diff options
Diffstat (limited to 'arch/sparc/kernel/smp_64.c')
-rw-r--r-- | arch/sparc/kernel/smp_64.c | 1408 |
1 files changed, 1408 insertions, 0 deletions
diff --git a/arch/sparc/kernel/smp_64.c b/arch/sparc/kernel/smp_64.c new file mode 100644 index 000000000000..46329799f346 --- /dev/null +++ b/arch/sparc/kernel/smp_64.c | |||
@@ -0,0 +1,1408 @@ | |||
1 | /* smp.c: Sparc64 SMP support. | ||
2 | * | ||
3 | * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | #include <linux/module.h> | ||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/pagemap.h> | ||
11 | #include <linux/threads.h> | ||
12 | #include <linux/smp.h> | ||
13 | #include <linux/interrupt.h> | ||
14 | #include <linux/kernel_stat.h> | ||
15 | #include <linux/delay.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/spinlock.h> | ||
18 | #include <linux/fs.h> | ||
19 | #include <linux/seq_file.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/jiffies.h> | ||
22 | #include <linux/profile.h> | ||
23 | #include <linux/lmb.h> | ||
24 | #include <linux/cpu.h> | ||
25 | |||
26 | #include <asm/head.h> | ||
27 | #include <asm/ptrace.h> | ||
28 | #include <asm/atomic.h> | ||
29 | #include <asm/tlbflush.h> | ||
30 | #include <asm/mmu_context.h> | ||
31 | #include <asm/cpudata.h> | ||
32 | #include <asm/hvtramp.h> | ||
33 | #include <asm/io.h> | ||
34 | #include <asm/timer.h> | ||
35 | |||
36 | #include <asm/irq.h> | ||
37 | #include <asm/irq_regs.h> | ||
38 | #include <asm/page.h> | ||
39 | #include <asm/pgtable.h> | ||
40 | #include <asm/oplib.h> | ||
41 | #include <asm/uaccess.h> | ||
42 | #include <asm/starfire.h> | ||
43 | #include <asm/tlb.h> | ||
44 | #include <asm/sections.h> | ||
45 | #include <asm/prom.h> | ||
46 | #include <asm/mdesc.h> | ||
47 | #include <asm/ldc.h> | ||
48 | #include <asm/hypervisor.h> | ||
49 | |||
50 | int sparc64_multi_core __read_mostly; | ||
51 | |||
52 | DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; | ||
53 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly = | ||
54 | { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; | ||
55 | |||
56 | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | ||
57 | EXPORT_SYMBOL(cpu_core_map); | ||
58 | |||
59 | static cpumask_t smp_commenced_mask; | ||
60 | |||
61 | void smp_info(struct seq_file *m) | ||
62 | { | ||
63 | int i; | ||
64 | |||
65 | seq_printf(m, "State:\n"); | ||
66 | for_each_online_cpu(i) | ||
67 | seq_printf(m, "CPU%d:\t\tonline\n", i); | ||
68 | } | ||
69 | |||
70 | void smp_bogo(struct seq_file *m) | ||
71 | { | ||
72 | int i; | ||
73 | |||
74 | for_each_online_cpu(i) | ||
75 | seq_printf(m, | ||
76 | "Cpu%dClkTck\t: %016lx\n", | ||
77 | i, cpu_data(i).clock_tick); | ||
78 | } | ||
79 | |||
80 | extern void setup_sparc64_timer(void); | ||
81 | |||
82 | static volatile unsigned long callin_flag = 0; | ||
83 | |||
84 | void __cpuinit smp_callin(void) | ||
85 | { | ||
86 | int cpuid = hard_smp_processor_id(); | ||
87 | |||
88 | __local_per_cpu_offset = __per_cpu_offset(cpuid); | ||
89 | |||
90 | if (tlb_type == hypervisor) | ||
91 | sun4v_ktsb_register(); | ||
92 | |||
93 | __flush_tlb_all(); | ||
94 | |||
95 | setup_sparc64_timer(); | ||
96 | |||
97 | if (cheetah_pcache_forced_on) | ||
98 | cheetah_enable_pcache(); | ||
99 | |||
100 | local_irq_enable(); | ||
101 | |||
102 | callin_flag = 1; | ||
103 | __asm__ __volatile__("membar #Sync\n\t" | ||
104 | "flush %%g6" : : : "memory"); | ||
105 | |||
106 | /* Clear this or we will die instantly when we | ||
107 | * schedule back to this idler... | ||
108 | */ | ||
109 | current_thread_info()->new_child = 0; | ||
110 | |||
111 | /* Attach to the address space of init_task. */ | ||
112 | atomic_inc(&init_mm.mm_count); | ||
113 | current->active_mm = &init_mm; | ||
114 | |||
115 | /* inform the notifiers about the new cpu */ | ||
116 | notify_cpu_starting(cpuid); | ||
117 | |||
118 | while (!cpu_isset(cpuid, smp_commenced_mask)) | ||
119 | rmb(); | ||
120 | |||
121 | ipi_call_lock(); | ||
122 | cpu_set(cpuid, cpu_online_map); | ||
123 | ipi_call_unlock(); | ||
124 | |||
125 | /* idle thread is expected to have preempt disabled */ | ||
126 | preempt_disable(); | ||
127 | } | ||
128 | |||
129 | void cpu_panic(void) | ||
130 | { | ||
131 | printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); | ||
132 | panic("SMP bolixed\n"); | ||
133 | } | ||
134 | |||
135 | /* This tick register synchronization scheme is taken entirely from | ||
136 | * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. | ||
137 | * | ||
138 | * The only change I've made is to rework it so that the master | ||
139 | * initiates the synchonization instead of the slave. -DaveM | ||
140 | */ | ||
141 | |||
142 | #define MASTER 0 | ||
143 | #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) | ||
144 | |||
145 | #define NUM_ROUNDS 64 /* magic value */ | ||
146 | #define NUM_ITERS 5 /* likewise */ | ||
147 | |||
148 | static DEFINE_SPINLOCK(itc_sync_lock); | ||
149 | static unsigned long go[SLAVE + 1]; | ||
150 | |||
151 | #define DEBUG_TICK_SYNC 0 | ||
152 | |||
153 | static inline long get_delta (long *rt, long *master) | ||
154 | { | ||
155 | unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; | ||
156 | unsigned long tcenter, t0, t1, tm; | ||
157 | unsigned long i; | ||
158 | |||
159 | for (i = 0; i < NUM_ITERS; i++) { | ||
160 | t0 = tick_ops->get_tick(); | ||
161 | go[MASTER] = 1; | ||
162 | membar_safe("#StoreLoad"); | ||
163 | while (!(tm = go[SLAVE])) | ||
164 | rmb(); | ||
165 | go[SLAVE] = 0; | ||
166 | wmb(); | ||
167 | t1 = tick_ops->get_tick(); | ||
168 | |||
169 | if (t1 - t0 < best_t1 - best_t0) | ||
170 | best_t0 = t0, best_t1 = t1, best_tm = tm; | ||
171 | } | ||
172 | |||
173 | *rt = best_t1 - best_t0; | ||
174 | *master = best_tm - best_t0; | ||
175 | |||
176 | /* average best_t0 and best_t1 without overflow: */ | ||
