diff options
Diffstat (limited to 'arch/tile/kernel/pci-dma.c')
-rw-r--r-- | arch/tile/kernel/pci-dma.c | 251 |
1 files changed, 251 insertions, 0 deletions
diff --git a/arch/tile/kernel/pci-dma.c b/arch/tile/kernel/pci-dma.c new file mode 100644 index 000000000000..5ad5e13b0fa6 --- /dev/null +++ b/arch/tile/kernel/pci-dma.c | |||
@@ -0,0 +1,251 @@ | |||
1 | /* | ||
2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | */ | ||
14 | |||
15 | #include <linux/mm.h> | ||
16 | #include <linux/dma-mapping.h> | ||
17 | #include <linux/vmalloc.h> | ||
18 | #include <asm/tlbflush.h> | ||
19 | #include <asm/homecache.h> | ||
20 | |||
21 | /* Generic DMA mapping functions: */ | ||
22 | |||
23 | /* | ||
24 | * Allocate what Linux calls "coherent" memory, which for us just | ||
25 | * means uncached. | ||
26 | */ | ||
27 | void *dma_alloc_coherent(struct device *dev, | ||
28 | size_t size, | ||
29 | dma_addr_t *dma_handle, | ||
30 | gfp_t gfp) | ||
31 | { | ||
32 | u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); | ||
33 | int node = dev_to_node(dev); | ||
34 | int order = get_order(size); | ||
35 | struct page *pg; | ||
36 | dma_addr_t addr; | ||
37 | |||
38 | gfp |= __GFP_ZERO; | ||
39 | |||
40 | /* | ||
41 | * By forcing NUMA node 0 for 32-bit masks we ensure that the | ||
42 | * high 32 bits of the resulting PA will be zero. If the mask | ||
43 | * size is, e.g., 24, we may still not be able to guarantee a | ||
44 | * suitable memory address, in which case we will return NULL. | ||
45 | * But such devices are uncommon. | ||
46 | */ | ||
47 | if (dma_mask <= DMA_BIT_MASK(32)) | ||
48 | node = 0; | ||
49 | |||
50 | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED); | ||
51 | if (pg == NULL) | ||
52 | return NULL; | ||
53 | |||
54 | addr = page_to_phys(pg); | ||
55 | if (addr + size > dma_mask) { | ||
56 | homecache_free_pages(addr, order); | ||
57 | return NULL; | ||
58 | } | ||
59 | |||
60 | *dma_handle = addr; | ||
61 | return page_address(pg); | ||
62 | } | ||
63 | EXPORT_SYMBOL(dma_alloc_coherent); | ||
64 | |||
65 | /* | ||
66 | * Free memory that was allocated with dma_alloc_coherent. | ||
67 | */ | ||
68 | void dma_free_coherent(struct device *dev, size_t size, | ||
69 | void *vaddr, dma_addr_t dma_handle) | ||
70 | { | ||
71 | homecache_free_pages((unsigned long)vaddr, get_order(size)); | ||
72 | } | ||
73 | EXPORT_SYMBOL(dma_free_coherent); | ||
74 | |||
75 | /* | ||
76 | * The map routines "map" the specified address range for DMA | ||
77 | * accesses. The memory belongs to the device after this call is | ||
78 | * issued, until it is unmapped with dma_unmap_single. | ||
79 | * | ||
80 | * We don't need to do any mapping, we just flush the address range | ||
81 | * out of the cache and return a DMA address. | ||
82 | * | ||
83 | * The unmap routines do whatever is necessary before the processor | ||
84 | * accesses the memory again, and must be called before the driver | ||
85 | * touches the memory. We can get away with a cache invalidate if we | ||
86 | * can count on nothing having been touched. | ||
87 | */ | ||
88 | |||
89 | |||
90 | /* | ||
91 | * dma_map_single can be passed any memory address, and there appear | ||
92 | * to be no alignment constraints. | ||
93 | * | ||
94 | * There is a chance that the start of the buffer will share a cache | ||
95 | * line with some other data that has been touched in the meantime. | ||
96 | */ | ||
97 | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, | ||
98 | enum dma_data_direction direction) | ||
99 | { | ||
100 | struct page *page; | ||
101 | dma_addr_t dma_addr; | ||
102 | int thispage; | ||
103 | |||
104 | BUG_ON(!valid_dma_direction(direction)); | ||
105 | WARN_ON(size == 0); | ||
106 | |||
107 | dma_addr = __pa(ptr); | ||
108 | |||
109 | /* We might have been handed a buffer that wraps a page boundary */ | ||
110 | while ((int)size > 0) { | ||
111 | /* The amount to flush that's on this page */ | ||
112 | thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1)); | ||
113 | thispage = min((int)thispage, (int)size); | ||
114 | /* Is this valid for any page we could be handed? */ | ||
115 | page = pfn_to_page(kaddr_to_pfn(ptr)); | ||
116 | homecache_flush_cache(page, 0); | ||
117 | ptr += thispage; | ||
118 | size -= thispage; | ||
119 | } | ||
120 | |||
121 | return dma_addr; | ||
122 | } | ||
123 | EXPORT_SYMBOL(dma_map_single); | ||
124 | |||
125 | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
