diff options
Diffstat (limited to 'arch/sparc/math-emu/math.c')
-rw-r--r-- | arch/sparc/math-emu/math.c | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/arch/sparc/math-emu/math.c b/arch/sparc/math-emu/math.c new file mode 100644 index 000000000000..be2c80932e26 --- /dev/null +++ b/arch/sparc/math-emu/math.c | |||
@@ -0,0 +1,521 @@ | |||
1 | /* | ||
2 | * arch/sparc/math-emu/math.c | ||
3 | * | ||
4 | * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) | ||
5 | * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) | ||
6 | * Copyright (C) 1999 David S. Miller (davem@redhat.com) | ||
7 | * | ||
8 | * This is a good place to start if you're trying to understand the | ||
9 | * emulation code, because it's pretty simple. What we do is | ||
10 | * essentially analyse the instruction to work out what the operation | ||
11 | * is and which registers are involved. We then execute the appropriate | ||
12 | * FXXXX function. [The floating point queue introduces a minor wrinkle; | ||
13 | * see below...] | ||
14 | * The fxxxxx.c files each emulate a single insn. They look relatively | ||
15 | * simple because the complexity is hidden away in an unholy tangle | ||
16 | * of preprocessor macros. | ||
17 | * | ||
18 | * The first layer of macros is single.h, double.h, quad.h. Generally | ||
19 | * these files define macros for working with floating point numbers | ||
20 | * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, | ||
21 | * for instance. These macros are usually defined as calls to more | ||
22 | * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number | ||
23 | * of machine words required to store the given IEEE format is passed | ||
24 | * as a parameter. [double.h and co check the number of bits in a word | ||
25 | * and define FP_ADD_D & co appropriately]. | ||
26 | * The generic macros are defined in op-common.h. This is where all | ||
27 | * the grotty stuff like handling NaNs is coded. To handle the possible | ||
28 | * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() | ||
29 | * where wc is the 'number of machine words' parameter (here 2). | ||
30 | * These are defined in the third layer of macros: op-1.h, op-2.h | ||
31 | * and op-4.h. These handle operations on floating point numbers composed | ||
32 | * of 1,2 and 4 machine words respectively. [For example, on sparc64 | ||
33 | * doubles are one machine word so macros in double.h eventually use | ||
34 | * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] | ||
35 | * soft-fp.h is on the same level as op-common.h, and defines some | ||
36 | * macros which are independent of both word size and FP format. | ||
37 | * Finally, sfp-machine.h is the machine dependent part of the | ||
38 | * code: it defines the word size and what type a word is. It also | ||
39 | * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h | ||
40 | * provide several possible flavours of multiply algorithm, most | ||
41 | * of which require that you supply some form of asm or C primitive to | ||
42 | * do the actual multiply. (such asm primitives should be defined | ||
43 | * in sfp-machine.h too). udivmodti4.c is the same sort of thing. | ||
44 | * | ||
45 | * There may be some errors here because I'm working from a | ||
46 | * SPARC architecture manual V9, and what I really want is V8... | ||
47 | * Also, the insns which can generate exceptions seem to be a | ||
48 | * greater subset of the FPops than for V9 (for example, FCMPED | ||
49 | * has to be emulated on V8). So I think I'm going to have | ||
50 | * to emulate them all just to be on the safe side... | ||
51 | * | ||
52 | * Emulation routines originate from soft-fp package, which is | ||
53 | * part of glibc and has appropriate copyrights in it (allegedly). | ||
54 | * | ||