177 | tcenter = (best_t0/2 + best_t1/2); | ||
178 | if (best_t0 % 2 + best_t1 % 2 == 2) | ||
179 | tcenter++; | ||
180 | return tcenter - best_tm; | ||
181 | } | ||
182 | |||
183 | void smp_synchronize_tick_client(void) | ||
184 | { | ||
185 | long i, delta, adj, adjust_latency = 0, done = 0; | ||
186 | unsigned long flags, rt, master_time_stamp, bound; | ||
187 | #if DEBUG_TICK_SYNC | ||
188 | struct { | ||
189 | long rt; /* roundtrip time */ | ||
190 | long master; /* master's timestamp */ | ||
191 | long diff; /* difference between midpoint and master's timestamp */ | ||
192 | long lat; /* estimate of itc adjustment latency */ | ||
193 | } t[NUM_ROUNDS]; | ||
194 | #endif | ||
195 | |||
196 | go[MASTER] = 1; | ||
197 | |||
198 | while (go[MASTER]) | ||
199 | rmb(); | ||
200 | |||
201 | local_irq_save(flags); | ||
202 | { | ||
203 | for (i = 0; i < NUM_ROUNDS; i++) { | ||
204 | delta = get_delta(&rt, &master_time_stamp); | ||
205 | if (delta == 0) { | ||
206 | done = 1; /* let's lock on to this... */ | ||
207 | bound = rt; | ||
208 | } | ||
209 | |||
210 | if (!done) { | ||
211 | if (i > 0) { | ||
212 | adjust_latency += -delta; | ||
213 | adj = -delta + adjust_latency/4; | ||
214 | } else | ||
215 | adj = -delta; | ||
216 | |||
217 | tick_ops->add_tick(adj); | ||
218 | } | ||
219 | #if DEBUG_TICK_SYNC | ||
220 | t[i].rt = rt; | ||
221 | t[i].master = master_time_stamp; | ||
222 | t[i].diff = delta; | ||
223 | t[i].lat = adjust_latency/4; | ||
224 | #endif | ||
225 | } | ||
226 | } | ||
227 | local_irq_restore(flags); | ||
228 | |||
229 | #if DEBUG_TICK_SYNC | ||
230 | for (i = 0; i < NUM_ROUNDS; i++) | ||
231 | printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", | ||
232 | t[i].rt, t[i].master, t[i].diff, t[i].lat); | ||
233 | #endif | ||
234 | |||
235 | printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " | ||
236 | "(last diff %ld cycles, maxerr %lu cycles)\n", | ||
237 | smp_processor_id(), delta, rt); | ||
238 | } | ||
239 | |||
240 | static void smp_start_sync_tick_client(int cpu); | ||
241 | |||
242 | static void smp_synchronize_one_tick(int cpu) | ||
243 | { | ||
244 | unsigned long flags, i; | ||
245 | |||
246 | go[MASTER] = 0; | ||
247 | |||
248 | smp_start_sync_tick_client(cpu); | ||
249 | |||
250 | /* wait for client to be ready */ | ||
251 | while (!go[MASTER]) | ||
252 | rmb(); | ||
253 | |||
254 | /* now let the client proceed into his loop */ | ||
255 | go[MASTER] = 0; | ||
256 | membar_safe("#StoreLoad"); | ||
257 | |||
258 | spin_lock_irqsave(&itc_sync_lock, flags); | ||
259 | { | ||
260 | for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { | ||
261 | while (!go[MASTER]) | ||
262 | rmb(); | ||
263 | go[MASTER] = 0; | ||
264 | wmb(); | ||
265 | go[SLAVE] = tick_ops->get_tick(); | ||
266 | membar_safe("#StoreLoad"); | ||
267 | } | ||
268 | } | ||
269 | spin_unlock_irqrestore(&itc_sync_lock, flags); | ||
270 | } | ||
271 | |||
272 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | ||
273 | /* XXX Put this in some common place. XXX */ | ||
274 | static unsigned long kimage_addr_to_ra(void *p) | ||
275 | { | ||
276 | unsigned long val = (unsigned long) p; | ||
277 | |||
278 | return kern_base + (val - KERNBASE); | ||
279 | } | ||
280 | |||
281 | static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg) | ||
282 | { | ||
283 | extern unsigned long sparc64_ttable_tl0; | ||
284 | extern unsigned long kern_locked_tte_data; | ||
285 | struct hvtramp_descr *hdesc; | ||
286 | unsigned long trampoline_ra; | ||
287 | struct trap_per_cpu *tb; | ||
288 | u64 tte_vaddr, tte_data; | ||
289 | unsigned long hv_err; | ||
290 | int i; | ||
291 | |||
292 | hdesc = kzalloc(sizeof(*hdesc) + | ||
293 | (sizeof(struct hvtramp_mapping) * | ||
294 | num_kernel_image_mappings - 1), | ||
295 | GFP_KERNEL); | ||
296 | if (!hdesc) { | ||
297 | printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " | ||
298 | "hvtramp_descr.\n"); | ||
299 | return; | ||
300 | } | ||
301 | |||
302 | hdesc->cpu = cpu; | ||
303 | hdesc->num_mappings = num_kernel_image_mappings; | ||
304 | |||
305 | tb = &trap_block[cpu]; | ||
306 | tb->hdesc = hdesc; | ||
307 | |||
308 | hdesc->fault_info_va = (unsigned long) &tb->fault_info; | ||
309 | hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); | ||
310 | |||
311 | hdesc->thread_reg = thread_reg; | ||
312 | |||
313 | tte_vaddr = (unsigned long) KERNBASE; | ||
314 | tte_data = kern_locked_tte_data; | ||
315 | |||
316 | for (i = 0; i < hdesc->num_mappings; i++) { | ||
317 | hdesc->maps[i].vaddr = tte_vaddr; | ||
318 | hdesc->maps[i].tte = tte_data; | ||
319 | tte_vaddr += 0x400000; | ||
320 | tte_data += 0x400000; | ||
321 | } | ||
322 | |||
323 | trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); | ||
324 | |||
325 | hv_err = sun4v_cpu_start(cpu, trampoline_ra, | ||
326 | kimage_addr_to_ra(&sparc64_ttable_tl0), | ||
327 | __pa(hdesc)); | ||
328 | if (hv_err) | ||
329 | printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " | ||
330 | "gives error %lu\n", hv_err); | ||
331 | } | ||
332 | #endif | ||
333 | |||
334 | extern unsigned long sparc64_cpu_startup; | ||
335 | |||
336 | /* The OBP cpu startup callback truncates the 3rd arg cookie to | ||
337 | * 32-bits (I think) so to be safe we have it read the pointer | ||
338 | * contained here so we work on >4GB machines. -DaveM | ||
339 | */ | ||
340 | static struct thread_info *cpu_new_thread = NULL; | ||
341 | |||
342 | static int __cpuinit smp_boot_one_cpu(unsigned int cpu) | ||
343 | { | ||
344 | struct trap_per_cpu *tb = &trap_block[cpu]; | ||
345 | unsigned long entry = | ||
346 | (unsigned long)(&sparc64_cpu_startup); | ||
347 | unsigned long cookie = | ||
348 | (unsigned long)(&cpu_new_thread); | ||
349 | struct task_struct *p; | ||
350 | int timeout, ret; | ||
351 | |||
352 | p = fork_idle(cpu); | ||
353 | if (IS_ERR(p)) | ||
