
| 577 | } | ||
| 578 | #endif | ||
| 579 | |||
| 580 | unsigned long get_wchan(struct task_struct *p) | ||
| 581 | { | ||
| 582 | struct KBacktraceIterator kbt; | ||
| 583 | |||
| 584 | if (!p || p == current || p->state == TASK_RUNNING) | ||
| 585 | return 0; | ||
| 586 | |||
| 587 | for (KBacktraceIterator_init(&kbt, p, NULL); | ||
| 588 | !KBacktraceIterator_end(&kbt); | ||
| 589 | KBacktraceIterator_next(&kbt)) { | ||
| 590 | if (!in_sched_functions(kbt.it.pc)) | ||
| 591 | return kbt.it.pc; | ||
| 592 | } | ||
| 593 | |||
| 594 | return 0; | ||
| 595 | } | ||
| 596 | |||
| 597 | /* | ||
| 598 | * We pass in lr as zero (cleared in kernel_thread) and the caller | ||
| 599 | * part of the backtrace ABI on the stack also zeroed (in copy_thread) | ||
| 600 | * so that backtraces will stop with this function. | ||
| 601 | * Note that we don't use r0, since copy_thread() clears it. | ||
| 602 | */ | ||
| 603 | static void start_kernel_thread(int dummy, int (*fn)(int), int arg) | ||
| 604 | { | ||
| 605 | do_exit(fn(arg)); | ||
| 606 | } | ||
| 607 | |||
| 608 | /* | ||
| 609 | * Create a kernel thread | ||
| 610 | */ | ||
| 611 | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | ||
| 612 | { | ||
| 613 | struct pt_regs regs; | ||
| 614 | |||
| 615 | memset(®s, 0, sizeof(regs)); | ||
| 616 | regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */ | ||
| 617 | regs.pc = (long) start_kernel_thread; | ||
| 618 | regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */ | ||
| 619 | regs.regs[1] = (long) fn; /* function pointer */ | ||
| 620 | regs.regs[2] = (long) arg; /* parameter register */ | ||
| 621 | |||
| 622 | /* Ok, create the new process.. */ | ||
| 623 | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, | ||
| 624 | 0, NULL, NULL); | ||
| 625 | } | ||
| 626 | EXPORT_SYMBOL(kernel_thread); | ||
| 627 | |||
| 628 | /* Flush thread state. */ | ||
| 629 | void flush_thread(void) | ||
| 630 | { | ||
| 631 | /* Nothing */ | ||
| 632 | } | ||
| 633 | |||
| 634 | /* | ||
| 635 | * Free current thread data structures etc.. | ||
| 636 | */ | ||
| 637 | void exit_thread(void) | ||
| 638 | { | ||
| 639 | /* Nothing */ | ||
| 640 | } | ||
| 641 | |||
| 642 | void show_regs(struct pt_regs *regs) | ||
| 643 | { | ||
| 644 | struct task_struct *tsk = validate_current(); | ||
| 645 | int i; | ||
| 646 | |||
| 647 | pr_err("\n"); | ||
| 648 | pr_err(" Pid: %d, comm: %20s, CPU: %d\n", | ||
| 649 | tsk->pid, tsk->comm, smp_processor_id()); | ||
| 650 | #ifdef __tilegx__ | ||
| 651 | for (i = 0; i < 51; i += 3) | ||
| 652 | pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | ||
| 653 | i, regs->regs[i], i+1, regs->regs[i+1], | ||
| 654 | i+2, regs->regs[i+2]); | ||
| 655 | pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n", | ||
| 656 | regs->regs[51], regs->regs[52], regs->tp); | ||
| 657 | pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); | ||
| 658 | #else | ||
| 659 | for (i = 0; i < 52; i += 3) | ||
| 660 | pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT | ||
| 661 | " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | ||
| 662 | i, regs->regs[i], i+1, regs->regs[i+1], | ||
| 663 | i+2, regs->regs[i+2], i+3, regs->regs[i+3]); | ||
| 664 | pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", | ||
| 665 | regs->regs[52], regs->tp, regs->sp, regs->lr); | ||
| 666 | #endif | ||
| 667 | pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n", | ||
| 668 | regs->pc, regs->ex1, regs->faultnum); | ||
| 669 | |||
| 670 | dump_stack_regs(regs); | ||
| 671 | } | ||