55 | * NB: on sparc int == long == 4 bytes, long long == 8 bytes. | ||
56 | * Most bits of the kernel seem to go for long rather than int, | ||
57 | * so we follow that practice... | ||
58 | */ | ||
59 | |||
60 | /* TODO: | ||
61 | * fpsave() saves the FP queue but fpload() doesn't reload it. | ||
62 | * Therefore when we context switch or change FPU ownership | ||
63 | * we have to check to see if the queue had anything in it and | ||
64 | * emulate it if it did. This is going to be a pain. | ||
65 | */ | ||
66 | |||
67 | #include <linux/types.h> | ||
68 | #include <linux/sched.h> | ||
69 | #include <linux/mm.h> | ||
70 | #include <asm/uaccess.h> | ||
71 | |||
72 | #include "sfp-util.h" | ||
73 | #include <math-emu/soft-fp.h> | ||
74 | #include <math-emu/single.h> | ||
75 | #include <math-emu/double.h> | ||
76 | #include <math-emu/quad.h> | ||
77 | |||
78 | #define FLOATFUNC(x) extern int x(void *,void *,void *) | ||
79 | |||
80 | /* The Vn labels indicate what version of the SPARC architecture gas thinks | ||
81 | * each insn is. This is from the binutils source :-> | ||
82 | */ | ||
83 | /* quadword instructions */ | ||
84 | #define FSQRTQ 0x02b /* v8 */ | ||
85 | #define FADDQ 0x043 /* v8 */ | ||
86 | #define FSUBQ 0x047 /* v8 */ | ||
87 | #define FMULQ 0x04b /* v8 */ | ||
88 | #define FDIVQ 0x04f /* v8 */ | ||
89 | #define FDMULQ 0x06e /* v8 */ | ||
90 | #define FQTOS 0x0c7 /* v8 */ | ||
91 | #define FQTOD 0x0cb /* v8 */ | ||
92 | #define FITOQ 0x0cc /* v8 */ | ||
93 | #define FSTOQ 0x0cd /* v8 */ | ||
94 | #define FDTOQ 0x0ce /* v8 */ | ||
95 | #define FQTOI 0x0d3 /* v8 */ | ||
96 | #define FCMPQ 0x053 /* v8 */ | ||
97 | #define FCMPEQ 0x057 /* v8 */ | ||
98 | /* single/double instructions (subnormal): should all work */ | ||
99 | #define FSQRTS 0x029 /* v7 */ | ||
100 | #define FSQRTD 0x02a /* v7 */ | ||
101 | #define FADDS 0x041 /* v6 */ | ||
102 | #define FADDD 0x042 /* v6 */ | ||
103 | #define FSUBS 0x045 /* v6 */ | ||
104 | #define FSUBD 0x046 /* v6 */ | ||
105 | #define FMULS 0x049 /* v6 */ | ||
106 | #define FMULD 0x04a /* v6 */ | ||
107 | #define FDIVS 0x04d /* v6 */ | ||
108 | #define FDIVD 0x04e /* v6 */ | ||
109 | #define FSMULD 0x069 /* v6 */ | ||
110 | #define FDTOS 0x0c6 /* v6 */ | ||
111 | #define FSTOD 0x0c9 /* v6 */ | ||
112 | #define FSTOI 0x0d1 /* v6 */ | ||
113 | #define FDTOI 0x0d2 /* v6 */ | ||
114 | #define FABSS 0x009 /* v6 */ | ||
115 | #define FCMPS 0x051 /* v6 */ | ||
116 | #define FCMPES 0x055 /* v6 */ | ||
117 | #define FCMPD 0x052 /* v6 */ | ||
118 | #define FCMPED 0x056 /* v6 */ | ||
119 | #define FMOVS 0x001 /* v6 */ | ||
120 | #define FNEGS 0x005 /* v6 */ | ||
121 | #define FITOS 0x0c4 /* v6 */ | ||
122 | #define FITOD 0x0c8 /* v6 */ | ||
123 | |||
124 | #define FSR_TEM_SHIFT 23UL | ||
125 | #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT) | ||
126 | #define FSR_AEXC_SHIFT 5UL | ||
127 | #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT) | ||
128 | #define FSR_CEXC_SHIFT 0UL | ||
129 | #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) | ||
130 | |||
131 | static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); | ||
132 | |||
133 | /* Unlike the Sparc64 version (which has a struct fpustate), we | ||
134 | * pass the taskstruct corresponding to the task which currently owns the | ||
135 | * FPU. This is partly because we don't have the fpustate struct and | ||
136 | * partly because the task owning the FPU isn't always current (as is | ||
137 | * the case for the Sparc64 port). This is probably SMP-related... | ||
138 | * This function returns 1 if all queued insns were emulated successfully. | ||
139 | * The test for unimplemented FPop in kernel mode has been moved into | ||
140 | * kernel/traps.c for simplicity. | ||
141 | */ | ||
142 | int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) | ||