354 | return PTR_ERR(p); | ||
355 | callin_flag = 0; | ||
356 | cpu_new_thread = task_thread_info(p); | ||
357 | |||
358 | if (tlb_type == hypervisor) { | ||
359 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | ||
360 | if (ldom_domaining_enabled) | ||
361 | ldom_startcpu_cpuid(cpu, | ||
362 | (unsigned long) cpu_new_thread); | ||
363 | else | ||
364 | #endif | ||
365 | prom_startcpu_cpuid(cpu, entry, cookie); | ||
366 | } else { | ||
367 | struct device_node *dp = of_find_node_by_cpuid(cpu); | ||
368 | |||
369 | prom_startcpu(dp->node, entry, cookie); | ||
370 | } | ||
371 | |||
372 | for (timeout = 0; timeout < 50000; timeout++) { | ||
373 | if (callin_flag) | ||
374 | break; | ||
375 | udelay(100); | ||
376 | } | ||
377 | |||
378 | if (callin_flag) { | ||
379 | ret = 0; | ||
380 | } else { | ||
381 | printk("Processor %d is stuck.\n", cpu); | ||
382 | ret = -ENODEV; | ||
383 | } | ||
384 | cpu_new_thread = NULL; | ||
385 | |||
386 | if (tb->hdesc) { | ||
387 | kfree(tb->hdesc); | ||
388 | tb->hdesc = NULL; | ||
389 | } | ||
390 | |||
391 | return ret; | ||
392 | } | ||
393 | |||
394 | static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) | ||
395 | { | ||
396 | u64 result, target; | ||
397 | int stuck, tmp; | ||
398 | |||
399 | if (this_is_starfire) { | ||
400 | /* map to real upaid */ | ||
401 | cpu = (((cpu & 0x3c) << 1) | | ||
402 | ((cpu & 0x40) >> 4) | | ||
403 | (cpu & 0x3)); | ||
404 | } | ||
405 | |||
406 | target = (cpu << 14) | 0x70; | ||
407 | again: | ||
408 | /* Ok, this is the real Spitfire Errata #54. | ||
409 | * One must read back from a UDB internal register | ||
410 | * after writes to the UDB interrupt dispatch, but | ||
411 | * before the membar Sync for that write. | ||
412 | * So we use the high UDB control register (ASI 0x7f, | ||
413 | * ADDR 0x20) for the dummy read. -DaveM | ||
414 | */ | ||
415 | tmp = 0x40; | ||
416 | __asm__ __volatile__( | ||
417 | "wrpr %1, %2, %%pstate\n\t" | ||
418 | "stxa %4, [%0] %3\n\t" | ||
419 | "stxa %5, [%0+%8] %3\n\t" | ||
420 | "add %0, %8, %0\n\t" | ||
421 | "stxa %6, [%0+%8] %3\n\t" | ||
422 | "membar #Sync\n\t" | ||
423 | "stxa %%g0, [%7] %3\n\t" | ||
424 | "membar #Sync\n\t" | ||
425 | "mov 0x20, %%g1\n\t" | ||
426 | "ldxa [%%g1] 0x7f, %%g0\n\t" | ||
427 | "membar #Sync" | ||
428 | : "=r" (tmp) | ||
429 | : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), | ||
430 | "r" (data0), "r" (data1), "r" (data2), "r" (target), | ||
431 | "r" (0x10), "0" (tmp) | ||
432 | : "g1"); | ||
433 | |||
434 | /* NOTE: PSTATE_IE is still clear. */ | ||
435 | stuck = 100000; | ||
436 | do { | ||
437 | __asm__ __volatile__("ldxa [%%g0] %1, %0" | ||
438 | : "=r" (result) | ||
439 | : "i" (ASI_INTR_DISPATCH_STAT)); | ||
440 | if (result == 0) { | ||
441 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
442 | : : "r" (pstate)); | ||
443 | return; | ||
444 | } | ||
445 | stuck -= 1; | ||
446 | if (stuck == 0) | ||
447 | break; | ||
448 | } while (result & 0x1); | ||
449 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
450 | : : "r" (pstate)); | ||
451 | if (stuck == 0) { | ||
452 | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | ||
453 | smp_processor_id(), result); | ||
454 | } else { | ||
455 | udelay(2); | ||
456 | goto again; | ||
457 | } | ||
458 | } | ||
459 | |||
460 | static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
461 | { | ||
462 | u64 *mondo, data0, data1, data2; | ||
463 | u16 *cpu_list; | ||
464 | u64 pstate; | ||
465 | int i; | ||
466 | |||
467 | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | ||
468 | cpu_list = __va(tb->cpu_list_pa); | ||
469 | mondo = __va(tb->cpu_mondo_block_pa); | ||
470 | data0 = mondo[0]; | ||
471 | data1 = mondo[1]; | ||
472 | data2 = mondo[2]; | ||
473 | for (i = 0; i < cnt; i++) | ||
474 | spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); | ||
475 | } | ||
476 | |||
477 | /* Cheetah now allows to send the whole 64-bytes of data in the interrupt | ||
478 | * packet, but we have no use for that. However we do take advantage of | ||
479 | * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). | ||
480 | */ | ||
481 | static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
482 | { | ||
483 | int nack_busy_id, is_jbus, need_more; | ||
484 | u64 *mondo, pstate, ver, busy_mask; | ||
485 | u16 *cpu_list; | ||
486 | |||
487 | cpu_list = __va(tb->cpu_list_pa); | ||
488 | mondo = __va(tb->cpu_mondo_block_pa); | ||
489 | |||
490 | /* Unfortunately, someone at Sun had the brilliant idea to make the | ||
491 | * busy/nack fields hard-coded by ITID number for this Ultra-III | ||
492 | * derivative processor. | ||
493 | */ | ||
494 | __asm__ ("rdpr %%ver, %0" : "=r" (ver)); | ||
495 | is_jbus = ((ver >> 32) == __JALAPENO_ID || | ||
496 | (ver >> 32) == __SERRANO_ID); | ||
497 | |||
498 | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | ||
499 | |||
500 | retry: | ||
501 | need_more = 0; | ||
502 | __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" | ||
503 | : : "r" (pstate), "i" (PSTATE_IE)); | ||
504 | |||
505 | /* Setup the dispatch data registers. */ | ||
506 | __asm__ __volatile__("stxa %0, [%3] %6\n\t" | ||
507 | "stxa %1, [%4] %6\n\t" | ||
508 | "stxa %2, [%5] %6\n\t" | ||
509 | "membar #Sync\n\t" | ||
510 | : /* no outputs */ | ||
511 | : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), | ||
512 | "r" (0x40), "r" (0x50), "r" (0x60), | ||
513 | "i" (ASI_INTR_W)); | ||
514 | |||
515 | nack_busy_id = 0; | ||
516 | busy_mask = 0; | ||
517 | { | ||
518 | int i; | ||
519 | |||
520 | for (i = 0; i < cnt; i++) { | ||
521 | u64 target, nr; | ||
522 | |||
523 | nr = cpu_list[i]; | ||
524 | if (nr == 0xffff) | ||
525 | continue; | ||
526 | |||
527 | target = (nr << 14) | 0x70; | ||
528 | if (is_jbus) { | ||
529 | busy_mask |= (0x1UL << (nr * 2)); | ||
530 | } else { | ||
531 | target |= (nack_busy_id << 24); | ||
