diff options
Diffstat (limited to 'arch/tile/kernel/pci-dma.c')
-rw-r--r-- | arch/tile/kernel/pci-dma.c | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/arch/tile/kernel/pci-dma.c b/arch/tile/kernel/pci-dma.c new file mode 100644 index 000000000000..1d456404f065 --- /dev/null +++ b/arch/tile/kernel/pci-dma.c | |||
@@ -0,0 +1,252 @@ | |||
1 | /* | ||
2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | */ | ||
14 | |||
15 | #include <linux/mm.h> | ||
16 | #include <linux/dma-mapping.h> | ||
17 | #include <linux/vmalloc.h> | ||
18 | #include <asm/tlbflush.h> | ||
19 | #include <asm/homecache.h> | ||
20 | |||
21 | /* Generic DMA mapping functions: */ | ||
22 | |||
23 | /* | ||
24 | * Allocate what Linux calls "coherent" memory, which for us just | ||
25 | * means uncached. | ||
26 | */ | ||
27 | void *dma_alloc_coherent(struct device *dev, | ||
28 | size_t size, | ||
29 | dma_addr_t *dma_handle, | ||
30 | gfp_t gfp) | ||
31 | { | ||
32 | u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); | ||
33 | int node = dev_to_node(dev); | ||
34 | int order = get_order(size); | ||
35 | struct page *pg; | ||
36 | dma_addr_t addr; | ||
37 | |||
38 | /* Set GFP_KERNEL to ensure we have memory with a kernel VA. */ | ||
39 | gfp |= GFP_KERNEL | __GFP_ZERO; | ||
40 | |||
41 | /* | ||
42 | * By forcing NUMA node 0 for 32-bit masks we ensure that the | ||
43 | * high 32 bits of the resulting PA will be zero. If the mask | ||
44 | * size is, e.g., 24, we may still not be able to guarantee a | ||
45 | * suitable memory address, in which case we will return NULL. | ||
46 | * But such devices are uncommon. | ||
47 | */ | ||
48 | if (dma_mask <= DMA_BIT_MASK(32)) | ||
49 | node = 0; | ||
50 | |||
51 | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED); | ||
52 | if (pg == NULL) | ||
53 | return NULL; | ||
54 | |||
55 | addr = page_to_phys(pg); | ||
56 | if (addr + size > dma_mask) { | ||
57 | homecache_free_pages(addr, order); | ||
58 | return NULL; | ||
59 | } | ||
60 | |||
61 | *dma_handle = addr; | ||
62 | return page_address(pg); | ||
63 | } | ||
64 | EXPORT_SYMBOL(dma_alloc_coherent); | ||
65 | |||
66 | /* | ||
67 | * Free memory that was allocated with dma_alloc_coherent. | ||
68 | */ | ||
69 | void dma_free_coherent(struct device *dev, size_t size, | ||
70 | void *vaddr, dma_addr_t dma_handle) | ||
71 | { | ||
72 | homecache_free_pages((unsigned long)vaddr, get_order(size)); | ||
73 | } | ||
74 | EXPORT_SYMBOL(dma_free_coherent); | ||
75 | |||
76 | /* | ||
77 | * The map routines "map" the specified address range for DMA | ||
78 | * accesses. The memory belongs to the device after this call is | ||
79 | * issued, until it is unmapped with dma_unmap_single. | ||
80 | * | ||
81 | * We don't need to do any mapping, we just flush the address range | ||
82 | * out of the cache and return a DMA address. | ||
83 | * | ||
84 | * The unmap routines do whatever is necessary before the processor | ||
85 | * accesses the memory again, and must be called before the driver | ||
86 | * touches the memory. We can get away with a cache invalidate if we | ||
87 | * can count on nothing having been touched. | ||
88 | */ | ||
89 | |||
90 | |||
91 | /* | ||
92 | * dma_map_single can be passed any memory address, and there appear | ||
93 | * to be no alignment constraints. | ||
94 | * | ||
95 | * There is a chance that the start of the buffer will share a cache | ||
96 | * line with some other data that has been touched in the meantime. | ||
97 | */ | ||
98 | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, | ||
99 | enum dma_data_direction direction) | ||
100 | { | ||
101 | struct page *page; | ||
102 | dma_addr_t dma_addr; | ||
103 | int thispage; | ||
104 | |||
105 | BUG_ON(!valid_dma_direction(direction)); | ||
106 | WARN_ON(size == 0); | ||
107 | |||
108 | dma_addr = __pa(ptr); | ||
109 | |||
110 | /* We might have been handed a buffer that wraps a page boundary */ | ||
111 | while ((int)size > 0) { | ||
112 | /* The amount to flush that's on this page */ | ||
113 | thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1)); | ||
114 | thispage = min((int)thispage, (int)size); | ||
115 | /* Is this valid for any page we could be handed? */ | ||
116 | page = pfn_to_page(kaddr_to_pfn(ptr)); | ||
117 | homecache_flush_cache(page, 0); | ||
118 | ptr += thispage; | ||
119 | size -= thispage; | ||
120 | } | ||
121 | |||
122 | return dma_addr; | ||
123 | } | ||
124 | EXPORT_SYMBOL(dma_map_single); | ||
125 | |||