143 | { | ||
144 | /* regs->pc isn't necessarily the PC at which the offending insn is sitting. | ||
145 | * The FPU maintains a queue of FPops which cause traps. | ||
146 | * When it hits an instruction that requires that the trapped op succeeded | ||
147 | * (usually because it reads a reg. that the trapped op wrote) then it | ||
148 | * causes this exception. We need to emulate all the insns on the queue | ||
149 | * and then allow the op to proceed. | ||
150 | * This code should also handle the case where the trap was precise, | ||
151 | * in which case the queue length is zero and regs->pc points at the | ||
152 | * single FPop to be emulated. (this case is untested, though :->) | ||
153 | * You'll need this case if you want to be able to emulate all FPops | ||
154 | * because the FPU either doesn't exist or has been software-disabled. | ||
155 | * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it | ||
156 | * might sound because the Ultra does funky things with a superscalar | ||
157 | * architecture.] | ||
158 | */ | ||
159 | |||
160 | /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ | ||
161 | |||
162 | int i; | ||
163 | int retcode = 0; /* assume all succeed */ | ||
164 | unsigned long insn; | ||
165 | |||
166 | #ifdef DEBUG_MATHEMU | ||
167 | printk("In do_mathemu()... pc is %08lx\n", regs->pc); | ||
168 | printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); | ||
169 | for (i = 0; i < fpt->thread.fpqdepth; i++) | ||
170 | printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, | ||
171 | (unsigned long)fpt->thread.fpqueue[i].insn_addr); | ||
172 | #endif | ||
173 | |||
174 | if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ | ||
175 | #ifdef DEBUG_MATHEMU | ||
176 | printk("precise trap at %08lx\n", regs->pc); | ||
177 | #endif | ||
178 | if (!get_user(insn, (u32 __user *) regs->pc)) { | ||
179 | retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); | ||
180 | if (retcode) { | ||
181 | /* in this case we need to fix up PC & nPC */ | ||
182 | regs->pc = regs->npc; | ||
183 | regs->npc += 4; | ||
184 | } | ||
185 | } | ||
186 | return retcode; | ||
187 | } | ||
188 | |||
189 | /* Normal case: need to empty the queue... */ | ||
190 | for (i = 0; i < fpt->thread.fpqdepth; i++) { | ||
191 | retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); | ||
192 | if (!retcode) /* insn failed, no point doing any more */ | ||
193 | break; | ||
194 | } | ||
195 | /* Now empty the queue and clear the queue_not_empty flag */ | ||
196 | if (retcode) | ||
197 | fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); | ||
198 | else | ||
199 | fpt->thread.fsr &= ~0x3000; | ||
200 | fpt->thread.fpqdepth = 0; | ||
201 | |||
202 | return retcode; | ||
203 | } | ||
204 | |||
205 | /* All routines returning an exception to raise should detect | ||
206 | * such exceptions _before_ rounding to be consistent with | ||
207 | * the behavior of the hardware in the implemented cases | ||
208 | * (and thus with the recommendations in the V9 architecture | ||
209 | * manual). | ||
210 | * | ||
211 | * We return 0 if a SIGFPE should be sent, 1 otherwise. | ||
212 | */ | ||
213 | static inline int record_exception(unsigned long *pfsr, int eflag) | ||
214 | { | ||
215 | unsigned long fsr = *pfsr; | ||
216 | int would_trap; | ||
217 | |||
218 | /* Determine if this exception would have generated a trap. */ | ||
219 | would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; | ||
220 | |||
221 | /* If trapping, we only want to signal one bit. */ | ||
222 | if (would_trap != 0) { | ||
223 | eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); | ||
224 | if ((eflag & (eflag - 1)) != 0) { | ||
225 | if (eflag & FP_EX_INVALID) | ||
226 | eflag = FP_EX_INVALID; | ||