532 | busy_mask |= (0x1UL << | ||
533 | (nack_busy_id * 2)); | ||
534 | } | ||
535 | __asm__ __volatile__( | ||
536 | "stxa %%g0, [%0] %1\n\t" | ||
537 | "membar #Sync\n\t" | ||
538 | : /* no outputs */ | ||
539 | : "r" (target), "i" (ASI_INTR_W)); | ||
540 | nack_busy_id++; | ||
541 | if (nack_busy_id == 32) { | ||
542 | need_more = 1; | ||
543 | break; | ||
544 | } | ||
545 | } | ||
546 | } | ||
547 | |||
548 | /* Now, poll for completion. */ | ||
549 | { | ||
550 | u64 dispatch_stat, nack_mask; | ||
551 | long stuck; | ||
552 | |||
553 | stuck = 100000 * nack_busy_id; | ||
554 | nack_mask = busy_mask << 1; | ||
555 | do { | ||
556 | __asm__ __volatile__("ldxa [%%g0] %1, %0" | ||
557 | : "=r" (dispatch_stat) | ||
558 | : "i" (ASI_INTR_DISPATCH_STAT)); | ||
559 | if (!(dispatch_stat & (busy_mask | nack_mask))) { | ||
560 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
561 | : : "r" (pstate)); | ||
562 | if (unlikely(need_more)) { | ||
563 | int i, this_cnt = 0; | ||
564 | for (i = 0; i < cnt; i++) { | ||
565 | if (cpu_list[i] == 0xffff) | ||
566 | continue; | ||
567 | cpu_list[i] = 0xffff; | ||
568 | this_cnt++; | ||
569 | if (this_cnt == 32) | ||
570 | break; | ||
571 | } | ||
572 | goto retry; | ||
573 | } | ||
574 | return; | ||
575 | } | ||
576 | if (!--stuck) | ||
577 | break; | ||
578 | } while (dispatch_stat & busy_mask); | ||
579 | |||
580 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
581 | : : "r" (pstate)); | ||
582 | |||
583 | if (dispatch_stat & busy_mask) { | ||
584 | /* Busy bits will not clear, continue instead | ||
585 | * of freezing up on this cpu. | ||
586 | */ | ||
587 | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | ||
588 | smp_processor_id(), dispatch_stat); | ||
589 | } else { | ||
590 | int i, this_busy_nack = 0; | ||
591 | |||
592 | /* Delay some random time with interrupts enabled | ||
593 | * to prevent deadlock. | ||
594 | */ | ||
595 | udelay(2 * nack_busy_id); | ||
596 | |||
597 | /* Clear out the mask bits for cpus which did not | ||
598 | * NACK us. | ||
599 | */ | ||
600 | for (i = 0; i < cnt; i++) { | ||
601 | u64 check_mask, nr; | ||
602 | |||
603 | nr = cpu_list[i]; | ||
604 | if (nr == 0xffff) | ||
605 | continue; | ||
606 | |||
607 | if (is_jbus) | ||
608 | check_mask = (0x2UL << (2*nr)); | ||
609 | else | ||
610 | check_mask = (0x2UL << | ||
611 | this_busy_nack); | ||
612 | if ((dispatch_stat & check_mask) == 0) | ||
613 | cpu_list[i] = 0xffff; | ||
614 | this_busy_nack += 2; | ||
615 | if (this_busy_nack == 64) | ||
616 | break; | ||
617 | } | ||
618 | |||
619 | goto retry; | ||
620 | } | ||
621 | } | ||
622 | } | ||
623 | |||
624 | /* Multi-cpu list version. */ | ||
625 | static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
626 | { | ||
627 | int retries, this_cpu, prev_sent, i, saw_cpu_error; | ||
628 | unsigned long status; | ||
629 | u16 *cpu_list; | ||
630 | |||
631 | this_cpu = smp_processor_id(); | ||
632 | |||
633 | cpu_list = __va(tb->cpu_list_pa); | ||
634 | |||
635 | saw_cpu_error = 0; | ||
636 | retries = 0; | ||
637 | prev_sent = 0; | ||
638 | do { | ||
639 | int forward_progress, n_sent; | ||
640 | |||
641 | status = sun4v_cpu_mondo_send(cnt, | ||
642 | tb->cpu_list_pa, | ||
643 | tb->cpu_mondo_block_pa); | ||
644 | |||
645 | /* HV_EOK means all cpus received the xcall, we're done. */ | ||
646 | if (likely(status == HV_EOK)) | ||
647 | break; | ||
648 | |||
649 | /* First, see if we made any forward progress. | ||
650 | * | ||
651 | * The hypervisor indicates successful sends by setting | ||
652 | * cpu list entries to the value 0xffff. | ||
653 | */ | ||
654 | n_sent = 0; | ||
655 | for (i = 0; i < cnt; i++) { | ||
656 | if (likely(cpu_list[i] == 0xffff)) | ||
657 | n_sent++; | ||
658 | } | ||
659 | |||
660 | forward_progress = 0; | ||
661 | if (n_sent > prev_sent) | ||
662 | forward_progress = 1; | ||
663 | |||
664 | prev_sent = n_sent; | ||
665 | |||
666 | /* If we get a HV_ECPUERROR, then one or more of the cpus | ||
667 | * in the list are in error state. Use the cpu_state() | ||
668 | * hypervisor call to find out which cpus are in error state. | ||
669 | */ | ||
670 | if (unlikely(status == HV_ECPUERROR)) { | ||
671 | for (i = 0; i < cnt; i++) { | ||
672 | long err; | ||
673 | u16 cpu; | ||
674 | |||
675 | cpu = cpu_list[i]; | ||
676 | if (cpu == 0xffff) | ||
677 | continue; | ||
678 | |||
679 | err = sun4v_cpu_state(cpu); | ||
680 | if (err == HV_CPU_STATE_ERROR) { | ||
681 | saw_cpu_error = (cpu + 1); | ||
682 | cpu_list[i] = 0xffff; | ||
683 | } | ||
684 | } | ||
685 | } else if (unlikely(status != HV_EWOULDBLOCK)) | ||
686 | goto fatal_mondo_error; | ||
687 | |||
688 | /* Don't bother rewriting the CPU list, just leave the | ||
689 | * 0xffff and non-0xffff entries in there and the | ||
690 | * hypervisor will do the right thing. | ||
691 | * | ||
692 | * Only advance timeout state if we didn't make any | ||
693 | * forward progress. | ||
694 | */ | ||
695 | if (unlikely(!forward_progress)) { | ||
696 | if (unlikely(++retries > 10000)) | ||
697 | goto fatal_mondo_timeout; | ||
698 | |||
699 | /* Delay a little bit to let other cpus catch up | ||
700 | * on their cpu mondo queue work. | ||
701 | */ | ||
702 | udelay(2 * cnt); | ||
703 | } | ||
704 | } while (1); | ||
705 | |||
706 | if (unlikely(saw_cpu_error)) | ||
707 | goto fatal_mondo_cpu_error; | ||
708 | |||
709 | return; | ||
710 | |||
711 | fatal_mondo_cpu_error: | ||
712 | printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " | ||
713 | "(including %d) were in error state\n", | ||
714 | this_cpu, saw_cpu_error - 1); | ||
715 | return; | ||
716 | |||
717 | fatal_mondo_timeout: | ||
718 | printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " | ||
719 | " progress after %d retries.\n", | ||
720 | this_cpu, retries); | ||
721 | goto dump_cpu_list_and_out; | ||
722 | |||