126 | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
127 | enum dma_data_direction direction) | ||
128 | { | ||
129 | BUG_ON(!valid_dma_direction(direction)); | ||
130 | } | ||
131 | EXPORT_SYMBOL(dma_unmap_single); | ||
132 | |||
133 | int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, | ||
134 | enum dma_data_direction direction) | ||
135 | { | ||
136 | struct scatterlist *sg; | ||
137 | int i; | ||
138 | |||
139 | BUG_ON(!valid_dma_direction(direction)); | ||
140 | |||
141 | WARN_ON(nents == 0 || sglist->length == 0); | ||
142 | |||
143 | for_each_sg(sglist, sg, nents, i) { | ||
144 | struct page *page; | ||
145 | sg->dma_address = sg_phys(sg); | ||
146 | page = pfn_to_page(sg->dma_address >> PAGE_SHIFT); | ||
147 | homecache_flush_cache(page, 0); | ||
148 | } | ||
149 | |||
150 | return nents; | ||
151 | } | ||
152 | EXPORT_SYMBOL(dma_map_sg); | ||
153 | |||
154 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, | ||
155 | enum dma_data_direction direction) | ||
156 | { | ||
157 | BUG_ON(!valid_dma_direction(direction)); | ||
158 | } | ||
159 | EXPORT_SYMBOL(dma_unmap_sg); | ||
160 | |||
161 | dma_addr_t dma_map_page(struct device *dev, struct page *page, | ||
162 | unsigned long offset, size_t size, | ||
163 | enum dma_data_direction direction) | ||
164 | { | ||
165 | BUG_ON(!valid_dma_direction(direction)); | ||
166 | |||
167 | homecache_flush_cache(page, 0); | ||
168 | |||
169 | return page_to_pa(page) + offset; | ||
170 | } | ||
171 | EXPORT_SYMBOL(dma_map_page); | ||
172 | |||
173 | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | ||
174 | enum dma_data_direction direction) | ||
175 | { | ||
176 | BUG_ON(!valid_dma_direction(direction)); | ||
177 | } | ||
178 | EXPORT_SYMBOL(dma_unmap_page); | ||
179 | |||
180 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
181 | size_t size, enum dma_data_direction direction) | ||
182 | { | ||
183 | BUG_ON(!valid_dma_direction(direction)); | ||
184 | } | ||
185 | EXPORT_SYMBOL(dma_sync_single_for_cpu); | ||
186 | |||
187 | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | ||
188 | size_t size, enum dma_data_direction direction) | ||
189 | { | ||
190 | unsigned long start = PFN_DOWN(dma_handle); | ||
191 | unsigned long end = PFN_DOWN(dma_handle + size - 1); | ||
192 | unsigned long i; | ||
193 | |||
194 | BUG_ON(!valid_dma_direction(direction)); | ||
195 | for (i = start; i <= end; ++i) | ||
196 | homecache_flush_cache(pfn_to_page(i), 0); | ||
197 | } | ||
198 | EXPORT_SYMBOL(dma_sync_single_for_device); | ||
199 | |||
200 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | ||
201 | enum dma_data_direction direction) | ||
202 | { | ||
203 | BUG_ON(!valid_dma_direction(direction)); | ||
204 | WARN_ON(nelems == 0 || sg[0].length == 0); | ||
205 | } | ||
206 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | ||
207 | |||
208 | /* | ||
209 | * Flush and invalidate cache for scatterlist. | ||
210 | */ | ||
211 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, | ||
212 | int nelems, enum dma_data_direction direction) | ||
213 | { | ||
214 | struct scatterlist *sg; | ||
215 | int i; | ||
216 | |||
217 | BUG_ON(!valid_dma_direction(direction)); | ||
218 | WARN_ON(nelems == 0 || sglist->length == 0); | ||
219 | |||
220 | for_each_sg(sglist, sg, nelems, i) { | ||
221 | dma_sync_single_for_device(dev, sg->dma_address, | ||
222 | sg_dma_len(sg), direction); | ||
223 | } | ||
224 | } | ||
225 | EXPORT_SYMBOL(dma_sync_sg_for_device); | ||
226 | |||
227 | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
228 | unsigned long offset, size_t size, | ||
229 | enum dma_data_direction direction) | ||
230 | { | ||
231 | dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); | ||
232 | } | ||
233 | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); | ||
234 | |||
235 | void dma_sync_single_range_for_device(struct device *dev, | ||
236 | dma_addr_t dma_handle, | ||
237 | unsigned long offset, size_t size, | ||
238 | enum dma_data_direction direction) | ||
239 | { | ||
240 | dma_sync_single_for_device(dev, dma_handle + offset, size, direction); | ||
241 | } | ||
242 | EXPORT_SYMBOL(dma_sync_single_range_for_device); | ||
243 | |||
244 | /* | ||
245 | * dma_alloc_noncoherent() returns non-cacheable memory, so there's no | ||
246 | * need to do any flushing here. | ||
247 | */ | ||
248 | void dma_cache_sync(void *vaddr, size_t size, | ||
249 | enum dma_data_direction direction) | ||
250 | { | ||
251 | } | ||
252 | EXPORT_SYMBOL(dma_cache_sync); | ||