126 | enum dma_data_direction direction) | ||
127 | { | ||
128 | BUG_ON(!valid_dma_direction(direction)); | ||
129 | } | ||
130 | EXPORT_SYMBOL(dma_unmap_single); | ||
131 | |||
132 | int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, | ||
133 | enum dma_data_direction direction) | ||
134 | { | ||
135 | struct scatterlist *sg; | ||
136 | int i; | ||
137 | |||
138 | BUG_ON(!valid_dma_direction(direction)); | ||
139 | |||
140 | WARN_ON(nents == 0 || sglist->length == 0); | ||
141 | |||
142 | for_each_sg(sglist, sg, nents, i) { | ||
143 | struct page *page; | ||
144 | sg->dma_address = sg_phys(sg); | ||
145 | page = pfn_to_page(sg->dma_address >> PAGE_SHIFT); | ||
146 | homecache_flush_cache(page, 0); | ||
147 | } | ||
148 | |||
149 | return nents; | ||
150 | } | ||
151 | EXPORT_SYMBOL(dma_map_sg); | ||
152 | |||
153 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, | ||
154 | enum dma_data_direction direction) | ||
155 | { | ||
156 | BUG_ON(!valid_dma_direction(direction)); | ||
157 | } | ||
158 | EXPORT_SYMBOL(dma_unmap_sg); | ||
159 | |||
160 | dma_addr_t dma_map_page(struct device *dev, struct page *page, | ||
161 | unsigned long offset, size_t size, | ||
162 | enum dma_data_direction direction) | ||
163 | { | ||
164 | BUG_ON(!valid_dma_direction(direction)); | ||
165 | |||
166 | homecache_flush_cache(page, 0); | ||
167 | |||
168 | return page_to_pa(page) + offset; | ||
169 | } | ||
170 | EXPORT_SYMBOL(dma_map_page); | ||
171 | |||
172 | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | ||
173 | enum dma_data_direction direction) | ||
174 | { | ||
175 | BUG_ON(!valid_dma_direction(direction)); | ||
176 | } | ||
177 | EXPORT_SYMBOL(dma_unmap_page); | ||
178 | |||
179 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
180 | size_t size, enum dma_data_direction direction) | ||
181 | { | ||
182 | BUG_ON(!valid_dma_direction(direction)); | ||
183 | } | ||
184 | EXPORT_SYMBOL(dma_sync_single_for_cpu); | ||
185 | |||
186 | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | ||
187 | size_t size, enum dma_data_direction direction) | ||
188 | { | ||
189 | unsigned long start = PFN_DOWN(dma_handle); | ||
190 | unsigned long end = PFN_DOWN(dma_handle + size - 1); | ||
191 | unsigned long i; | ||
192 | |||
193 | BUG_ON(!valid_dma_direction(direction)); | ||
194 | for (i = start; i <= end; ++i) | ||
195 | homecache_flush_cache(pfn_to_page(i), 0); | ||
196 | } | ||
197 | EXPORT_SYMBOL(dma_sync_single_for_device); | ||
198 | |||
199 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | ||
200 | enum dma_data_direction direction) | ||
201 | { | ||
202 | BUG_ON(!valid_dma_direction(direction)); | ||
203 | WARN_ON(nelems == 0 || sg[0].length == 0); | ||
204 | } | ||
205 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | ||
206 | |||
207 | /* | ||
208 | * Flush and invalidate cache for scatterlist. | ||
209 | */ | ||
210 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, | ||
211 | int nelems, enum dma_data_direction direction) | ||
212 | { | ||
213 | struct scatterlist *sg; | ||
214 | int i; | ||
215 | |||
216 | BUG_ON(!valid_dma_direction(direction)); | ||
217 | WARN_ON(nelems == 0 || sglist->length == 0); | ||
218 | |||
219 | for_each_sg(sglist, sg, nelems, i) { | ||
220 | dma_sync_single_for_device(dev, sg->dma_address, | ||
221 | sg_dma_len(sg), direction); | ||
222 | } | ||
223 | } | ||
224 | EXPORT_SYMBOL(dma_sync_sg_for_device); | ||
225 | |||
226 | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
227 | unsigned long offset, size_t size, | ||
228 | enum dma_data_direction direction) | ||
229 | { | ||
230 | dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); | ||
231 | } | ||
232 | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); | ||
233 | |||
234 | void dma_sync_single_range_for_device(struct device *dev, | ||
235 | dma_addr_t dma_handle, | ||
236 | unsigned long offset, size_t size, | ||
237 | enum dma_data_direction direction) | ||
238 | { | ||
239 | dma_sync_single_for_device(dev, dma_handle + offset, size, direction); | ||
240 | } | ||
241 | EXPORT_SYMBOL(dma_sync_single_range_for_device); | ||
242 | |||
243 | /* | ||
244 | * dma_alloc_noncoherent() returns non-cacheable memory, so there's no | ||
245 | * need to do any flushing here. | ||
246 | */ | ||
247 | void dma_cache_sync(void *vaddr, size_t size, | ||
248 | enum dma_data_direction direction) | ||
249 | { | ||
250 | } | ||
251 | EXPORT_SYMBOL(dma_cache_sync); | ||