723 | fatal_mondo_error: | ||
724 | printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", | ||
725 | this_cpu, status); | ||
726 | printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " | ||
727 | "mondo_block_pa(%lx)\n", | ||
728 | this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); | ||
729 | |||
730 | dump_cpu_list_and_out: | ||
731 | printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); | ||
732 | for (i = 0; i < cnt; i++) | ||
733 | printk("%u ", cpu_list[i]); | ||
734 | printk("]\n"); | ||
735 | } | ||
736 | |||
737 | static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); | ||
738 | |||
739 | static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) | ||
740 | { | ||
741 | struct trap_per_cpu *tb; | ||
742 | int this_cpu, i, cnt; | ||
743 | unsigned long flags; | ||
744 | u16 *cpu_list; | ||
745 | u64 *mondo; | ||
746 | |||
747 | /* We have to do this whole thing with interrupts fully disabled. | ||
748 | * Otherwise if we send an xcall from interrupt context it will | ||
749 | * corrupt both our mondo block and cpu list state. | ||
750 | * | ||
751 | * One consequence of this is that we cannot use timeout mechanisms | ||
752 | * that depend upon interrupts being delivered locally. So, for | ||
753 | * example, we cannot sample jiffies and expect it to advance. | ||
754 | * | ||
755 | * Fortunately, udelay() uses %stick/%tick so we can use that. | ||
756 | */ | ||
757 | local_irq_save(flags); | ||
758 | |||
759 | this_cpu = smp_processor_id(); | ||
760 | tb = &trap_block[this_cpu]; | ||
761 | |||
762 | mondo = __va(tb->cpu_mondo_block_pa); | ||
763 | mondo[0] = data0; | ||
764 | mondo[1] = data1; | ||
765 | mondo[2] = data2; | ||
766 | wmb(); | ||
767 | |||
768 | cpu_list = __va(tb->cpu_list_pa); | ||
769 | |||
770 | /* Setup the initial cpu list. */ | ||
771 | cnt = 0; | ||
772 | for_each_cpu(i, mask) { | ||
773 | if (i == this_cpu || !cpu_online(i)) | ||
774 | continue; | ||
775 | cpu_list[cnt++] = i; | ||
776 | } | ||
777 | |||
778 | if (cnt) | ||
779 | xcall_deliver_impl(tb, cnt); | ||
780 | |||
781 | local_irq_restore(flags); | ||
782 | } | ||
783 | |||
784 | /* Send cross call to all processors mentioned in MASK_P | ||
785 | * except self. Really, there are only two cases currently, | ||
786 | * "&cpu_online_map" and "&mm->cpu_vm_mask". | ||
787 | */ | ||
788 | static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) | ||
789 | { | ||
790 | u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); | ||
791 | |||
792 | xcall_deliver(data0, data1, data2, mask); | ||
793 | } | ||
794 | |||
795 | /* Send cross call to all processors except self. */ | ||
796 | static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) | ||
797 | { | ||
798 | smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map); | ||
799 | } | ||
800 | |||
801 | extern unsigned long xcall_sync_tick; | ||
802 | |||
803 | static void smp_start_sync_tick_client(int cpu) | ||
804 | { | ||
805 | xcall_deliver((u64) &xcall_sync_tick, 0, 0, | ||
806 | &cpumask_of_cpu(cpu)); | ||
807 | } | ||
808 | |||
809 | extern unsigned long xcall_call_function; | ||
810 | |||
811 | void arch_send_call_function_ipi(cpumask_t mask) | ||
812 | { | ||
813 | xcall_deliver((u64) &xcall_call_function, 0, 0, &mask); | ||
814 | } | ||
815 | |||
816 | extern unsigned long xcall_call_function_single; | ||
817 | |||
818 | void arch_send_call_function_single_ipi(int cpu) | ||
819 | { | ||
820 | xcall_deliver((u64) &xcall_call_function_single, 0, 0, | ||
821 | &cpumask_of_cpu(cpu)); | ||
822 | } | ||
823 | |||
824 | void smp_call_function_client(int irq, struct pt_regs *regs) | ||
825 | { | ||
826 | clear_softint(1 << irq); | ||
827 | generic_smp_call_function_interrupt(); | ||
828 | } | ||
829 | |||
830 | void smp_call_function_single_client(int irq, struct pt_regs *regs) | ||
831 | { | ||
832 | clear_softint(1 << irq); | ||
833 | generic_smp_call_function_single_interrupt(); | ||
834 | } | ||
835 | |||
836 | static void tsb_sync(void *info) | ||
837 | { | ||
838 | struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; | ||
839 | struct mm_struct *mm = info; | ||
840 | |||
841 | /* It is not valid to test "currrent->active_mm == mm" here. | ||
842 | * | ||
843 | * The value of "current" is not changed atomically with | ||
844 | * switch_mm(). But that's OK, we just need to check the | ||
845 | * current cpu's trap block PGD physical address. | ||
846 | */ | ||
847 | if (tp->pgd_paddr == __pa(mm->pgd)) | ||
848 | tsb_context_switch(mm); | ||
849 | } | ||
850 | |||
851 | void smp_tsb_sync(struct mm_struct *mm) | ||
852 | { | ||
853 | smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1); | ||
854 | } | ||
855 | |||
856 | extern unsigned long xcall_flush_tlb_mm; | ||
857 | extern unsigned long xcall_flush_tlb_pending; | ||
858 | extern unsigned long xcall_flush_tlb_kernel_range; | ||
859 | extern unsigned long xcall_fetch_glob_regs; | ||
860 | extern unsigned long xcall_receive_signal; | ||
861 | extern unsigned long xcall_new_mmu_context_version; | ||
862 | #ifdef CONFIG_KGDB | ||
863 | extern unsigned long xcall_kgdb_capture; | ||
864 | #endif | ||
865 | |||
866 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
867 | extern unsigned long xcall_flush_dcache_page_cheetah; | ||
868 | #endif | ||
869 | extern unsigned long xcall_flush_dcache_page_spitfire; | ||
870 | |||
871 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
872 | extern atomic_t dcpage_flushes; | ||
873 | extern atomic_t dcpage_flushes_xcall; | ||
874 | #endif | ||
875 | |||
876 | static inline void __local_flush_dcache_page(struct page *page) | ||
877 | { | ||
878 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
879 | __flush_dcache_page(page_address(page), | ||
880 | ((tlb_type == spitfire) && | ||
881 | page_mapping(page) != NULL)); | ||
882 | #else | ||