227 | else if (eflag & FP_EX_OVERFLOW) | ||
228 | eflag = FP_EX_OVERFLOW; | ||
229 | else if (eflag & FP_EX_UNDERFLOW) | ||
230 | eflag = FP_EX_UNDERFLOW; | ||
231 | else if (eflag & FP_EX_DIVZERO) | ||
232 | eflag = FP_EX_DIVZERO; | ||
233 | else if (eflag & FP_EX_INEXACT) | ||
234 | eflag = FP_EX_INEXACT; | ||
235 | } | ||
236 | } | ||
237 | |||
238 | /* Set CEXC, here is the rule: | ||
239 | * | ||
240 | * In general all FPU ops will set one and only one | ||
241 | * bit in the CEXC field, this is always the case | ||
242 | * when the IEEE exception trap is enabled in TEM. | ||
243 | */ | ||
244 | fsr &= ~(FSR_CEXC_MASK); | ||
245 | fsr |= ((long)eflag << FSR_CEXC_SHIFT); | ||
246 | |||
247 | /* Set the AEXC field, rule is: | ||
248 | * | ||
249 | * If a trap would not be generated, the | ||
250 | * CEXC just generated is OR'd into the | ||
251 | * existing value of AEXC. | ||
252 | */ | ||
253 | if (would_trap == 0) | ||
254 | fsr |= ((long)eflag << FSR_AEXC_SHIFT); | ||
255 | |||
256 | /* If trapping, indicate fault trap type IEEE. */ | ||
257 | if (would_trap != 0) | ||
258 | fsr |= (1UL << 14); | ||
259 | |||
260 | *pfsr = fsr; | ||
261 | |||
262 | return (would_trap ? 0 : 1); | ||
263 | } | ||
264 | |||
265 | typedef union { | ||
266 | u32 s; | ||
267 | u64 d; | ||
268 | u64 q[2]; | ||
269 | } *argp; | ||
270 | |||
271 | static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) | ||
272 | { | ||
273 | /* Emulate the given insn, updating fsr and fregs appropriately. */ | ||
274 | int type = 0; | ||
275 | /* r is rd, b is rs2 and a is rs1. The *u arg tells | ||
276 | whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) | ||
277 | non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ | ||
278 | #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | ||
279 | int freg; | ||
280 | argp rs1 = NULL, rs2 = NULL, rd = NULL; | ||
281 | FP_DECL_EX; | ||
282 | FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); | ||
283 | FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); | ||
284 | FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); | ||
285 | int IR; | ||
286 | long fsr; | ||
287 | |||
288 | #ifdef DEBUG_MATHEMU | ||
289 | printk("In do_mathemu(), emulating %08lx\n", insn); | ||
290 | #endif | ||
291 | |||
292 | if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { | ||
293 | switch ((insn >> 5) & 0x1ff) { | ||
294 | case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; | ||
295 | case FADDQ: | ||
296 | case FSUBQ: | ||
297 | case FMULQ: | ||
298 | case FDIVQ: TYPE(3,3,1,3,1,3,1); break; | ||
299 | case FDMULQ: TYPE(3,3,1,2,1,2,1); break; | ||
300 | case FQTOS: TYPE(3,1,1,3,1,0,0); break; | ||
301 | case FQTOD: TYPE(3,2,1,3,1,0,0); break; | ||
302 | case FITOQ: TYPE(3,3,1,1,0,0,0); break; | ||
303 | case FSTOQ: TYPE(3,3,1,1,1,0,0); break; | ||
304 | case FDTOQ: TYPE(3,3,1,2,1,0,0); break; | ||
305 | case FQTOI: TYPE(3,1,0,3,1,0,0); break; | ||
306 | case FSQRTS: TYPE(2,1,1,1,1,0,0); break; | ||
307 | case FSQRTD: TYPE(2,2,1,2,1,0,0); break; | ||
308 | case FADDD: | ||
309 | case FSUBD: | ||
310 | case FMULD: | ||
311 | case FDIVD: TYPE(2,2,1,2,1,2,1); break; | ||
312 | case FADDS: | ||
313 | case FSUBS: | ||
314 | case FMULS: | ||
315 | case FDIVS: TYPE(2,1,1,1,1,1,1); break; | ||
316 | case FSMULD: TYPE(2,2,1,1,1,1,1); break; | ||
317 | case FDTOS: TYPE(2,1,1,2,1,0,0); break; | ||
318 | case FSTOD: TYPE(2,2,1,1,1,0,0); break; | ||
319 | case FSTOI: TYPE(2,1,0,1,1,0,0); break; | ||
320 | case FDTOI: TYPE(2,1,0,2,1,0,0); break; | ||
321 | case FITOS: TYPE(2,1,1,1,0,0,0); break; | ||
322 | case FITOD: TYPE(2,2,1,1,0,0,0); break; | ||
323 | case FMOVS: | ||
324 | case FABSS: | ||
325 | case FNEGS: TYPE(2,1,0,1,0,0,0); break; | ||
326 | default: | ||
327 | #ifdef DEBUG_MATHEMU | ||