883 | if (page_mapping(page) != NULL && | ||
884 | tlb_type == spitfire) | ||
885 | __flush_icache_page(__pa(page_address(page))); | ||
886 | #endif | ||
887 | } | ||
888 | |||
889 | void smp_flush_dcache_page_impl(struct page *page, int cpu) | ||
890 | { | ||
891 | int this_cpu; | ||
892 | |||
893 | if (tlb_type == hypervisor) | ||
894 | return; | ||
895 | |||
896 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
897 | atomic_inc(&dcpage_flushes); | ||
898 | #endif | ||
899 | |||
900 | this_cpu = get_cpu(); | ||
901 | |||
902 | if (cpu == this_cpu) { | ||
903 | __local_flush_dcache_page(page); | ||
904 | } else if (cpu_online(cpu)) { | ||
905 | void *pg_addr = page_address(page); | ||
906 | u64 data0 = 0; | ||
907 | |||
908 | if (tlb_type == spitfire) { | ||
909 | data0 = ((u64)&xcall_flush_dcache_page_spitfire); | ||
910 | if (page_mapping(page) != NULL) | ||
911 | data0 |= ((u64)1 << 32); | ||
912 | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | ||
913 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
914 | data0 = ((u64)&xcall_flush_dcache_page_cheetah); | ||
915 | #endif | ||
916 | } | ||
917 | if (data0) { | ||
918 | xcall_deliver(data0, __pa(pg_addr), | ||
919 | (u64) pg_addr, &cpumask_of_cpu(cpu)); | ||
920 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
921 | atomic_inc(&dcpage_flushes_xcall); | ||
922 | #endif | ||
923 | } | ||
924 | } | ||
925 | |||
926 | put_cpu(); | ||
927 | } | ||
928 | |||
929 | void flush_dcache_page_all(struct mm_struct *mm, struct page *page) | ||
930 | { | ||
931 | void *pg_addr; | ||
932 | int this_cpu; | ||
933 | u64 data0; | ||
934 | |||
935 | if (tlb_type == hypervisor) | ||
936 | return; | ||
937 | |||
938 | this_cpu = get_cpu(); | ||
939 | |||
940 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
941 | atomic_inc(&dcpage_flushes); | ||
942 | #endif | ||
943 | data0 = 0; | ||
944 | pg_addr = page_address(page); | ||
945 | if (tlb_type == spitfire) { | ||
946 | data0 = ((u64)&xcall_flush_dcache_page_spitfire); | ||
947 | if (page_mapping(page) != NULL) | ||
948 | data0 |= ((u64)1 << 32); | ||
949 | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | ||
950 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
951 | data0 = ((u64)&xcall_flush_dcache_page_cheetah); | ||
952 | #endif | ||
953 | } | ||
954 | if (data0) { | ||
955 | xcall_deliver(data0, __pa(pg_addr), | ||
956 | (u64) pg_addr, &cpu_online_map); | ||
957 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
958 | atomic_inc(&dcpage_flushes_xcall); | ||
959 | #endif | ||
960 | } | ||
961 | __local_flush_dcache_page(page); | ||
962 | |||
963 | put_cpu(); | ||
964 | } | ||
965 | |||
966 | void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) | ||
967 | { | ||
968 | struct mm_struct *mm; | ||
969 | unsigned long flags; | ||
970 | |||
971 | clear_softint(1 << irq); | ||
972 | |||
973 | /* See if we need to allocate a new TLB context because | ||
974 | * the version of the one we are using is now out of date. | ||
975 | */ | ||
976 | mm = current->active_mm; | ||
977 | if (unlikely(!mm || (mm == &init_mm))) | ||
978 | return; | ||
979 | |||
980 | spin_lock_irqsave(&mm->context.lock, flags); | ||
981 | |||
982 | if (unlikely(!CTX_VALID(mm->context))) | ||
983 | get_new_mmu_context(mm); | ||
984 | |||
985 | spin_unlock_irqrestore(&mm->context.lock, flags); | ||
986 | |||
987 | load_secondary_context(mm); | ||
988 | __flush_tlb_mm(CTX_HWBITS(mm->context), | ||
989 | SECONDARY_CONTEXT); | ||
990 | } | ||
991 | |||
992 | void smp_new_mmu_context_version(void) | ||
993 | { | ||
994 | smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); | ||
995 | } | ||
996 | |||
997 | #ifdef CONFIG_KGDB | ||
998 | void kgdb_roundup_cpus(unsigned long flags) | ||
999 | { | ||
1000 | smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); | ||
1001 | } | ||
1002 | #endif | ||
1003 | |||
1004 | void smp_fetch_global_regs(void) | ||
1005 | { | ||
1006 | smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); | ||
1007 | } | ||
1008 | |||
1009 | /* We know that the window frames of the user have been flushed | ||
1010 | * to the stack before we get here because all callers of us | ||
1011 | * are flush_tlb_*() routines, and these run after flush_cache_*() | ||
1012 | * which performs the flushw. | ||
1013 | * | ||
1014 | * The SMP TLB coherency scheme we use works as follows: | ||
1015 | * | ||
1016 | * 1) mm->cpu_vm_mask is a bit mask of which cpus an address | ||
1017 | * space has (potentially) executed on, this is the heuristic | ||
1018 | * we use to avoid doing cross calls. | ||
1019 | * | ||
1020 | * Also, for flushing from kswapd and also for clones, we | ||
1021 | * use cpu_vm_mask as the list of cpus to make run the TLB. | ||
1022 | * | ||
1023 | * 2) TLB context numbers are shared globally across all processors | ||
1024 | * in the system, this allows us to play several games to avoid | ||
1025 | * cross calls. | ||
1026 | * | ||
1027 | * One invariant is that when a cpu switches to a process, and | ||
1028 | * that processes tsk->active_mm->cpu_vm_mask does not have the | ||
1029 | * current cpu's bit set, that tlb context is flushed locally. | ||
1030 | * | ||
1031 | * If the address space is non-shared (ie. mm->count == 1) we avoid | ||
1032 | * cross calls when we want to flush the currently running process's | ||
1033 | * tlb state. This is done by clearing all cpu bits except the current | ||
1034 | * processor's in current->active_mm->cpu_vm_mask and performing the | ||
1035 | * flush locally only. This will force any subsequent cpus which run | ||
1036 | * this task to flush the context from the local tlb if the process | ||
1037 | * migrates to another cpu (again). | ||
1038 | * | ||
1039 | * 3) For shared address spaces (threads) and swapping we bite the | ||
1040 | * bullet for most cases and perform the cross call (but only to | ||
1041 | * the cpus listed in cpu_vm_mask). | ||
1042 | * | ||
1043 | * The performance gain from "optimizing" away the cross call for threads is | ||
1044 | * questionable (in theory the big win for threads is the massive sharing of | ||
1045 | * address space state across processors). | ||
1046 | */ | ||
1047 | |||
1048 | /* This currently is only used by the hugetlb arch pre-fault | ||
1049 | * hook on UltraSPARC-III+ and later when changing the pagesize | ||
1050 | * bits of the context register for an address space. | ||
1051 | */ | ||
1052 | void smp_flush_tlb_mm(struct mm_struct *mm) | ||
1053 | { | ||
1054 | u32 ctx = CTX_HWBITS(mm->context); | ||
1055 | int cpu = get_cpu(); | ||
1056 | |||
1057 | if (atomic_read(&mm->mm_users) == 1) { | ||
1058 | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | ||
1059 | goto local_flush_and_out; | ||
1060 | } | ||
1061 | |||
1062 | smp_cross_call_masked(&xcall_flush_tlb_mm, | ||
1063 | ctx, 0, 0, | ||
1064 | &mm->cpu_vm_mask); | ||
1065 | |||
1066 | local_flush_and_out: | ||
1067 | __flush_tlb_mm(ctx, SECONDARY_CONTEXT); | ||
1068 | |||
1069 | put_cpu(); | ||
1070 | } | ||
1071 | |||
1072 | void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) | ||
1073 | { | ||
1074 | u32 ctx = CTX_HWBITS(mm->context); | ||
1075 | int cpu = get_cpu(); | ||
1076 | |||
1077 | if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) | ||
1078 | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | ||
1079 | else | ||
1080 | smp_cross_call_masked(&xcall_flush_tlb_pending, | ||
1081 | ctx, nr, (unsigned long) vaddrs, | ||
1082 | &mm->cpu_vm_mask); | ||
1083 | |||
1084 | __flush_tlb_pending(ctx, nr, vaddrs); | ||
1085 | |||
1086 | put_cpu(); | ||
1087 | } | ||
1088 | |||
1089 | void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) | ||
1090 | { | ||
1091 | start &= PAGE_MASK; | ||
1092 | end = PAGE_ALIGN(end); | ||
1093 | if (start != end) { | ||
1094 | smp_cross_call(&xcall_flush_tlb_kernel_range, | ||
1095 | 0, start, end); | ||
1096 | |||
1097 | __flush_tlb_kernel_range(start, end); | ||
1098 | } | ||
1099 | } | ||
1100 | |||
1101 | /* CPU capture. */ | ||
1102 | /* #define CAPTURE_DEBUG */ | ||
1103 | extern unsigned long xcall_capture; | ||
1104 | |||
1105 | static atomic_t smp_capture_depth = ATOMIC_INIT(0); | ||
1106 | static atomic_t smp_capture_registry = ATOMIC_INIT(0); | ||
1107 | static unsigned long penguins_are_doing_time; | ||
1108 | |||
1109 | void smp_capture(void) | ||
1110 | { | ||
1111 | int result = atomic_add_ret(1, &smp_capture_depth); | ||
1112 | |||
1113 | if (result == 1) { | ||
1114 | int ncpus = num_online_cpus(); | ||
1115 | |||
1116 | #ifdef CAPTURE_DEBUG | ||
1117 | printk("CPU[%d]: Sending penguins to jail...", | ||
1118 | smp_processor_id()); | ||
1119 | #endif | ||
1120 | penguins_are_doing_time = 1; | ||
1121 | atomic_inc(&smp_capture_registry); | ||
1122 | smp_cross_call(&xcall_capture, 0, 0, 0); | ||
1123 | while (atomic_read(&smp_capture_registry) != ncpus) | ||
1124 | rmb(); | ||
1125 | #ifdef CAPTURE_DEBUG | ||
1126 | printk("done\n"); | ||
1127 | #endif | ||
1128 | } | ||
1129 | } | ||
1130 | |||
1131 | void smp_release(void) | ||
1132 | { | ||
1133 | if (atomic_dec_and_test(&smp_capture_depth)) { | ||
1134 | #ifdef CAPTURE_DEBUG | ||
1135 | printk("CPU[%d]: Giving pardon to " | ||
1136 | "imprisoned penguins\n", | ||
1137 | smp_processor_id()); | ||
1138 | #endif | ||
1139 | penguins_are_doing_time = 0; | ||
1140 | membar_safe("#StoreLoad"); | ||
1141 | atomic_dec(&smp_capture_registry); | ||
1142 | } | ||
1143 | } | ||
1144 | |||
1145 | /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE | ||
1146 | * set, so they can service tlb flush xcalls... | ||
1147 | */ | ||
1148 | extern void prom_world(int); | ||
1149 | |||
1150 | void smp_penguin_jailcell(int irq, struct pt_regs *regs) | ||
1151 | { | ||
1152 | clear_softint(1 << irq); | ||
1153 | |||
1154 | preempt_disable(); | ||
1155 | |||
1156 | __asm__ __volatile__("flushw"); | ||
1157 | prom_world(1); | ||
1158 | atomic_inc(&smp_capture_registry); | ||
1159 | membar_safe("#StoreLoad"); | ||
1160 | while (penguins_are_doing_time) | ||
1161 | rmb(); | ||
1162 | atomic_dec(&smp_capture_registry); | ||
1163 | prom_world(0); | ||
1164 | |||
1165 | preempt_enable(); | ||
1166 | } | ||
1167 | |||
1168 | /* /proc/profile writes can call this, don't __init it please. */ | ||
1169 | int setup_profiling_timer(unsigned int multiplier) | ||
1170 | { | ||
1171 | return -EINVAL; | ||
1172 | } | ||
1173 | |||
1174 | void __init smp_prepare_cpus(unsigned int max_cpus) | ||
1175 | { | ||
1176 | } | ||
1177 | |||
1178 | void __devinit smp_prepare_boot_cpu(void) | ||
1179 | { | ||
1180 | } | ||
1181 | |||
1182 | void __init smp_setup_processor_id(void) | ||
1183 | { | ||
1184 | if (tlb_type == spitfire) | ||
1185 | xcall_deliver_impl = spitfire_xcall_deliver; | ||
1186 | else if (tlb_type == cheetah || tlb_type == cheetah_plus) | ||
1187 | xcall_deliver_impl = cheetah_xcall_deliver; | ||
1188 | else | ||
1189 | xcall_deliver_impl = hypervisor_xcall_deliver; | ||
1190 | } | ||
1191 | |||
1192 | void __devinit smp_fill_in_sib_core_maps(void) | ||
1193 | { | ||
1194 | unsigned int i; | ||
1195 | |||
1196 | for_each_present_cpu(i) { | ||
1197 | unsigned int j; | ||
1198 | |||
1199 | cpus_clear(cpu_core_map[i]); | ||
1200 | if (cpu_data(i).core_id == 0) { | ||
1201 | cpu_set(i, cpu_core_map[i]); | ||
1202 | continue; | ||
1203 | } | ||
1204 | |||
1205 | for_each_present_cpu(j) { | ||
1206 | if (cpu_data(i).core_id == | ||
1207 | cpu_data(j).core_id) | ||
1208 | cpu_set(j, cpu_core_map[i]); | ||
1209 | } | ||
1210 | } | ||
1211 | |||
1212 | for_each_present_cpu(i) { | ||
1213 | unsigned int j; | ||
1214 | |||
1215 | cpus_clear(per_cpu(cpu_sibling_map, i)); | ||
1216 | if (cpu_data(i).proc_id == -1) { | ||