328 | printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff); | ||
329 | #endif | ||
330 | break; | ||
331 | } | ||
332 | } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { | ||
333 | switch ((insn >> 5) & 0x1ff) { | ||
334 | case FCMPS: TYPE(3,0,0,1,1,1,1); break; | ||
335 | case FCMPES: TYPE(3,0,0,1,1,1,1); break; | ||
336 | case FCMPD: TYPE(3,0,0,2,1,2,1); break; | ||
337 | case FCMPED: TYPE(3,0,0,2,1,2,1); break; | ||
338 | case FCMPQ: TYPE(3,0,0,3,1,3,1); break; | ||
339 | case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; | ||
340 | default: | ||
341 | #ifdef DEBUG_MATHEMU | ||
342 | printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff); | ||
343 | #endif | ||
344 | break; | ||
345 | } | ||
346 | } | ||
347 | |||
348 | if (!type) { /* oops, didn't recognise that FPop */ | ||
349 | #ifdef DEBUG_MATHEMU | ||
350 | printk("attempt to emulate unrecognised FPop!\n"); | ||
351 | #endif | ||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | /* Decode the registers to be used */ | ||
356 | freg = (*pfsr >> 14) & 0xf; | ||
357 | |||
358 | *pfsr &= ~0x1c000; /* clear the traptype bits */ | ||
359 | |||
360 | freg = ((insn >> 14) & 0x1f); | ||
361 | switch (type & 0x3) { /* is rs1 single, double or quad? */ | ||
362 | case 3: | ||
363 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ | ||
364 | /* encoded reg. number set to zero. */ | ||
365 | *pfsr |= (6 << 14); | ||
366 | return 0; /* simulate invalid_fp_register exception */ | ||
367 | } | ||
368 | /* fall through */ | ||
369 | case 2: | ||
370 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ | ||
371 | *pfsr |= (6 << 14); | ||
372 | return 0; | ||
373 | } | ||
374 | } | ||
375 | rs1 = (argp)&fregs[freg]; | ||
376 | switch (type & 0x7) { | ||
377 | case 7: FP_UNPACK_QP (QA, rs1); break; | ||
378 | case 6: FP_UNPACK_DP (DA, rs1); break; | ||
379 | case 5: FP_UNPACK_SP (SA, rs1); break; | ||
380 | } | ||
381 | freg = (insn & 0x1f); | ||
382 | switch ((type >> 3) & 0x3) { /* same again for rs2 */ | ||
383 | case 3: | ||
384 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ | ||
385 | /* encoded reg. number set to zero. */ | ||
386 | *pfsr |= (6 << 14); | ||
387 | return 0; /* simulate invalid_fp_register exception */ | ||
388 | } | ||
389 | /* fall through */ | ||
390 | case 2: | ||
391 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ | ||
392 | *pfsr |= (6 << 14); | ||
393 | return 0; | ||
394 | } | ||
395 | } | ||
396 | rs2 = (argp)&fregs[freg]; | ||
397 | switch ((type >> 3) & 0x7) { | ||
398 | case 7: FP_UNPACK_QP (QB, rs2); break; | ||
399 | case 6: FP_UNPACK_DP (DB, rs2); break; | ||
400 | case 5: FP_UNPACK_SP (SB, rs2); break; | ||
401 | } | ||
402 | freg = ((insn >> 25) & 0x1f); | ||
403 | switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */ | ||
404 | case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ | ||
405 | if (freg) { /* V8 has only one set of condition codes, so */ | ||
406 | /* anything but 0 in the rd field is an error */ | ||
407 | *pfsr |= (6 << 14); /* (should probably flag as invalid opcode */ | ||
408 | return 0; /* but SIGFPE will do :-> ) */ | ||
409 | } | ||
410 | break; | ||
411 | case 3: | ||
412 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ | ||
413 | /* encoded reg. number set to zero. */ | ||
414 | *pfsr |= (6 << 14); | ||
415 | return 0; /* simulate invalid_fp_register exception */ | ||
416 | } | ||
417 | /* fall through */ | ||
418 | case 2: | ||
419 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ | ||
420 | *pfsr |= (6 << 14); | ||
421 | return 0; | ||
422 | } | ||
423 | /* fall through */ | ||
424 | case 1: | ||
425 | rd = (void *)&fregs[freg]; | ||
426 | break; | ||
427 | } | ||
428 | #ifdef DEBUG_MATHEMU | ||
429 | printk("executing insn...\n"); | ||
430 | #endif | ||