1217 | cpu_set(i, per_cpu(cpu_sibling_map, i)); | ||
1218 | continue; | ||
1219 | } | ||
1220 | |||
1221 | for_each_present_cpu(j) { | ||
1222 | if (cpu_data(i).proc_id == | ||
1223 | cpu_data(j).proc_id) | ||
1224 | cpu_set(j, per_cpu(cpu_sibling_map, i)); | ||
1225 | } | ||
1226 | } | ||
1227 | } | ||
1228 | |||
1229 | int __cpuinit __cpu_up(unsigned int cpu) | ||
1230 | { | ||
1231 | int ret = smp_boot_one_cpu(cpu); | ||
1232 | |||
1233 | if (!ret) { | ||
1234 | cpu_set(cpu, smp_commenced_mask); | ||
1235 | while (!cpu_isset(cpu, cpu_online_map)) | ||
1236 | mb(); | ||
1237 | if (!cpu_isset(cpu, cpu_online_map)) { | ||
1238 | ret = -ENODEV; | ||
1239 | } else { | ||
1240 | /* On SUN4V, writes to %tick and %stick are | ||
1241 | * not allowed. | ||
1242 | */ | ||
1243 | if (tlb_type != hypervisor) | ||
1244 | smp_synchronize_one_tick(cpu); | ||
1245 | } | ||
1246 | } | ||
1247 | return ret; | ||
1248 | } | ||
1249 | |||
1250 | #ifdef CONFIG_HOTPLUG_CPU | ||
1251 | void cpu_play_dead(void) | ||
1252 | { | ||
1253 | int cpu = smp_processor_id(); | ||
1254 | unsigned long pstate; | ||
1255 | |||
1256 | idle_task_exit(); | ||
1257 | |||
1258 | if (tlb_type == hypervisor) { | ||
1259 | struct trap_per_cpu *tb = &trap_block[cpu]; | ||
1260 | |||
1261 | sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, | ||
1262 | tb->cpu_mondo_pa, 0); | ||
1263 | sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, | ||
1264 | tb->dev_mondo_pa, 0); | ||
1265 | sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, | ||
1266 | tb->resum_mondo_pa, 0); | ||
1267 | sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, | ||
1268 | tb->nonresum_mondo_pa, 0); | ||
1269 | } | ||
1270 | |||
1271 | cpu_clear(cpu, smp_commenced_mask); | ||
1272 | membar_safe("#Sync"); | ||
1273 | |||
1274 | local_irq_disable(); | ||
1275 | |||
1276 | __asm__ __volatile__( | ||
1277 | "rdpr %%pstate, %0\n\t" | ||
1278 | "wrpr %0, %1, %%pstate" | ||
1279 | : "=r" (pstate) | ||
1280 | : "i" (PSTATE_IE)); | ||
1281 | |||
1282 | while (1) | ||
1283 | barrier(); | ||
1284 | } | ||
1285 | |||
1286 | int __cpu_disable(void) | ||
1287 | { | ||
1288 | int cpu = smp_processor_id(); | ||
1289 | cpuinfo_sparc *c; | ||
1290 | int i; | ||
1291 | |||
1292 | for_each_cpu_mask(i, cpu_core_map[cpu]) | ||
1293 | cpu_clear(cpu, cpu_core_map[i]); | ||
1294 | cpus_clear(cpu_core_map[cpu]); | ||
1295 | |||
1296 | for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu)) | ||
1297 | cpu_clear(cpu, per_cpu(cpu_sibling_map, i)); | ||
1298 | cpus_clear(per_cpu(cpu_sibling_map, cpu)); | ||
1299 | |||
1300 | c = &cpu_data(cpu); | ||
1301 | |||
1302 | c->core_id = 0; | ||
1303 | c->proc_id = -1; | ||
1304 | |||
1305 | smp_wmb(); | ||
1306 | |||
1307 | /* Make sure no interrupts point to this cpu. */ | ||
1308 | fixup_irqs(); | ||
1309 | |||
1310 | local_irq_enable(); | ||
1311 | mdelay(1); | ||
1312 | local_irq_disable(); | ||
1313 | |||
1314 | ipi_call_lock(); | ||
1315 | cpu_clear(cpu, cpu_online_map); | ||
1316 | ipi_call_unlock(); | ||
1317 | |||
1318 | return 0; | ||
1319 | } | ||
1320 | |||
1321 | void __cpu_die(unsigned int cpu) | ||
1322 | { | ||
1323 | int i; | ||
1324 | |||
1325 | for (i = 0; i < 100; i++) { | ||
1326 | smp_rmb(); | ||
1327 | if (!cpu_isset(cpu, smp_commenced_mask)) | ||
1328 | break; | ||
1329 | msleep(100); | ||
1330 | } | ||
1331 | if (cpu_isset(cpu, smp_commenced_mask)) { | ||
1332 | printk(KERN_ERR "CPU %u didn't die...\n", cpu); | ||
1333 | } else { | ||
1334 | #if defined(CONFIG_SUN_LDOMS) | ||
1335 | unsigned long hv_err; | ||
1336 | int limit = 100; | ||
1337 | |||
1338 | do { | ||
1339 | hv_err = sun4v_cpu_stop(cpu); | ||
1340 | if (hv_err == HV_EOK) { | ||
1341 | cpu_clear(cpu, cpu_present_map); | ||
1342 | break; | ||
1343 | } | ||
1344 | } while (--limit > 0); | ||
1345 | if (limit <= 0) { | ||
1346 | printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", | ||
1347 | hv_err); | ||
1348 | } | ||
1349 | #endif | ||
1350 | } | ||
1351 | } | ||
1352 | #endif | ||
1353 | |||
1354 | void __init smp_cpus_done(unsigned int max_cpus) | ||
1355 | { | ||
1356 | } | ||
1357 | |||
1358 | void smp_send_reschedule(int cpu) | ||
1359 | { | ||
1360 | xcall_deliver((u64) &xcall_receive_signal, 0, 0, | ||
1361 | &cpumask_of_cpu(cpu)); | ||
1362 | } | ||
1363 | |||
1364 | void smp_receive_signal_client(int irq, struct pt_regs *regs) | ||
1365 | { | ||
1366 | clear_softint(1 << irq); | ||
1367 | } | ||
1368 | |||
1369 | /* This is a nop because we capture all other cpus | ||
1370 | * anyways when making the PROM active. | ||
1371 | */ | ||
1372 | void smp_send_stop(void) | ||
1373 | { | ||
1374 | } | ||
1375 | |||
1376 | unsigned long __per_cpu_base __read_mostly; | ||
1377 | unsigned long __per_cpu_shift __read_mostly; | ||
1378 | |||
1379 | EXPORT_SYMBOL(__per_cpu_base); | ||
1380 | EXPORT_SYMBOL(__per_cpu_shift); | ||
1381 | |||
1382 | void __init real_setup_per_cpu_areas(void) | ||
1383 | { | ||
1384 | unsigned long paddr, goal, size, i; | ||
1385 | char *ptr; | ||
1386 | |||
1387 | /* Copy section for each CPU (we discard the original) */ | ||
1388 | goal = PERCPU_ENOUGH_ROOM; | ||
1389 | |||
1390 | __per_cpu_shift = PAGE_SHIFT; | ||
1391 | for (size = PAGE_SIZE; size < goal; size <<= 1UL) | ||
1392 | __per_cpu_shift++; | ||
1393 | |||
1394 | paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE); | ||
1395 | if (!paddr) { | ||
1396 | prom_printf("Cannot allocate per-cpu memory.\n"); | ||
1397 | prom_halt(); | ||
1398 | } | ||
1399 | |||
1400 | ptr = __va(paddr); | ||
1401 | __per_cpu_base = ptr - __per_cpu_start; | ||
1402 | |||
1403 | for (i = 0; i < NR_CPUS; i++, ptr += size) | ||
1404 | memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); | ||
1405 | |||
1406 | /* Setup %g5 for the boot cpu. */ | ||
1407 | __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); | ||
1408 | } | ||