431 | /* do the Right Thing */ | ||
432 | switch ((insn >> 5) & 0x1ff) { | ||
433 | /* + */ | ||
434 | case FADDS: FP_ADD_S (SR, SA, SB); break; | ||
435 | case FADDD: FP_ADD_D (DR, DA, DB); break; | ||
436 | case FADDQ: FP_ADD_Q (QR, QA, QB); break; | ||
437 | /* - */ | ||
438 | case FSUBS: FP_SUB_S (SR, SA, SB); break; | ||
439 | case FSUBD: FP_SUB_D (DR, DA, DB); break; | ||
440 | case FSUBQ: FP_SUB_Q (QR, QA, QB); break; | ||
441 | /* * */ | ||
442 | case FMULS: FP_MUL_S (SR, SA, SB); break; | ||
443 | case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); | ||
444 | FP_CONV (D, S, 2, 1, DB, SB); | ||
445 | case FMULD: FP_MUL_D (DR, DA, DB); break; | ||
446 | case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); | ||
447 | FP_CONV (Q, D, 4, 2, QB, DB); | ||
448 | case FMULQ: FP_MUL_Q (QR, QA, QB); break; | ||
449 | /* / */ | ||
450 | case FDIVS: FP_DIV_S (SR, SA, SB); break; | ||
451 | case FDIVD: FP_DIV_D (DR, DA, DB); break; | ||
452 | case FDIVQ: FP_DIV_Q (QR, QA, QB); break; | ||
453 | /* sqrt */ | ||
454 | case FSQRTS: FP_SQRT_S (SR, SB); break; | ||
455 | case FSQRTD: FP_SQRT_D (DR, DB); break; | ||
456 | case FSQRTQ: FP_SQRT_Q (QR, QB); break; | ||
457 | /* mov */ | ||
458 | case FMOVS: rd->s = rs2->s; break; | ||
459 | case FABSS: rd->s = rs2->s & 0x7fffffff; break; | ||
460 | case FNEGS: rd->s = rs2->s ^ 0x80000000; break; | ||
461 | /* float to int */ | ||
462 | case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; | ||
463 | case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; | ||
464 | case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; | ||
465 | /* int to float */ | ||
466 | case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; | ||
467 | case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; | ||
468 | case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; | ||
469 | /* float to float */ | ||
470 | case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; | ||
471 | case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; | ||
472 | case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; | ||
473 | case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; | ||
474 | case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; | ||
475 | case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; | ||
476 | /* comparison */ | ||
477 | case FCMPS: | ||
478 | case FCMPES: | ||
479 | FP_CMP_S(IR, SB, SA, 3); | ||
480 | if (IR == 3 && | ||
481 | (((insn >> 5) & 0x1ff) == FCMPES || | ||
482 | FP_ISSIGNAN_S(SA) || | ||
483 | FP_ISSIGNAN_S(SB))) | ||
484 | FP_SET_EXCEPTION (FP_EX_INVALID); | ||
485 | break; | ||
486 | case FCMPD: | ||
487 | case FCMPED: | ||
488 | FP_CMP_D(IR, DB, DA, 3); | ||
489 | if (IR == 3 && | ||
490 | (((insn >> 5) & 0x1ff) == FCMPED || | ||
491 | FP_ISSIGNAN_D(DA) || | ||
492 | FP_ISSIGNAN_D(DB))) | ||
493 | FP_SET_EXCEPTION (FP_EX_INVALID); | ||
494 | break; | ||
495 | case FCMPQ: | ||
496 | case FCMPEQ: | ||
497 | FP_CMP_Q(IR, QB, QA, 3); | ||
498 | if (IR == 3 && | ||
499 | (((insn >> 5) & 0x1ff) == FCMPEQ || | ||
500 | FP_ISSIGNAN_Q(QA) || | ||
501 | FP_ISSIGNAN_Q(QB))) | ||
502 | FP_SET_EXCEPTION (FP_EX_INVALID); | ||
503 | } | ||
504 | if (!FP_INHIBIT_RESULTS) { | ||
505 | switch ((type >> 6) & 0x7) { | ||
506 | case 0: fsr = *pfsr; | ||
507 | if (IR == -1) IR = 2; | ||
508 | /* fcc is always fcc0 */ | ||
509 | fsr &= ~0xc00; fsr |= (IR << 10); break; | ||
510 | *pfsr = fsr; | ||
511 | break; | ||
512 | case 1: rd->s = IR; break; | ||
513 | case 5: FP_PACK_SP (rd, SR); break; | ||
514 | case 6: FP_PACK_DP (rd, DR); break; | ||
515 | case 7: FP_PACK_QP (rd, QR); break; | ||
516 | } | ||
517 | } | ||
518 | if (_fex == 0) | ||
519 | return 1; /* success! */ | ||
520 | return record_exception(pfsr, _fex); | ||
521 | } | ||